Knowledge

Tidal force

Source 📝

111: 3081: 660: 594: 690: 3969: 3990: 172: 539: 702: 3070: 3979: 20: 724:
as they would be if there were no externally generated field acting unequally at the given point and at the center of the reference body. The externally generated field is usually that produced by a perturbing third body, often the Sun or the Moon in the frequent example-cases of points on or above the Earth's surface in a geocentric reference frame.)
664: 662: 667: 666: 661: 668: 1688:(and everything on its surface) is in free fall. When the force on the far particle is subtracted from the force on the near particle, this first term cancels, as do all other even-order terms. The remaining (residual) terms represent the difference mentioned above and are tidal force (acceleration) terms. When ∆ 665: 167:
The relationship of an astronomical body's size, to its distance from another body, strongly influences the magnitude of tidal force. The tidal force acting on an astronomical body, such as the Earth, is directly proportional to the diameter of the Earth and inversely proportional to the cube of the
723:
is used to describe the forces due to tidal acceleration. Note that for these purposes the only gravitational field considered is the external one; the gravitational field of the body (as shown in the graphic) is not relevant. (In other words, the comparison is with the conditions at the given point
205:
The tidal force corresponds to the difference in Y between two points on the graph, with one point on the near side of the body, and the other point on the far side. The tidal force becomes larger, when the two points are either farther apart, or when they are more to the left on the graph, meaning
90:
can refer to a situation in which a body or material (for example, tidal water) is mainly under the gravitational influence of a second body (for example, the Earth), but is also perturbed by the gravitational effects of a third body (for example, the Moon). The perturbing force is sometimes in such
705:
Figure 8: Graphic of tidal forces. The top picture shows the gravity field of a body to the right (not shown); the lower shows their residual gravity once the field at the centre of the sphere is subtracted; this is the tidal force. For visualization purposes, the top arrows may be assumed as equal
142:
When a body (body 1) is acted on by the gravity of another body (body 2), the field can vary significantly on body 1 between the side of the body facing body 2 and the side facing away from body 2. Figure 2 shows the differential force of gravity on a spherical body (body 1) exerted by another body
561:
When a body rotates while subject to tidal forces, internal friction results in the gradual dissipation of its rotational kinetic energy as heat. In the case for the Earth, and Earth's Moon, the loss of rotational kinetic energy results in a gain of about 2 milliseconds per century. If the body is
209:
For example, even though the Sun has a stronger overall gravitational pull on Earth, the Moon creates a larger tidal bulge because the Moon is closer. This difference is due to the way gravity weakens with distance: the Moon's closer proximity creates a steeper decline in its gravitational pull as
154:
is the distance from a planet at which tidal effects would cause an object to disintegrate because the differential force of gravity from the planet overcomes the attraction of the parts of the object for one another. These strains would not occur if the gravitational field were uniform, because a
78:
of objects. It arises because the gravitational field exerted on one body by another is not constant across its parts: the nearer side is attracted more strongly than the farther side. The difference is positive in the near side and negative in the far side, which causes a body to get stretched.
125:
Earth's rotation accounts further for the occurrence of two high tides per day on the same location. In this figure, the Earth is the central black circle while the Moon is far off to the right. It shows both the tidal field (thick red arrows) and the gravity field (thin blue arrows) exerted on
558:, and are slightly compressed, which is what happens to the Earth's oceans under the action of the Moon. All parts of the Earth are subject to the Moon's gravitational forces, causing the water in the oceans to redistribute, forming bulges on the sides near the Moon and far from the Moon. 585:
Tidal forces contribute to ocean currents, which moderate global temperatures by transporting heat energy toward the poles. It has been suggested that variations in tidal forces correlate with cool periods in the global temperature record at 6- to 10-year intervals, and that
1624: 213:
Gravitational attraction is inversely proportional to the square of the distance from the source. The attraction will be stronger on the side of a body facing the source, and weaker on the side away from the source. The tidal force is proportional to the difference.
1366: 222:
The Earth is 81 times more massive than the Moon, the Earth has roughly 4 times the Moon's radius. As a result, at the same distance, the tidal force of the Earth at the surface of the Moon is about 20 times stronger than that of the Moon at the Earth's surface.
210:
you move across Earth (compared to the Sun's very gradual decline from its vast distance). This steeper gradient in the Moon's pull results in a larger difference in force between the near and far sides of Earth, which is what creates the bigger tidal bulge.
1853: 1228: 663: 1993: 718:
of the gravitational acceleration at the center of the body (due to the given externally generated field) from the gravitational acceleration (due to the same field) at the given point. Correspondingly, the term
872: 2028:
at the Earth's surface. Hence the tide-raising force (acceleration) due to the Sun is about 45% of that due to the Moon. The solar tidal acceleration at the Earth's surface was first given by Newton in the
994: 706:
to 1 N, 2 N, and 3 N (from left to right); the resulting bottom arrows would equal, respectively, -1 N (negative, thus 180-degree rotated), 0 N (invisible), and 1 N. See Figure 2 for a more detailed version
1479: 1998:
The tidal accelerations at the surfaces of planets in the Solar System are generally very small. For example, the lunar tidal acceleration at the Earth's surface along the Moon–Earth axis is about
168:
distance from another body producing a gravitational attraction, such as the Moon or the Sun. Tidal action on bath tubs, swimming pools, lakes, and other small bodies of water is negligible.
1243: 1738: 1471: 360: 1904: 1420: 911: 784: 550:
In the case of an infinitesimally small elastic sphere, the effect of a tidal force is to distort the shape of the body without any change in volume. The sphere becomes an
1026: 1758: 179:
Figure 3 is a graph showing how gravitational force declines with distance. In this graph, the attractive force decreases in proportion to the square of the distance (
1674: 1651: 310: 287: 261: 2144: 3709: 1136: 3699: 2758: 546:'s rings are inside the orbits of its principal moons. Tidal forces oppose gravitational coalescence of the material in the rings to form moons. 2646:), and wrote that the force to raise the sea along the Sun-Earth axis is "twice as great" (i.e., 2 to 38604600) which comes to about 0.52 × 10 2361: 590:
variations in tidal forcing may contribute to millennial climate changes. No strong link to millennial climate changes has been found to date.
2031: 1936: 95:): it is the difference between the force exerted by the third body on the second and the force exerted by the third body on the first. 792: 919: 2718: 735: 3615: 1619:{\displaystyle {\vec {a}}_{g}=-{\hat {r}}~G~{\frac {M}{R^{2}}}\pm {\hat {r}}~G~{\frac {2M}{R^{2}}}~{\frac {\Delta r}{R}}+\cdots } 3982: 3030: 2798: 731:
in a straight line under the influence of a gravitational field while still being influenced by (changing) tidal acceleration.
79:
Thus, the tidal force is also known as the differential force, residual force, or secondary effect of the gravitational field.
2631: 2600: 2397: 2334: 2222: 2189: 1929:
calculation. In the plane perpendicular to that axis, the tidal acceleration is directed inwards (towards the center where ∆
3262: 2751: 1696:, the terms after the first residual term are very small and can be neglected, giving the approximate tidal acceleration 3152: 1361:{\displaystyle {\vec {a}}_{g}=-{\hat {r}}~G~{\frac {M}{R^{2}}}~{\frac {1}{\left(1\pm {\frac {\Delta r}{R}}\right)^{2}}}} 1079:. For simplicity, distances are first considered only in the direction pointing towards or away from the sphere of mass 3857: 3284: 3172: 3704: 2975: 118:
field at the surface of the Earth is known (along with another and weaker differential effect due to the Sun) as the
2093: 3162: 3122: 2705: 1699: 2642:
Newton put the force to depress the sea at places 90 degrees distant from the Sun at "1 to 38604600" (in terms of
3892: 2878: 2671: 646: 2515: 2490: 2414: 4040: 3972: 3565: 2744: 2383: 2212: 1425: 150:
cause strains on both bodies and may distort them or even, in extreme cases, break one or the other apart. The
715: 317: 3020: 4035: 2241: 3080: 3217: 3752: 3157: 3117: 2676: 653: 2292: 1873: 1378: 880: 753: 3882: 3257: 3247: 3187: 2823: 2793: 2696: 175:
Figure 3: Graph showing how gravitational attraction drops off with increasing distance from a body
2667: 1848:{\displaystyle {\vec {a}}_{t,{\text{axial}}}\approx \pm {\hat {r}}~2\Delta r~G~{\frac {M}{R^{3}}}} 3919: 3902: 3739: 3232: 3097: 3035: 3025: 2918: 2730: 2177: 677: 2181: 1002: 3914: 3852: 3279: 2965: 2287: 1115:. Leaving aside whatever gravitational acceleration may be experienced by the particle towards 652:
By generating conducting fluids within the interior of the Earth, tidal forces also affect the
598: 554:
with two bulges, pointing towards and away from the other body. Larger objects distort into an
514: 159:
only causes the entire body to accelerate together in the same direction and at the same rate.
130:
direction of the arrows on the right and left of the Earth indicates that where the Moon is at
122:. This is the primary mechanism driving tidal action, explaining two simultaneous tidal bulges. 2608: 2130: 2009:, while the solar tidal acceleration at the Earth's surface along the Sun–Earth axis is about 1656: 727:
Tidal acceleration does not require rotation or orbiting bodies; for example, the body may be
4015: 3747: 3729: 3237: 3132: 2767: 2592: 2341: 2208: 1676:
is zero. This term does not affect the observed acceleration of particles on the surface of
3934: 3767: 3470: 3327: 3192: 2903: 2639: 2502: 2443: 2279: 8: 3929: 3814: 3809: 3535: 3207: 3167: 2883: 2270: 2074: 83: 51: 2506: 2447: 2283: 1126:
s own mass, we have the acceleration on the particle due to gravitational force towards
3872: 3585: 3575: 3540: 3440: 3425: 3322: 2170: 1636: 1075:
be the (relatively small) distance of the particle from the center of the body of mass
642: 575: 295: 272: 246: 99: 3954: 3944: 3887: 3867: 3550: 3515: 3450: 3430: 3420: 3302: 2990: 2848: 2627: 2596: 2471: 2466: 2431: 2393: 2330: 2305: 2218: 2185: 2117: 2044: 618: 609:
Tidal effects become particularly pronounced near small bodies of high mass, such as
75: 2724: 1917:
Tidal accelerations can also be calculated away from the axis connecting the bodies
16:
A gravitational effect also known as the differential force and the perturbing force
4025: 3909: 3877: 3847: 3656: 3641: 3510: 3445: 3337: 3252: 3182: 3107: 2888: 2858: 2788: 2783: 2510: 2461: 2451: 2326:
Gravity from the Ground Up: An Introductory Guide to Gravity and General Relativity
2297: 2049: 2025: 1926: 1372: 587: 59: 2560: 92: 3714: 3610: 3560: 3525: 3485: 3377: 3347: 3197: 3147: 3057: 3015: 2948: 2873: 2833: 2621: 2586: 2530: 2324: 2064: 2059: 1091:, then the new particle considered may be located on its surface, at a distance ( 156: 2353: 110: 4030: 4020: 3824: 3819: 3724: 3719: 3555: 3495: 3490: 3222: 3112: 2933: 2868: 2843: 2684: 47: 3069: 593: 4009: 3994: 3842: 3762: 3651: 3570: 3545: 3480: 3410: 3317: 3212: 3089: 3010: 2970: 2943: 2853: 2803: 2309: 2054: 1223:{\displaystyle {\vec {a}}_{g}=-{\hat {r}}~G~{\frac {M}{(R\pm \Delta r)^{2}}}} 689: 638: 567: 563: 63: 43: 24: 2456: 2172:
The Emperor's New Mind: Concerning Computers, Minds, and the Laws of Physics
3949: 3897: 3837: 3788: 3666: 3661: 3636: 3620: 3595: 3312: 3202: 3142: 2928: 2838: 2813: 2721:
by Mikolaj Sawicki of John A. Logan College and the University of Colorado.
2475: 2069: 610: 2662: 3939: 3671: 3600: 3465: 3405: 3372: 3362: 3242: 3177: 3137: 3127: 3102: 2985: 2958: 2938: 2898: 2863: 2692: 1029: 151: 71: 67: 2736: 2706:"Stellar collisions: Tidal disruption of a star by a massive black hole" 2120:, I. N. Avsiuk, in "Soviet Astronomy Letters", vol. 3 (1977), pp. 96–99. 3757: 3605: 3580: 3475: 3455: 3382: 3367: 3352: 3342: 3307: 3227: 3047: 3042: 3005: 3000: 2995: 2893: 614: 3989: 2145:"Tidal forces carry the mathematical signature of gravitational waves" 46:
effect that stretches a body along the line towards and away from the
3829: 3691: 3676: 3590: 3435: 3274: 3269: 3052: 2980: 2908: 2828: 2818: 2775: 2389: 2301: 1988:{\textstyle {\frac {1}{2}}\left|{\vec {a}}_{t,{\text{axial}}}\right|} 579: 571: 551: 171: 693:
Figure 7: Tidal force is responsible for the merge of galactic pair
562:
close enough to its primary, this can result in a rotation which is
3924: 3646: 3505: 3397: 3387: 3332: 2808: 2207: 728: 694: 538: 3793: 3783: 2953: 2923: 2489:
Munk, Walter; Dzieciuch, Matthew; Jayne, Steven (February 2002).
602: 126:
Earth's surface and center (label O) by the Moon (label S). The
98:
Tidal forces have also been shown to be fundamentally related to
27: 2329:(illustrated ed.). Cambridge University Press. p. 45. 867:{\displaystyle {\vec {F}}_{g}=-{\hat {r}}~G~{\frac {Mm}{R^{2}}}} 3500: 2913: 989:{\displaystyle {\vec {a}}_{g}=-{\hat {r}}~G~{\frac {M}{R^{2}}}} 701: 578:
caused by tidal forces also cause a regular monthly pattern of
543: 131: 2491:"Millennial Climate Variability: Is There a Tidal Connection?" 2419:. Vol. 26. Encyclopedia Americana Corp. pp. 611–617. 1055:
experienced by a particle in the vicinity of the body of mass
3862: 3681: 3460: 3415: 2432:"Possible forcing of global temperature by the oceanic tides" 626: 555: 135: 2416:
The Encyclopedia Americana: A Library of Universal Knowledge
1107:
may be taken as positive where the particle's distance from
710:
For a given (externally generated) gravitational field, the
3294: 2516:
10.1175/1520-0442(2002)015<0370:MCVITA>2.0.CO;2
673: 630: 622: 566:
to the orbital motion, as in the case of the Earth's moon.
55: 2268:
Sawicki, Mikolaj (1999). "Myths about gravity and tides".
19: 634: 202:) is inversely proportional to the cube of the distance. 50:
of another body due to spatial variations in strength in
1629:
The first term is the gravitational acceleration due to
1051:
Consider now the acceleration due to the sphere of mass
2381: 2358:
The NIST Reference on Constants, Units, and Uncertainty
621:" of infalling matter. Tidal forces create the oceanic 2354:"2022 CODATA Value: Newtonian constant of gravitation" 1939: 66:, breaking apart of celestial bodies and formation of 1876: 1761: 1702: 1659: 1639: 1482: 1428: 1381: 1246: 1139: 1005: 922: 883: 795: 756: 570:
produces dramatic volcanic effects on Jupiter's moon
320: 298: 275: 249: 1862:
is a distance along the axis joining the centers of
2682: 676:getting torn apart by the gravitational tides of a 2488: 2385:Hamiltonian Dynamical Systems: A Reprint Selection 2169: 2143:arXiv, Emerging Technology from the (2019-12-14). 1987: 1898: 1847: 1744:considered, along the axis joining the centers of 1732: 1668: 1645: 1618: 1465: 1414: 1360: 1222: 1020: 988: 905: 866: 778: 354: 304: 281: 255: 3710:North West Shelf Operational Oceanographic System 2623:The mathematical principles of natural philosophy 714:at a point with respect to a body is obtained by 601:in 1994 after breaking up under the influence of 4007: 1858:When calculated in this way for the case where ∆ 3700:Deep-ocean Assessment and Reporting of Tsunamis 2436:Proceedings of the National Academy of Sciences 2412: 629:'s oceans, where the attracting bodies are the 605:'s tidal forces during a previous pass in 1992. 54:from the other body. It is responsible for the 2430:Keeling, C. D.; Whorf, T. P. (5 August 1997). 2136: 2752: 2584: 2263: 2261: 1733:{\displaystyle {\vec {a}}_{t,{\text{axial}}}} 91:cases called a tidal force (for example, the 2703: 2429: 2346: 1906:is directed outwards from to the center of 114:Figure 2: Shown in red, the Moon's gravity 2759: 2745: 2258: 2766: 2663:Analysis and Prediction of Tides: GeoTide 2514: 2465: 2455: 2406: 2291: 2167: 1466:{\displaystyle 1\mp 2x+3x^{2}\mp \cdots } 1995:in linear approximation as in Figure 2. 1099:) from the centre of the sphere of mass 700: 688: 658: 637:. Tidal forces are also responsible for 592: 537: 170: 109: 23:Figure 1: Tidal interaction between the 18: 2267: 2242:"The Tidal Force | Neil deGrasse Tyson" 2236: 2234: 217: 4008: 3031:one-dimensional Saint-Venant equations 2619: 2375: 2322: 2161: 617:, where they are responsible for the " 355:{\displaystyle Gm~{\frac {2r}{d^{3}}}} 229:Gravitational body causing tidal force 2740: 2142: 736:Newton's law of universal gravitation 3978: 2231: 2201: 1633:at the center of the reference body 746:from the center of a sphere of mass 162: 2683:Gray, Meghan; Merrifield, Michael. 2131:"Astronomy: a physical perspective" 2094:"Hubble Views a Cosmic Interaction" 1473:which gives a series expansion of: 1063:as the distance from the center of 738:and laws of motion, a body of mass 13: 3858:National Oceanographic Data Center 3285:World Ocean Circulation Experiment 3173:Global Ocean Data Analysis Project 2382:R. S. MacKay; J. D. Meiss (1987). 1813: 1660: 1598: 1333: 1201: 672:Figure 6: This simulation shows a 14: 4052: 3705:Global Sea Level Observing System 2656: 1237:term from the denominator gives: 58:and related phenomena, including 3988: 3977: 3968: 3967: 3163:Geochemical Ocean Sections Study 3079: 3068: 2677:Audio: Cain/Gay – Astronomy Cast 2640:Book 3, Proposition 36, Page 307 2211:; J -P Bibring; M Blanc (2003). 647:Tides may also induce seismicity 3893:Ocean thermal energy conversion 3616:Vine–Matthews–Morley hypothesis 2672:Case Western Reserve University 2613: 2578: 2553: 2523: 2482: 2423: 1933:is zero), and its magnitude is 206:closer to the attracting body. 2588:Admiralty manual of navigation 2565:ESA/Hubble Picture of the Week 2316: 2123: 2111: 2086: 1961: 1899:{\displaystyle {\vec {a}}_{t}} 1884: 1801: 1769: 1710: 1555: 1514: 1490: 1415:{\displaystyle 1/(1\pm x)^{2}} 1403: 1390: 1278: 1254: 1208: 1192: 1171: 1147: 1087:is itself a sphere of radius ∆ 1012: 954: 930: 906:{\displaystyle {\vec {a}}_{g}} 891: 877:equivalent to an acceleration 827: 803: 779:{\displaystyle {\vec {F}}_{g}} 764: 684: 105: 1: 2719:Myths about Gravity and Tides 2080: 633:and, to a lesser extent, the 232:Body subjected to tidal force 3153:El Niño–Southern Oscillation 3123:Craik–Leibovich vortex force 2879:Luke's variational principle 2626:. Vol. 2. p. 307. 2561:"Inseparable galactic twins" 93:perturbing force on the Moon 7: 2731:Tides and centrifugal force 2670:by J. Christopher Mihos of 2531:"Hungry for Power in Space" 2038: 1653:, i.e., at the point where 10: 4057: 3218:Ocean dynamical thermostat 3066: 2026:gravitational acceleration 1021:{\displaystyle {\hat {r}}} 533: 3963: 3802: 3776: 3753:Ocean acoustic tomography 3738: 3690: 3629: 3566:Mohorovičić discontinuity 3524: 3396: 3293: 3158:General circulation model 3088: 2794:Benjamin–Feir instability 2774: 2679:Tidal Forces – July 2007. 2650:as expressed in the text. 2246:www.haydenplanetarium.org 2100:. NASA. February 11, 2022 1040:(here, acceleration from 509: 231: 228: 3883:Ocean surface topography 3258:Thermohaline circulation 3248:Subsurface ocean current 3188:Hydrothermal circulation 3021:Wave–current interaction 2799:Boussinesq approximation 2697:University of Nottingham 2413:Rollin A Harris (1920). 2323:Schutz, Bernard (2003). 2217:. Springer. p. 16. 1680:because with respect to 1669:{\displaystyle \Delta r} 74:, and in extreme cases, 3920:Sea surface temperature 3903:Outline of oceanography 3098:Atmospheric circulation 3036:shallow water equations 3026:Waves and shallow water 2919:Significant wave height 2541:: 52. 23 September 1989 2457:10.1073/pnas.94.16.8321 2178:Oxford University Press 1032:pointing from the body 678:supermassive black hole 30:and a smaller companion 3915:Sea surface microlayer 3280:Wind generated current 2620:Newton, Isaac (1729). 2585:The Admiralty (1987). 2133:, M. L. Kutner (2003). 1989: 1900: 1849: 1734: 1670: 1647: 1620: 1467: 1416: 1362: 1224: 1083:. If the body of mass 1022: 990: 907: 868: 780: 707: 698: 681: 654:Earth's magnetic field 606: 599:Comet Shoemaker-Levy 9 547: 515:gravitational constant 356: 306: 283: 257: 176: 139: 31: 4041:Concepts in astronomy 3748:Deep scattering layer 3730:World Geodetic System 3238:Princeton Ocean Model 3118:Coriolis–Stokes force 2768:Physical oceanography 2593:The Stationery Office 2149:MIT Technology Review 1990: 1901: 1850: 1735: 1692:is small compared to 1671: 1648: 1621: 1468: 1417: 1363: 1225: 1023: 991: 908: 869: 781: 704: 692: 671: 645:, and tidal heating. 596: 541: 357: 307: 284: 258: 174: 120:tide generating force 113: 40:tide-generating force 22: 3768:Underwater acoustics 3328:Perigean spring tide 3193:Langmuir circulation 2904:Rossby-gravity waves 2727:by Donald E. Simanek 2725:Tidal Misconceptions 2118:"On the tidal force" 1937: 1874: 1759: 1700: 1657: 1637: 1480: 1426: 1379: 1244: 1137: 1048:has negative sign). 1003: 920: 881: 793: 754: 318: 296: 273: 247: 218:Sun, Earth, and Moon 189:), while the slope ( 3930:Science On a Sphere 3536:Convergent boundary 3208:Modular Ocean Model 3168:Geostrophic current 2884:Mild-slope equation 2668:Gravitational Tides 2507:2002JCli...15..370M 2448:1997PNAS...94.8321K 2284:1999PhTea..37..438S 2271:The Physics Teacher 2075:Spacetime curvature 1740:for the distances ∆ 235:Tidal acceleration 100:gravitational waves 84:celestial mechanics 52:gravitational field 4036:Effects of gravity 3586:Seafloor spreading 3576:Outer trench swell 3541:Divergent boundary 3441:Continental margin 3426:Carbonate platform 3323:Lunitidal interval 2704:Pau Amaro Seoane. 2609:Chapter 11, p. 277 2495:Journal of Climate 2342:Extract of page 45 2168:R Penrose (1999). 1985: 1896: 1845: 1730: 1666: 1643: 1616: 1463: 1412: 1358: 1220: 1018: 986: 903: 864: 776: 716:vector subtraction 712:tidal acceleration 708: 699: 682: 643:tidal acceleration 607: 548: 352: 302: 279: 253: 177: 140: 32: 4003: 4002: 3995:Oceans portal 3955:World Ocean Atlas 3945:Underwater glider 3888:Ocean temperature 3551:Hydrothermal vent 3516:Submarine volcano 3451:Continental shelf 3431:Coastal geography 3421:Bathymetric chart 3303:Amphidromic point 2991:Wave nonlinearity 2849:Infragravity wave 2633:978-0-11-772880-6 2602:978-0-11-772880-6 2442:(16): 8321–8328. 2399:978-0-85274-205-1 2336:978-0-521-45506-0 2224:978-3-540-00241-3 2191:978-0-19-286198-6 2045:Amphidromic point 1977: 1964: 1948: 1887: 1843: 1827: 1821: 1809: 1804: 1785: 1772: 1726: 1713: 1646:{\displaystyle m} 1608: 1594: 1590: 1569: 1563: 1558: 1544: 1528: 1522: 1517: 1493: 1356: 1343: 1312: 1308: 1292: 1286: 1281: 1257: 1218: 1185: 1179: 1174: 1150: 1067:to the center of 1015: 984: 968: 962: 957: 933: 894: 862: 841: 835: 830: 806: 767: 669: 619:spaghettification 582:on Earth's Moon. 531: 530: 504:10 m⋅s 456:10 m⋅s 408:10 m⋅s 350: 329: 305:{\displaystyle d} 282:{\displaystyle r} 256:{\displaystyle m} 163:Size and distance 86:, the expression 76:spaghettification 60:solid-earth tides 4048: 3993: 3992: 3981: 3980: 3971: 3970: 3910:Pelagic sediment 3848:Marine pollution 3642:Deep ocean water 3511:Submarine canyon 3446:Continental rise 3338:Rule of twelfths 3253:Sverdrup balance 3183:Humboldt Current 3108:Boundary current 3083: 3072: 2889:Radiation stress 2859:Iribarren number 2834:Equatorial waves 2789:Ballantine scale 2784:Airy wave theory 2761: 2754: 2747: 2738: 2737: 2733:by Paolo Sirtoli 2715: 2713: 2712: 2700: 2651: 2637: 2617: 2611: 2606: 2582: 2576: 2575: 2573: 2571: 2557: 2551: 2550: 2548: 2546: 2527: 2521: 2520: 2518: 2486: 2480: 2479: 2469: 2459: 2427: 2421: 2420: 2410: 2404: 2403: 2379: 2373: 2372: 2370: 2369: 2350: 2344: 2340: 2320: 2314: 2313: 2302:10.1119/1.880345 2295: 2265: 2256: 2255: 2253: 2252: 2238: 2229: 2228: 2214:The Solar System 2209:Thérèse Encrenaz 2205: 2199: 2198: 2175: 2165: 2159: 2158: 2156: 2155: 2140: 2134: 2127: 2121: 2115: 2109: 2108: 2106: 2105: 2090: 2050:Disrupted planet 2019: 2014: 2008: 2003: 1994: 1992: 1991: 1986: 1984: 1980: 1979: 1978: 1975: 1966: 1965: 1957: 1949: 1941: 1905: 1903: 1902: 1897: 1895: 1894: 1889: 1888: 1880: 1854: 1852: 1851: 1846: 1844: 1842: 1841: 1829: 1825: 1819: 1807: 1806: 1805: 1797: 1788: 1787: 1786: 1783: 1774: 1773: 1765: 1739: 1737: 1736: 1731: 1729: 1728: 1727: 1724: 1715: 1714: 1706: 1675: 1673: 1672: 1667: 1652: 1650: 1649: 1644: 1625: 1623: 1622: 1617: 1609: 1604: 1596: 1592: 1591: 1589: 1588: 1579: 1571: 1567: 1561: 1560: 1559: 1551: 1545: 1543: 1542: 1530: 1526: 1520: 1519: 1518: 1510: 1501: 1500: 1495: 1494: 1486: 1472: 1470: 1469: 1464: 1456: 1455: 1421: 1419: 1418: 1413: 1411: 1410: 1389: 1373:Maclaurin series 1367: 1365: 1364: 1359: 1357: 1355: 1354: 1349: 1345: 1344: 1339: 1331: 1314: 1310: 1309: 1307: 1306: 1294: 1290: 1284: 1283: 1282: 1274: 1265: 1264: 1259: 1258: 1250: 1233:Pulling out the 1229: 1227: 1226: 1221: 1219: 1217: 1216: 1215: 1187: 1183: 1177: 1176: 1175: 1167: 1158: 1157: 1152: 1151: 1143: 1125: 1111:is greater than 1027: 1025: 1024: 1019: 1017: 1016: 1008: 995: 993: 992: 987: 985: 983: 982: 970: 966: 960: 959: 958: 950: 941: 940: 935: 934: 926: 912: 910: 909: 904: 902: 901: 896: 895: 887: 873: 871: 870: 865: 863: 861: 860: 851: 843: 839: 833: 832: 831: 823: 814: 813: 808: 807: 799: 785: 783: 782: 777: 775: 774: 769: 768: 760: 670: 527: 524: 522: 505: 503: 496: 494: 487: 485: 473: 471: 457: 455: 448: 446: 439: 437: 425: 423: 409: 407: 400: 398: 391: 389: 377: 375: 361: 359: 358: 353: 351: 349: 348: 339: 331: 327: 311: 309: 308: 303: 288: 286: 285: 280: 262: 260: 259: 254: 226: 225: 201: 196: 188: 4056: 4055: 4051: 4050: 4049: 4047: 4046: 4045: 4006: 4005: 4004: 3999: 3987: 3959: 3798: 3772: 3734: 3715:Sea-level curve 3686: 3625: 3611:Transform fault 3561:Mid-ocean ridge 3527: 3520: 3486:Oceanic plateau 3392: 3378:Tidal resonance 3348:Theory of tides 3289: 3198:Longshore drift 3148:Ekman transport 3084: 3078: 3077: 3076: 3075: 3074: 3073: 3064: 3016:Wave turbulence 2949:Trochoidal wave 2874:Longshore drift 2770: 2765: 2710: 2708: 2659: 2654: 2634: 2618: 2614: 2603: 2595:. p. 277. 2591:. Vol. 1. 2583: 2579: 2569: 2567: 2559: 2558: 2554: 2544: 2542: 2529: 2528: 2524: 2487: 2483: 2428: 2424: 2411: 2407: 2400: 2380: 2376: 2367: 2365: 2352: 2351: 2347: 2337: 2321: 2317: 2293:10.1.1.695.8981 2266: 2259: 2250: 2248: 2240: 2239: 2232: 2225: 2206: 2202: 2192: 2166: 2162: 2153: 2151: 2141: 2137: 2128: 2124: 2116: 2112: 2103: 2101: 2092: 2091: 2087: 2083: 2065:Tidal stripping 2060:Tidal resonance 2041: 2012: 2010: 2001: 1999: 1974: 1967: 1956: 1955: 1954: 1950: 1940: 1938: 1935: 1934: 1890: 1879: 1878: 1877: 1875: 1872: 1871: 1837: 1833: 1828: 1796: 1795: 1782: 1775: 1764: 1763: 1762: 1760: 1757: 1756: 1723: 1716: 1705: 1704: 1703: 1701: 1698: 1697: 1658: 1655: 1654: 1638: 1635: 1634: 1597: 1595: 1584: 1580: 1572: 1570: 1550: 1549: 1538: 1534: 1529: 1509: 1508: 1496: 1485: 1484: 1483: 1481: 1478: 1477: 1451: 1447: 1427: 1424: 1423: 1406: 1402: 1385: 1380: 1377: 1376: 1350: 1332: 1330: 1323: 1319: 1318: 1313: 1302: 1298: 1293: 1273: 1272: 1260: 1249: 1248: 1247: 1245: 1242: 1241: 1211: 1207: 1191: 1186: 1166: 1165: 1153: 1142: 1141: 1140: 1138: 1135: 1134: 1123: 1007: 1006: 1004: 1001: 1000: 978: 974: 969: 949: 948: 936: 925: 924: 923: 921: 918: 917: 897: 886: 885: 884: 882: 879: 878: 856: 852: 844: 842: 822: 821: 809: 798: 797: 796: 794: 791: 790: 770: 759: 758: 757: 755: 752: 751: 687: 659: 536: 525: 520: 518: 501: 499: 492: 490: 483: 481: 469: 467: 453: 451: 444: 442: 435: 433: 421: 419: 405: 403: 396: 394: 387: 385: 373: 371: 344: 340: 332: 330: 319: 316: 315: 297: 294: 293: 274: 271: 270: 248: 245: 244: 220: 194: 190: 180: 165: 124: 123: 108: 17: 12: 11: 5: 4054: 4044: 4043: 4038: 4033: 4028: 4023: 4018: 4001: 4000: 3998: 3997: 3985: 3975: 3964: 3961: 3960: 3958: 3957: 3952: 3947: 3942: 3937: 3935:Stratification 3932: 3927: 3922: 3917: 3912: 3907: 3906: 3905: 3895: 3890: 3885: 3880: 3875: 3870: 3865: 3860: 3855: 3850: 3845: 3840: 3835: 3827: 3825:Color of water 3822: 3820:Benthic lander 3817: 3812: 3806: 3804: 3800: 3799: 3797: 3796: 3791: 3786: 3780: 3778: 3774: 3773: 3771: 3770: 3765: 3760: 3755: 3750: 3744: 3742: 3736: 3735: 3733: 3732: 3727: 3725:Sea level rise 3722: 3720:Sea level drop 3717: 3712: 3707: 3702: 3696: 3694: 3688: 3687: 3685: 3684: 3679: 3674: 3669: 3664: 3659: 3654: 3649: 3644: 3639: 3633: 3631: 3627: 3626: 3624: 3623: 3618: 3613: 3608: 3603: 3598: 3593: 3588: 3583: 3578: 3573: 3568: 3563: 3558: 3556:Marine geology 3553: 3548: 3543: 3538: 3532: 3530: 3522: 3521: 3519: 3518: 3513: 3508: 3503: 3498: 3496:Passive margin 3493: 3491:Oceanic trench 3488: 3483: 3478: 3473: 3468: 3463: 3458: 3453: 3448: 3443: 3438: 3433: 3428: 3423: 3418: 3413: 3408: 3402: 3400: 3394: 3393: 3391: 3390: 3385: 3380: 3375: 3370: 3365: 3360: 3355: 3350: 3345: 3340: 3335: 3330: 3325: 3320: 3315: 3310: 3305: 3299: 3297: 3291: 3290: 3288: 3287: 3282: 3277: 3272: 3267: 3266: 3265: 3255: 3250: 3245: 3240: 3235: 3230: 3225: 3223:Ocean dynamics 3220: 3215: 3210: 3205: 3200: 3195: 3190: 3185: 3180: 3175: 3170: 3165: 3160: 3155: 3150: 3145: 3140: 3135: 3130: 3125: 3120: 3115: 3113:Coriolis force 3110: 3105: 3100: 3094: 3092: 3086: 3085: 3067: 3065: 3063: 3062: 3061: 3060: 3050: 3045: 3040: 3039: 3038: 3033: 3023: 3018: 3013: 3008: 3003: 2998: 2993: 2988: 2983: 2978: 2973: 2968: 2963: 2962: 2961: 2951: 2946: 2941: 2936: 2934:Stokes problem 2931: 2926: 2921: 2916: 2911: 2906: 2901: 2896: 2891: 2886: 2881: 2876: 2871: 2869:Kinematic wave 2866: 2861: 2856: 2851: 2846: 2841: 2836: 2831: 2826: 2821: 2816: 2811: 2806: 2801: 2796: 2791: 2786: 2780: 2778: 2772: 2771: 2764: 2763: 2756: 2749: 2741: 2735: 2734: 2728: 2722: 2716: 2701: 2685:"Tidal Forces" 2680: 2674: 2665: 2658: 2657:External links 2655: 2653: 2652: 2632: 2612: 2601: 2577: 2552: 2522: 2501:(4): 370–385. 2481: 2422: 2405: 2398: 2392:. p. 36. 2374: 2345: 2335: 2315: 2278:(7): 438–441. 2257: 2230: 2223: 2200: 2190: 2160: 2135: 2129:See p. 509 in 2122: 2110: 2084: 2082: 2079: 2078: 2077: 2072: 2067: 2062: 2057: 2052: 2047: 2040: 2037: 1983: 1973: 1970: 1963: 1960: 1953: 1947: 1944: 1925:, requiring a 1893: 1886: 1883: 1856: 1855: 1840: 1836: 1832: 1824: 1818: 1815: 1812: 1803: 1800: 1794: 1791: 1781: 1778: 1771: 1768: 1722: 1719: 1712: 1709: 1665: 1662: 1642: 1627: 1626: 1615: 1612: 1607: 1603: 1600: 1587: 1583: 1578: 1575: 1566: 1557: 1554: 1548: 1541: 1537: 1533: 1525: 1516: 1513: 1507: 1504: 1499: 1492: 1489: 1462: 1459: 1454: 1450: 1446: 1443: 1440: 1437: 1434: 1431: 1409: 1405: 1401: 1398: 1395: 1392: 1388: 1384: 1369: 1368: 1353: 1348: 1342: 1338: 1335: 1329: 1326: 1322: 1317: 1305: 1301: 1297: 1289: 1280: 1277: 1271: 1268: 1263: 1256: 1253: 1231: 1230: 1214: 1210: 1206: 1203: 1200: 1197: 1194: 1190: 1182: 1173: 1170: 1164: 1161: 1156: 1149: 1146: 1119:on account of 1014: 1011: 997: 996: 981: 977: 973: 965: 956: 953: 947: 944: 939: 932: 929: 900: 893: 890: 875: 874: 859: 855: 850: 847: 838: 829: 826: 820: 817: 812: 805: 802: 773: 766: 763: 750:feels a force 686: 683: 564:tidally locked 535: 532: 529: 528: 523:10 m⋅kg⋅s 507: 506: 497: 488: 479: 474: 465: 459: 458: 449: 440: 431: 426: 417: 411: 410: 401: 392: 383: 378: 369: 363: 362: 347: 343: 338: 335: 326: 323: 313: 301: 290: 278: 267: 264: 252: 241: 237: 236: 233: 230: 219: 216: 164: 161: 107: 104: 48:center of mass 15: 9: 6: 4: 3: 2: 4053: 4042: 4039: 4037: 4034: 4032: 4029: 4027: 4024: 4022: 4019: 4017: 4014: 4013: 4011: 3996: 3991: 3986: 3984: 3976: 3974: 3966: 3965: 3962: 3956: 3953: 3951: 3948: 3946: 3943: 3941: 3938: 3936: 3933: 3931: 3928: 3926: 3923: 3921: 3918: 3916: 3913: 3911: 3908: 3904: 3901: 3900: 3899: 3896: 3894: 3891: 3889: 3886: 3884: 3881: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3843:Marine energy 3841: 3839: 3836: 3834: 3833: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3811: 3810:Acidification 3808: 3807: 3805: 3801: 3795: 3792: 3790: 3787: 3785: 3782: 3781: 3779: 3775: 3769: 3766: 3764: 3763:SOFAR channel 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3745: 3743: 3741: 3737: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3703: 3701: 3698: 3697: 3695: 3693: 3689: 3683: 3680: 3678: 3675: 3673: 3670: 3668: 3665: 3663: 3660: 3658: 3655: 3653: 3650: 3648: 3645: 3643: 3640: 3638: 3635: 3634: 3632: 3628: 3622: 3619: 3617: 3614: 3612: 3609: 3607: 3604: 3602: 3599: 3597: 3594: 3592: 3589: 3587: 3584: 3582: 3579: 3577: 3574: 3572: 3571:Oceanic crust 3569: 3567: 3564: 3562: 3559: 3557: 3554: 3552: 3549: 3547: 3546:Fracture zone 3544: 3542: 3539: 3537: 3534: 3533: 3531: 3529: 3523: 3517: 3514: 3512: 3509: 3507: 3504: 3502: 3499: 3497: 3494: 3492: 3489: 3487: 3484: 3482: 3481:Oceanic basin 3479: 3477: 3474: 3472: 3469: 3467: 3464: 3462: 3459: 3457: 3454: 3452: 3449: 3447: 3444: 3442: 3439: 3437: 3434: 3432: 3429: 3427: 3424: 3422: 3419: 3417: 3414: 3412: 3411:Abyssal plain 3409: 3407: 3404: 3403: 3401: 3399: 3395: 3389: 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3318:Internal tide 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3300: 3298: 3296: 3292: 3286: 3283: 3281: 3278: 3276: 3273: 3271: 3268: 3264: 3261: 3260: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3213:Ocean current 3211: 3209: 3206: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3095: 3093: 3091: 3087: 3082: 3071: 3059: 3056: 3055: 3054: 3051: 3049: 3046: 3044: 3041: 3037: 3034: 3032: 3029: 3028: 3027: 3024: 3022: 3019: 3017: 3014: 3012: 3011:Wave shoaling 3009: 3007: 3004: 3002: 2999: 2997: 2994: 2992: 2989: 2987: 2984: 2982: 2979: 2977: 2974: 2972: 2971:Ursell number 2969: 2967: 2964: 2960: 2957: 2956: 2955: 2952: 2950: 2947: 2945: 2942: 2940: 2937: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2890: 2887: 2885: 2882: 2880: 2877: 2875: 2872: 2870: 2867: 2865: 2862: 2860: 2857: 2855: 2854:Internal wave 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2817: 2815: 2812: 2810: 2807: 2805: 2804:Breaking wave 2802: 2800: 2797: 2795: 2792: 2790: 2787: 2785: 2782: 2781: 2779: 2777: 2773: 2769: 2762: 2757: 2755: 2750: 2748: 2743: 2742: 2739: 2732: 2729: 2726: 2723: 2720: 2717: 2707: 2702: 2698: 2694: 2690: 2689:Sixty Symbols 2686: 2681: 2678: 2675: 2673: 2669: 2666: 2664: 2661: 2660: 2649: 2645: 2641: 2635: 2629: 2625: 2624: 2616: 2610: 2604: 2598: 2594: 2590: 2589: 2581: 2566: 2562: 2556: 2540: 2536: 2535:New Scientist 2532: 2526: 2517: 2512: 2508: 2504: 2500: 2496: 2492: 2485: 2477: 2473: 2468: 2463: 2458: 2453: 2449: 2445: 2441: 2437: 2433: 2426: 2418: 2417: 2409: 2401: 2395: 2391: 2387: 2386: 2378: 2363: 2359: 2355: 2349: 2343: 2338: 2332: 2328: 2327: 2319: 2311: 2307: 2303: 2299: 2294: 2289: 2285: 2281: 2277: 2273: 2272: 2264: 2262: 2247: 2243: 2237: 2235: 2226: 2220: 2216: 2215: 2210: 2204: 2197: 2193: 2187: 2183: 2179: 2174: 2173: 2164: 2150: 2146: 2139: 2132: 2126: 2119: 2114: 2099: 2095: 2089: 2085: 2076: 2073: 2071: 2068: 2066: 2063: 2061: 2058: 2056: 2055:Galactic tide 2053: 2051: 2048: 2046: 2043: 2042: 2036: 2034: 2033: 2027: 2023: 2018: 2007: 1996: 1981: 1971: 1968: 1958: 1951: 1945: 1942: 1932: 1928: 1924: 1920: 1915: 1913: 1909: 1891: 1881: 1869: 1865: 1861: 1838: 1834: 1830: 1822: 1816: 1810: 1798: 1792: 1789: 1779: 1776: 1766: 1755: 1754: 1753: 1751: 1747: 1743: 1720: 1717: 1707: 1695: 1691: 1687: 1683: 1679: 1663: 1640: 1632: 1613: 1610: 1605: 1601: 1585: 1581: 1576: 1573: 1564: 1552: 1546: 1539: 1535: 1531: 1523: 1511: 1505: 1502: 1497: 1487: 1476: 1475: 1474: 1460: 1457: 1452: 1448: 1444: 1441: 1438: 1435: 1432: 1429: 1407: 1399: 1396: 1393: 1386: 1382: 1374: 1351: 1346: 1340: 1336: 1327: 1324: 1320: 1315: 1303: 1299: 1295: 1287: 1275: 1269: 1266: 1261: 1251: 1240: 1239: 1238: 1236: 1212: 1204: 1198: 1195: 1188: 1180: 1168: 1162: 1159: 1154: 1144: 1133: 1132: 1131: 1129: 1122: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1066: 1062: 1058: 1054: 1049: 1047: 1043: 1039: 1035: 1031: 1009: 979: 975: 971: 963: 951: 945: 942: 937: 927: 916: 915: 914: 898: 888: 857: 853: 848: 845: 836: 824: 818: 815: 810: 800: 789: 788: 787: 771: 761: 749: 745: 741: 737: 732: 730: 725: 722: 717: 713: 703: 696: 691: 679: 675: 657: 655: 650: 648: 644: 640: 639:tidal locking 636: 632: 628: 624: 620: 616: 612: 611:neutron stars 604: 600: 595: 591: 589: 588:harmonic beat 583: 581: 577: 573: 569: 568:Tidal heating 565: 559: 557: 553: 545: 540: 516: 512: 508: 498: 489: 480: 478: 475: 466: 464: 461: 460: 450: 441: 432: 430: 427: 418: 416: 413: 412: 402: 393: 384: 382: 379: 370: 368: 365: 364: 345: 341: 336: 333: 324: 321: 314: 299: 291: 276: 268: 265: 250: 242: 239: 238: 234: 227: 224: 215: 211: 207: 203: 200: 193: 187: 183: 173: 169: 160: 158: 153: 149: 144: 137: 133: 129: 121: 117: 112: 103: 101: 96: 94: 89: 85: 80: 77: 73: 69: 65: 64:tidal locking 61: 57: 53: 49: 45: 44:gravitational 41: 37: 29: 26: 25:spiral galaxy 21: 4016:Tidal forces 3950:Water column 3898:Oceanography 3873:Observations 3868:Explorations 3838:Marginal sea 3831: 3789:OSTM/Jason-2 3621:Volcanic arc 3596:Slab suction 3357: 3313:Head of tide 3203:Loop Current 3143:Ekman spiral 2929:Stokes drift 2839:Gravity wave 2814:Cnoidal wave 2709:. Retrieved 2688: 2647: 2643: 2622: 2615: 2587: 2580: 2568:. Retrieved 2564: 2555: 2543:. Retrieved 2538: 2534: 2525: 2498: 2494: 2484: 2439: 2435: 2425: 2415: 2408: 2384: 2377: 2366:. Retrieved 2357: 2348: 2325: 2318: 2275: 2269: 2249:. Retrieved 2245: 2213: 2203: 2196:tidal force. 2195: 2171: 2163: 2152:. Retrieved 2148: 2138: 2125: 2113: 2102:. Retrieved 2097: 2088: 2070:Tidal tensor 2030: 2021: 2016: 2005: 1997: 1930: 1922: 1918: 1916: 1911: 1907: 1867: 1863: 1859: 1857: 1749: 1745: 1741: 1693: 1689: 1685: 1681: 1677: 1630: 1628: 1370: 1234: 1232: 1127: 1120: 1116: 1112: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1072: 1068: 1064: 1060: 1056: 1052: 1050: 1045: 1041: 1037: 1036:to the body 1033: 998: 876: 747: 743: 742:at distance 739: 733: 726: 720: 711: 709: 651: 608: 584: 560: 549: 510: 476: 462: 428: 414: 380: 366: 221: 212: 208: 204: 198: 191: 185: 181: 178: 166: 148:tidal forces 147: 145: 141: 127: 119: 115: 97: 87: 81: 68:ring systems 39: 35: 33: 3940:Thermocline 3657:Mesopelagic 3630:Ocean zones 3601:Slab window 3466:Hydrography 3406:Abyssal fan 3373:Tidal range 3363:Tidal power 3358:Tidal force 3243:Rip current 3178:Gulf Stream 3138:Ekman layer 3128:Downwelling 3103:Baroclinity 3090:Circulation 2986:Wave height 2976:Wave action 2959:megatsunami 2939:Stokes wave 2899:Rossby wave 2864:Kelvin wave 2844:Green's law 2693:Brady Haran 1030:unit vector 729:freefalling 721:tidal force 685:Formulation 615:black holes 152:Roche limit 143:(body 2). 106:Explanation 88:tidal force 72:Roche limit 70:within the 36:tidal force 4010:Categories 3878:Reanalysis 3777:Satellites 3758:Sofar bomb 3606:Subduction 3581:Ridge push 3476:Ocean bank 3456:Contourite 3383:Tide gauge 3368:Tidal race 3353:Tidal bore 3343:Slack tide 3308:Earth tide 3228:Ocean gyre 3048:Wind setup 3043:Wind fetch 3006:Wave setup 3001:Wave radar 2996:Wave power 2894:Rogue wave 2824:Dispersion 2711:2018-12-28 2368:2024-05-18 2364:. May 2024 2251:2016-10-10 2180:. p.  2154:2023-11-12 2104:2022-07-09 2081:References 1914:is zero). 597:Figure 5: 580:moonquakes 542:Figure 4: 472:10 kg 424:10 kg 376:10 kg 292:Distance ( 3740:Acoustics 3692:Sea level 3591:Slab pull 3528:tectonics 3436:Cold seep 3398:Landforms 3275:Whirlpool 3270:Upwelling 3053:Wind wave 2981:Wave base 2909:Sea state 2829:Edge wave 2819:Cross sea 2390:CRC Press 2310:0031-921X 2288:CiteSeerX 2032:Principia 1962:→ 1885:→ 1814:Δ 1802:^ 1793:± 1790:≈ 1770:→ 1711:→ 1661:Δ 1614:⋯ 1599:Δ 1556:^ 1547:± 1515:^ 1506:− 1491:→ 1461:⋯ 1458:∓ 1433:∓ 1397:± 1334:Δ 1328:± 1279:^ 1270:− 1255:→ 1202:Δ 1199:± 1172:^ 1163:− 1148:→ 1013:^ 955:^ 946:− 931:→ 892:→ 828:^ 819:− 804:→ 765:→ 552:ellipsoid 495:10 m 486:10 m 447:10 m 438:10 m 399:10 m 390:10 m 3973:Category 3925:Seawater 3652:Littoral 3647:Deep sea 3506:Seamount 3388:Tideline 3333:Rip tide 3263:shutdown 3233:Overflow 2966:Undertow 2809:Clapotis 2695:for the 2545:14 March 2476:11607740 2098:nasa.gov 2039:See also 2020:, where 2015:10  2004:10  1910:(where ∆ 1044:towards 695:MRK 1034 576:Stresses 269:Radius ( 155:uniform 116:residual 4026:Gravity 3983:Commons 3853:Mooring 3803:Related 3794:Jason-3 3784:Jason-1 3667:Pelagic 3662:Oceanic 3637:Benthic 2954:Tsunami 2924:Soliton 2570:12 July 2503:Bibcode 2444:Bibcode 2280:Bibcode 2024:is the 1071:, let ∆ 1059:. With 603:Jupiter 534:Effects 526:‍ 513:is the 128:outward 28:NGC 169 3672:Photic 3501:Seabed 2914:Seiche 2630:  2599:  2474:  2464:  2396:  2333:  2308:  2290:  2221:  2188:  1927:vector 1826:  1820:  1808:  1593:  1568:  1562:  1527:  1521:  1311:  1291:  1285:  1184:  1178:  1103:, and 999:where 967:  961:  840:  834:  544:Saturn 328:  243:Mass ( 146:These 134:or at 132:zenith 4031:Force 4021:Tides 3863:Ocean 3832:Alvin 3682:Swash 3526:Plate 3471:Knoll 3461:Guyot 3416:Atoll 3295:Tides 3058:model 2944:Swell 2776:Waves 2467:33744 1976:axial 1784:axial 1725:axial 1124:' 1028:is a 627:Earth 556:ovoid 519:6.674 463:Earth 429:Earth 381:Earth 197:= −2/ 157:field 136:nadir 56:tides 42:is a 3830:DSV 3815:Argo 3677:Surf 3133:Eddy 2628:ISBN 2597:ISBN 2572:2013 2547:2016 2472:PMID 2394:ISBN 2362:NIST 2331:ISBN 2306:ISSN 2219:ISBN 2186:ISBN 2011:0.52 1921:and 1866:and 1748:and 1371:The 1130:as: 674:star 631:Moon 623:tide 500:2.44 491:3.84 482:1.74 477:Moon 468:5.97 452:1.10 443:3.84 434:6.37 420:7.34 415:Moon 404:5.05 395:1.50 386:6.37 372:1.99 266:Body 240:Body 184:= 1/ 34:The 2539:123 2511:doi 2462:PMC 2452:doi 2298:doi 2182:264 2000:1.1 1422:is 1375:of 734:By 635:Sun 625:of 613:or 367:Sun 82:In 38:or 4012:: 2691:. 2687:. 2638:, 2607:, 2563:. 2537:. 2533:. 2509:. 2499:15 2497:. 2493:. 2470:. 2460:. 2450:. 2440:94 2438:. 2434:. 2388:. 2360:. 2356:. 2304:. 2296:. 2286:. 2276:37 2274:. 2260:^ 2244:. 2233:^ 2194:. 2184:. 2176:. 2147:. 2096:. 2035:. 1870:, 1752:: 1684:, 1105:∆r 1097:∆r 1095:± 913:, 786:, 697:. 656:. 649:. 641:, 574:. 572:Io 517:= 102:. 62:, 2760:e 2753:t 2746:v 2714:. 2699:. 2648:g 2644:g 2636:. 2605:. 2574:. 2549:. 2519:. 2513:: 2505:: 2478:. 2454:: 2446:: 2402:. 2371:. 2339:. 2312:. 2300:: 2282:: 2254:. 2227:. 2157:. 2107:. 2022:g 2017:g 2013:× 2006:g 2002:× 1982:| 1972:, 1969:t 1959:a 1952:| 1946:2 1943:1 1931:r 1923:M 1919:m 1912:r 1908:m 1892:t 1882:a 1868:M 1864:m 1860:r 1839:3 1835:R 1831:M 1823:G 1817:r 1811:2 1799:r 1780:, 1777:t 1767:a 1750:M 1746:m 1742:r 1721:, 1718:t 1708:a 1694:R 1690:r 1686:m 1682:M 1678:m 1664:r 1641:m 1631:M 1611:+ 1606:R 1602:r 1586:2 1582:R 1577:M 1574:2 1565:G 1553:r 1540:2 1536:R 1532:M 1524:G 1512:r 1503:= 1498:g 1488:a 1453:2 1449:x 1445:3 1442:+ 1439:x 1436:2 1430:1 1408:2 1404:) 1400:x 1394:1 1391:( 1387:/ 1383:1 1352:2 1347:) 1341:R 1337:r 1325:1 1321:( 1316:1 1304:2 1300:R 1296:M 1288:G 1276:r 1267:= 1262:g 1252:a 1235:R 1213:2 1209:) 1205:r 1196:R 1193:( 1189:M 1181:G 1169:r 1160:= 1155:g 1145:a 1128:M 1121:m 1117:m 1113:R 1109:M 1101:M 1093:R 1089:r 1085:m 1081:M 1077:m 1073:r 1069:m 1065:M 1061:R 1057:m 1053:M 1046:M 1042:m 1038:m 1034:M 1010:r 980:2 976:R 972:M 964:G 952:r 943:= 938:g 928:a 899:g 889:a 858:2 854:R 849:m 846:M 837:G 825:r 816:= 811:g 801:F 772:g 762:F 748:M 744:R 740:m 680:. 521:× 511:G 502:× 493:× 484:× 470:× 454:× 445:× 436:× 422:× 406:× 397:× 388:× 374:× 346:3 342:d 337:r 334:2 325:m 322:G 312:) 300:d 289:) 277:r 263:) 251:m 199:X 195:′ 192:Y 186:X 182:Y 138:.

Index


spiral galaxy
NGC 169
gravitational
center of mass
gravitational field
tides
solid-earth tides
tidal locking
ring systems
Roche limit
spaghettification
celestial mechanics
perturbing force on the Moon
gravitational waves

zenith
nadir
Roche limit
field

gravitational constant

Saturn
ellipsoid
ovoid
tidally locked
Tidal heating
Io
Stresses

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.