Knowledge

Satellite geodesy

Source đź“ť

653: 993:. This provides instantaneous range measurements of millimeter level precision which can be accumulated to provide accurate orbit parameters, gravity field parameters (from the orbit perturbations), Earth rotation parameters, tidal Earth's deformations, coordinates and velocities of SLR stations, and other substantial geodetic data. Satellite laser ranging is a proven geodetic technique with significant potential for important contributions to scientific studies of the Earth/Atmosphere/Oceans system. It is the most accurate technique currently available to determine the 43: 20: 730: 1425: 1148: 547: 1210:
above the geoid. With a precise ephemeris available for the satellite, the geocentric position and ellipsoidal height of the satellite are available for any given observation time. It is then possible to compute the geoid height by subtracting the measured altitude from the ellipsoidal height. This allows direct measurement of the geoid, since the ocean surface closely follows the geoid. The difference between the ocean surface and the actual geoid gives
699: 1333:, since it is the derivative of each component of the gravity vector taken in each sensitive axis. Thus, the value of any component of the gravity vector can be known all along the path of the vehicle if gravity gradiometers are included in the system and their outputs are integrated by the system computer. An accurate gravity model will be computed in real-time and a continuous map of normal gravity, elevation, and anomalous gravity will be available. 1491: 1029: 941: 937:
whose positions were accurately determined, provided a framework on the photographic plate or film for a determination of precise directions from camera station to satellite. Geodetic positioning work with cameras was usually performed with one camera observing simultaneously with one or more other cameras. Camera systems are weather dependent and that is one major reason why they fell out of use by the 1980s.
1290:, using differences in the phase of the waves returning to the satellite. The technique can potentially measure centimetre-scale changes in deformation over timespans of days to years. It has applications for geophysical monitoring of natural hazards, for example earthquakes, volcanoes and landslides, and also in structural engineering, in particular monitoring of subsidence and structural stability. 2048: 1371:. In this way, low altitude satellites may be observed when they are not accessible to ground stations. In this type of tracking, a signal generated by a tracking station is received by the relay satellite and then retransmitted to a lower altitude satellite. This signal is then returned to the ground station by the same path. 936:
and can be used to ascertain the geometric relationship between multiple observing stations. Optical triangulation with the BC-4, PC-1000, MOTS, or Baker Nunn cameras consisted of photographic observations of a satellite, or flashing light on the satellite, against a background of stars. The stars,
1209:
uses the round-trip flight-time of a microwave pulse between the satellite and the Earth's surface to determine the distance between the spacecraft and the surface. From this distance or height, the local surface effects such as tides, winds and currents are removed to obtain the satellite height
1119:
and the dry air mass of the atmosphere. Combining these data with the precise location of the spacecraft makes it possible to determine sea-surface height to within a few centimeters (about one inch). The strength and shape of the returning signal also provides information on wind speed and the
891:
positioning involves recording the Doppler shift of a radio signal of stable frequency emitted from a satellite as the satellite approaches and recedes from the observer. The observed frequency depends on the radial velocity of the satellite relative to the observer, which is constrained by
896:. If the observer knows the orbit of the satellite, then recording the Doppler profile determines the observer's position. Conversely, if the observer's position is precisely known, then the orbit of the satellite can be determined and used to study the Earth's gravity. In 1323:
A gravity gradiometer can independently determine the components of the gravity vector on a real-time basis. A gravity gradient is simply the spatial derivative of the gravity vector. The gradient can be thought of as the rate of change of a component of the gravity
1328:
as measured over a small distance. Hence, the gradient can be measured by determining the difference in gravity at two close but distinct points. This principle is embodied in several recent moving-base instruments. The gravity gradient at a point is a
826:
with information on its own position and a message containing the exact time of transmission. The receiver compares this time of transmission with its own clock at the time of reception and multiplies the difference by the speed of light to obtain a
1005:. Satellite laser ranging contributes to the definition of the international terrestrial reference frames by providing the information about the scale and the origin of the reference frame, the so-called geocenter coordinates. 2102:
Smith, David E. and Turcotte, Donald L. (eds.) (1993). Contributions of Space Geodesy to Geodynamics: Crustal Dynamics Vol. 23, Earth Dynamics Vol. 24, Technology Vol. 25, American Geophysical Union Geodynamics Series
1390:
These examples present a few of the possibilities for the application of satellite-to-satellite tracking. Satellite-to-satellite tracking data was first collected and analyzed in a high-low configuration between
673:
by the United States in the 1980s allowed for precise navigation and positioning and soon became a standard tool in surveying. In the 1980s and 1990s satellite geodesy began to be used for monitoring of
664:
satellite system was used extensively for Doppler surveying, navigation, and positioning. Observations of satellites in the 1970s by worldwide triangulation networks allowed for the establishment of the
709:
The 1990s were focused on the development of permanent geodetic networks and reference frames. Dedicated satellites were launched to measure Earth's gravity field in the 2000s, such as
1182:
uses the round-trip flight-time of a beam of light at optical or infrared wavelengths to determine the spacecraft's altitude or, conversely, the ground topography.
810:
Global navigation satellite systems are dedicated radio positioning services, which can locate a receiver to within a few meters. The most prominent system,
2058: 1693: 1374:
Two low altitude satellites can track one another observing mutual orbital variations caused by gravity field irregularities. A prime example of this is
1937:
Burgmann, R.; Rosen, P.A.; Fielding, E.J. (2000), "Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation",
1103:, the hills and valleys of the sea surface. These instruments send a microwave pulse to the ocean's surface and record the time it takes to return. A 1663: 831:." Four pseudoranges are needed to obtain the precise time and the receiver's position within a few meters. More sophisticated methods, such as 402: 1351:
This technique uses satellites to track other satellites. There are a number of variations which may be used for specific purposes such as
814:, consists of a constellation of 31 satellites (as of December 2013) in high, 12-hour circular orbits, distributed in six planes with 55° 224: 985:
In satellite laser ranging (SLR) a global network of observation stations measure the round trip time of flight of ultrashort pulses of
392: 360: 1654: 1265: 370: 1619: 1609: 1405: 1375: 714: 703: 2090: 2136: 1856: 1773: 350: 1498: 622: 2023: 2011: 1991: 1543: 330: 1881: 1798: 1528: 629:'s SECOR (Sequential Collation of Range) instruments. These missions led to the accurate determination of the leading 131: 1976: 430: 652: 2065: 1897:
Massonnet, D.; Feigl, K. L. (1998), "Radar interferometry and its application to changes in the earth's surface",
474:
commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.
216: 1573: 232: 2151: 1475: 1192: 1849:
Introduction to GNSS Geodesy: Foundations of Precise Positioning Using Global Navigation Satellite Systems
1436: 1159: 558: 1584: 1481: 876: 195: 1399:. The data was studied to evaluate its potential for both orbit and gravitational model refinement. 1064:
altimeters to measure the height of the Earth's surface (sea, ice, and terrestrial surfaces) from a
1283: 1211: 1120:
height of ocean waves. These data are used in ocean models to calculate the speed and direction of
1100: 1002: 914: 481:
Determination of the figure of the Earth, positioning, and navigation (geometric satellite geodesy)
162: 109: 1137: 980: 738: 462:'s gravity field by means of artificial satellite techniques. It belongs to the broader field of 300: 260: 24: 2108: 1874:
Determination of Precise Satellite Orbits and Geodetic Parameters using Satellite Laser Ranging
1791:
Determination of Precise Satellite Orbits and Geodetic Parameters using Satellite Laser Ranging
280: 1287: 927: 666: 451: 423: 340: 90: 1749: 1092:
of radio waves used permit the altimeter to automatically correct for varying delays in the
1942: 1902: 1711: 1678: 1502: 1104: 240: 190: 116: 753:
Techniques of satellite geodesy may be classified by instrument platform: A satellite may
8: 1688: 1318: 994: 906: 859: 847: 832: 815: 746: 733:
The Jason-1 measurement system combines major geodetic measurement techniques, including
661: 599: 595: 459: 152: 100: 1946: 1906: 1920: 1706: 1568: 1364: 1115:. Other corrections are also required to account for the influence of electrons in the 785: 630: 467: 72: 42: 1124:
and the amount and location of heat stored in the ocean, which in turn reveals global
2104: 1972: 1877: 1852: 1794: 1769: 1757: 1750: 1649: 1538: 1458: 1125: 893: 710: 603: 531: 172: 1924: 1954: 1950: 1910: 1761: 1604: 1579: 1396: 1325: 1252: 805: 493: 489: 416: 167: 1368: 1206: 1179: 990: 910: 897: 855: 734: 679: 504: 19: 2131: 1683: 1548: 1279: 1228: 1057: 1041: 1032:
This graph shows the rise in global sea level (in millimeters) measured by the
888: 683: 380: 147: 121: 1824: 932:
In optical triangulation, the satellite can be used as a very high target for
2145: 2052: 1844: 1121: 933: 858:
dynamics. The presence of the GPS signal in space also makes it suitable for
843: 819: 729: 514:
Satellite geodetic data and methods can be applied to diverse fields such as
463: 1876:. Bern: Astronomical Institute, University of Bern, Switzerland. p. 6. 1793:. Bern: Astronomical Institute, University of Bern, Switzerland. p. 5. 492:
field and its temporal variations (dynamical satellite geodesy or satellite
963: 851: 764:
carry an instrument or sensor as part of its payload to observe the Earth (
687: 606: 523: 508: 105: 1765: 1001:
and separation of long-term instrumentation drift from secular changes in
1108: 1089: 828: 675: 519: 500: 62: 1424: 1385:
satellites, may be used to fix the position of a low altitude satellite.
1147: 546: 1381:
Several high altitude satellites with accurately known orbits, such as
1300: 1116: 1112: 1099:
Spaceborne radar altimeters have proven to be superb tools for mapping
1093: 1065: 698: 587: 527: 515: 1915: 998: 997:
of an Earth satellite, allowing for the precise calibration of radar
839: 823: 591: 141: 67: 1136:"Satellite laser altimetry" redirects here. Not to be confused with 771:
or use its instruments to track or be tracked by another satellite (
640:
Soviet military satellites undertook geodesic missions to assist in
2126: 1639: 1589: 1259: 1084:
elements (possibly augmented by GPS), enables determination of the
945: 320: 137: 126: 900:, the ground station emits the signal and the satellite receives. 2051:
This article incorporates text from this source, which is in the
1614: 1553: 1523: 1352: 1275: 1248: 1244: 1240: 1085: 1077: 1073: 1069: 1045: 1028: 967: 872: 626: 625:, and other civilian agencies. ANNA-1B carried the first of the 614: 583: 447: 200: 57: 34: 940: 2088: 1673: 1668: 1644: 1634: 1599: 1594: 1330: 1296: 1224: 1220: 1188: 1053: 1011: 959: 656:
Worldwide BC-4 camera geometric satellite triangulation network
647: 610: 310: 270: 208: 779: 2092:
A new look at planet Earth: Satellite geodesy and geosciences
1659: 1563: 1558: 1533: 1392: 1356: 1271: 1236: 1232: 1081: 1061: 986: 949: 634: 485: 455: 95: 1969:
Radar Interferometry: Data Interpretation and Error Analysis
1851:. Cham, Switzerland: Springer International Publishing AG. 1624: 1462: 1413: 1339: 1037: 1033: 799: 718: 641: 633:
coefficients of the geopotential, the general shape of the
618: 397: 290: 2121: 1629: 1382: 868: 811: 742: 670: 1286:(SAR) images to generate maps of surface deformation or 835:(RTK) can yield positions to within a few millimeters. 2056: 1822: 1367:
may act as a relay from ground tracking stations to a
1270:
Interferometric synthetic aperture radar (InSAR) is a
1936: 598:. The 1960s saw the launch of the Doppler satellite 582:
Satellite geodesy began shortly after the launch of
838:In geodesy, GNSS is used as an economical tool for 1346: 594:in 1958 allowed for an accurate determination of 2064:(Report). United States Air Force. Archived from 1080:in January 2016. That measurement, coupled with 458:, the location of objects on its surface and the 2143: 1260:Interferometric synthetic aperture radar (InSAR) 454:—the measurement of the form and dimensions of 1901:, vol. 36, no. 4, pp. 441–500, 1896: 1469: 613:. The first dedicated geodetic satellite was 1939:Annual Review of Earth and Planetary Sciences 1839: 1837: 644:targeting in the late 1960s and early 1970s. 424: 693: 648:Toward the World Geodetic System (1970–1990) 780:Earth-to-space methods (satellite tracking) 757:be observed with ground-based instruments ( 2089:François Barlier; Michel Lefebvre (2001), 1834: 637:, and linked the world's geodetic datums. 577: 431: 417: 398:Spatial Reference System Identifier (SRID) 393:International Terrestrial Reference System 1914: 1307: 1282:. This geodetic method uses two or more 1107:corrects any delay that may be caused by 1018: 818:. The principle of location is based on 724: 477:The main goals of satellite geodesy are: 16:Measurement of the Earth using satellites 1743: 1741: 1739: 1737: 1735: 1733: 1731: 1729: 1727: 1266:Interferometric synthetic aperture radar 1044:(on the left) and its follow-on mission 1027: 939: 921: 784:For broader coverage of this topic, see 728: 697: 651: 18: 1966: 1871: 1788: 530:. Satellite geodesy relies heavily on 2144: 1747: 1312: 1048:. Image credit: University of Colorado 944:ANNA 1B track on photography taken by 822:. Each satellite transmits a precise 2024:"International Laser Ranging Service" 1992:"International Laser Ranging Service" 1843: 1818: 1816: 1814: 1812: 1810: 1724: 883: 862:and satellite-to-satellite tracking. 1485: 1419: 1142: 1060:(1992-2006) used advanced dual-band 541: 952:) MOTS station on November 11, 1962 793: 403:Universal Transverse Mercator (UTM) 365:European Terrestrial Ref. Sys. 1989 13: 2082: 1941:, vol. 28, pp. 169–209, 1830:(Report). United States Air Force. 1807: 1200: 1131: 275:Ordnance Survey Great Britain 1936 241:Discrete Global Grid and Geocoding 132:Horizontal position representation 14: 2163: 2115: 846:. It is also used for monitoring 617:, a collaborative effort between 23:Wettzell Laser Ranging System, a 2046: 2026:. Ilrs.gsfc.nasa.gov. 2012-09-17 1994:. Ilrs.gsfc.nasa.gov. 2012-09-17 1489: 1423: 1412: 1146: 974: 545: 191:Global Nav. Sat. Systems (GNSSs) 41: 2057:Defense Mapping Agency (1983). 2016: 2005: 1823:Defense Mapping Agency (1983). 1347:Satellite-to-satellite tracking 355:N. American Vertical Datum 1988 2041: 1984: 1960: 1955:10.1146/annurev.earth.28.1.169 1930: 1890: 1865: 1782: 385:Internet link to a point 2010 315:Geodetic Reference System 1980 233:Quasi-Zenith Sat. Sys. (QZSS) 1: 1717: 1574:Experimental Geodetic Payload 375:Chinese obfuscated datum 2002 2098:, Kluwer Academic Publishers 1023: 989:to satellites equipped with 325:Geographic point coord. 1983 7: 1872:Sosnica, Krzysztof (2014). 1789:Sosnica, Krzysztof (2014). 1700: 1470:List of geodetic satellites 285:Systema Koordinat 1942 goda 10: 2168: 1967:Hanssen, Ramon F. (2001), 1482:List of passive satellites 1479: 1473: 1316: 1263: 1135: 978: 925: 803: 797: 783: 586:in 1957. Observations of 537: 345:World Geodetic System 1984 1355:field investigations and 694:Modern era (1990–present) 335:North American Datum 1983 305:South American Datum 1969 1284:synthetic aperture radar 1212:ocean surface topography 1101:ocean-surface topography 1040:ocean altimeter mission 1003:ocean surface topography 196:Global Pos. System (GPS) 163:Spatial reference system 1748:Seeber, Gunter (2003). 1365:high altitude satellite 1138:Satellite laser ranging 981:Satellite laser ranging 702:Artist's conception of 578:First steps (1957–1970) 25:satellite laser ranging 2059:Geodesy for the Layman 1825:Geodesy for the Layman 1369:low altitude satellite 1308:Space-to-space methods 1049: 1019:Space-to-Earth methods 953: 773:space-to-space methods 766:space-to-Earth methods 759:Earth-to-space-methods 750: 725:Measurement techniques 706: 669:. The development of 657: 501:geodynamical phenomena 28: 1766:10.1515/9783110200089 1480:Further information: 1031: 943: 928:Stellar triangulation 926:Further information: 922:Optical triangulation 804:Further information: 732: 701: 667:World Geodetic System 655: 452:artificial satellites 91:Geographical distance 22: 1712:Satellite gravimetry 1679:Starlette and Stella 1503:adding missing items 1105:microwave radiometer 1088:. The two different 468:astronomical geodesy 265:Sea Level Datum 1929 117:Geodetic coordinates 2152:Geodetic satellites 1971:, Kluwer Academic, 1947:2000AREPS..28..169B 1907:1998RvGeo..36..441M 1756:. Berlin New York: 1476:Geodetic satellites 1319:Gravity gradiometry 1313:Gravity gradiometry 1052:Satellites such as 995:geocentric position 860:orbit determination 833:real-time kinematic 678:phenomena, such as 460:figure of the Earth 295:European Datum 1950 253:Standards (history) 153:Reference ellipsoid 101:Figure of the Earth 1707:Geodetic astronomy 1501:; you can help by 1435:. You can help by 1274:technique used in 1158:. You can help by 1126:climate variations 1050: 954: 884:Doppler techniques 786:Satellite tracking 751: 707: 658: 631:spherical harmonic 604:balloon satellites 596:Earth's flattening 557:. You can help by 173:Vertical positions 29: 1916:10.1029/97RG03139 1858:978-3-030-91821-7 1775:978-3-11-017549-3 1758:Walter de Gruyter 1752:Satellite geodesy 1519: 1518: 1453: 1452: 1288:digital elevation 1176: 1175: 894:orbital mechanics 575: 574: 532:orbital mechanics 484:Determination of 444:Satellite geodesy 441: 440: 389: 388: 168:Spatial relations 158:Satellite geodesy 113: 2159: 2099: 2097: 2079: 2077: 2076: 2070: 2063: 2050: 2049: 2035: 2034: 2032: 2031: 2020: 2014: 2009: 2003: 2002: 2000: 1999: 1988: 1982: 1981: 1964: 1958: 1957: 1934: 1928: 1927: 1918: 1894: 1888: 1887: 1869: 1863: 1862: 1841: 1832: 1831: 1829: 1820: 1805: 1804: 1786: 1780: 1779: 1755: 1745: 1605:Geosat Follow-On 1580:Explorer program 1514: 1511: 1493: 1492: 1486: 1448: 1445: 1427: 1420: 1253:SWOT (satellite) 1171: 1168: 1150: 1143: 848:Earth's rotation 806:Radio navigation 794:Radio techniques 570: 567: 549: 542: 505:crustal dynamics 494:physical geodesy 433: 426: 419: 257: 256: 236: 228: 220: 212: 204: 144: 103: 45: 31: 30: 2167: 2166: 2162: 2161: 2160: 2158: 2157: 2156: 2142: 2141: 2118: 2095: 2085: 2083:Further reading 2074: 2072: 2068: 2061: 2047: 2044: 2039: 2038: 2029: 2027: 2022: 2021: 2017: 2010: 2006: 1997: 1995: 1990: 1989: 1985: 1979: 1965: 1961: 1935: 1931: 1895: 1891: 1884: 1870: 1866: 1859: 1842: 1835: 1827: 1821: 1808: 1801: 1787: 1783: 1776: 1746: 1725: 1720: 1703: 1698: 1515: 1509: 1506: 1490: 1484: 1478: 1474:Main category: 1472: 1449: 1443: 1440: 1433:needs expansion 1418: 1389: 1349: 1321: 1315: 1310: 1268: 1262: 1207:radar altimeter 1203: 1201:Radar altimetry 1180:laser altimeter 1172: 1166: 1163: 1156:needs expansion 1141: 1134: 1132:Laser altimetry 1072:began in 2001, 1026: 1021: 991:retroreflectors 983: 977: 930: 924: 886: 808: 802: 796: 789: 782: 727: 696: 650: 580: 571: 565: 562: 555:needs expansion 540: 499:Measurement of 490:Earth's gravity 437: 408: 407: 254: 246: 245: 234: 226: 218: 210: 202: 186: 178: 177: 136: 86: 78: 77: 53: 17: 12: 11: 5: 2165: 2155: 2154: 2140: 2139: 2134: 2129: 2124: 2117: 2116:External links 2114: 2113: 2112: 2100: 2084: 2081: 2043: 2040: 2037: 2036: 2015: 2004: 1983: 1977: 1959: 1929: 1889: 1883:978-8393889808 1882: 1864: 1857: 1845:Ogaja, Clement 1833: 1806: 1800:978-8393889808 1799: 1781: 1774: 1722: 1721: 1719: 1716: 1715: 1714: 1709: 1702: 1699: 1697: 1696: 1691: 1686: 1684:TOPEX/Poseidon 1681: 1676: 1671: 1666: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1617: 1612: 1607: 1602: 1597: 1592: 1587: 1582: 1577: 1571: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1526: 1520: 1517: 1516: 1496: 1494: 1471: 1468: 1467: 1466: 1451: 1450: 1430: 1428: 1417: 1411: 1410: 1409: 1387: 1386: 1379: 1372: 1348: 1345: 1344: 1343: 1317:Main article: 1314: 1311: 1309: 1306: 1305: 1304: 1280:remote sensing 1264:Main article: 1261: 1258: 1257: 1256: 1229:TOPEX/Poseidon 1202: 1199: 1198: 1197: 1174: 1173: 1153: 1151: 1133: 1130: 1122:ocean currents 1058:TOPEX/Poseidon 1042:TOPEX/Poseidon 1025: 1022: 1020: 1017: 1016: 1015: 979:Main article: 976: 973: 972: 971: 923: 920: 919: 918: 885: 882: 881: 880: 798:Main article: 795: 792: 781: 778: 777: 776: 769: 762: 726: 723: 695: 692: 684:Earth rotation 680:crustal motion 649: 646: 609:, Echo 2, and 579: 576: 573: 572: 552: 550: 539: 536: 512: 511: 497: 482: 466:. Traditional 439: 438: 436: 435: 428: 421: 413: 410: 409: 406: 405: 400: 395: 387: 386: 383: 377: 376: 373: 367: 366: 363: 357: 356: 353: 347: 346: 343: 337: 336: 333: 327: 326: 323: 317: 316: 313: 307: 306: 303: 297: 296: 293: 287: 286: 283: 277: 276: 273: 267: 266: 263: 255: 252: 251: 248: 247: 244: 243: 238: 230: 222: 214: 206: 198: 193: 187: 184: 183: 180: 179: 176: 175: 170: 165: 160: 155: 150: 148:Map projection 145: 134: 129: 124: 122:Geodetic datum 119: 114: 98: 93: 87: 84: 83: 80: 79: 76: 75: 70: 65: 60: 54: 51: 50: 47: 46: 38: 37: 15: 9: 6: 4: 3: 2: 2164: 2153: 2150: 2149: 2147: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2119: 2110: 2106: 2101: 2094: 2093: 2087: 2086: 2080: 2071:on 2017-05-13 2067: 2060: 2054: 2053:public domain 2025: 2019: 2013: 2008: 1993: 1987: 1980: 1978:9780792369455 1974: 1970: 1963: 1956: 1952: 1948: 1944: 1940: 1933: 1926: 1922: 1917: 1912: 1908: 1904: 1900: 1899:Rev. Geophys. 1893: 1885: 1879: 1875: 1868: 1860: 1854: 1850: 1846: 1840: 1838: 1826: 1819: 1817: 1815: 1813: 1811: 1802: 1796: 1792: 1785: 1777: 1771: 1767: 1763: 1759: 1754: 1753: 1744: 1742: 1740: 1738: 1736: 1734: 1732: 1730: 1728: 1723: 1713: 1710: 1708: 1705: 1704: 1695: 1692: 1690: 1687: 1685: 1682: 1680: 1677: 1675: 1672: 1670: 1667: 1665: 1661: 1658: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1575: 1572: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1530: 1527: 1525: 1522: 1521: 1513: 1504: 1500: 1497:This list is 1495: 1488: 1487: 1483: 1477: 1465: 1464: 1460: 1455: 1454: 1447: 1438: 1434: 1431:This section 1429: 1426: 1422: 1421: 1415: 1408: 1407: 1402: 1401: 1400: 1398: 1394: 1384: 1380: 1377: 1373: 1370: 1366: 1362: 1361: 1360: 1359:improvement. 1358: 1354: 1342: 1341: 1336: 1335: 1334: 1332: 1327: 1320: 1303: 1302: 1298: 1293: 1292: 1291: 1289: 1285: 1281: 1277: 1273: 1267: 1255: 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1217: 1216: 1215: 1213: 1208: 1196: 1194: 1190: 1185: 1184: 1183: 1181: 1170: 1161: 1157: 1154:This section 1152: 1149: 1145: 1144: 1139: 1129: 1127: 1123: 1118: 1114: 1110: 1106: 1102: 1097: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1047: 1043: 1039: 1035: 1030: 1014: 1013: 1008: 1007: 1006: 1004: 1000: 996: 992: 988: 982: 975:Laser ranging 970: 969: 965: 961: 956: 955: 951: 947: 942: 938: 935: 934:triangulation 929: 917: 916: 912: 908: 903: 902: 901: 899: 895: 890: 879: 878: 874: 870: 865: 864: 863: 861: 857: 853: 849: 845: 844:time transfer 841: 836: 834: 830: 825: 821: 820:trilateration 817: 813: 807: 801: 791: 787: 774: 770: 767: 763: 760: 756: 755: 754: 748: 744: 740: 736: 731: 722: 720: 716: 712: 705: 700: 691: 689: 685: 681: 677: 672: 668: 663: 654: 645: 643: 638: 636: 632: 628: 624: 620: 616: 612: 608: 605: 601: 597: 593: 589: 585: 569: 560: 556: 553:This section 551: 548: 544: 543: 535: 533: 529: 525: 521: 517: 510: 506: 502: 498: 495: 491: 487: 483: 480: 479: 478: 475: 473: 469: 465: 464:space geodesy 461: 457: 453: 449: 445: 434: 429: 427: 422: 420: 415: 414: 412: 411: 404: 401: 399: 396: 394: 391: 390: 384: 382: 379: 378: 374: 372: 369: 368: 364: 362: 359: 358: 354: 352: 349: 348: 344: 342: 339: 338: 334: 332: 329: 328: 324: 322: 319: 318: 314: 312: 309: 308: 304: 302: 299: 298: 294: 292: 289: 288: 284: 282: 279: 278: 274: 272: 269: 268: 264: 262: 259: 258: 250: 249: 242: 239: 237: 231: 229: 223: 221: 215: 213: 209:BeiDou (BDS) 207: 205: 199: 197: 194: 192: 189: 188: 182: 181: 174: 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 143: 139: 135: 133: 130: 128: 125: 123: 120: 118: 115: 111: 110:circumference 107: 102: 99: 97: 94: 92: 89: 88: 82: 81: 74: 71: 69: 66: 64: 61: 59: 56: 55: 49: 48: 44: 40: 39: 36: 33: 32: 26: 21: 2091: 2073:. Retrieved 2066:the original 2045: 2028:. Retrieved 2018: 2007: 1996:. Retrieved 1986: 1968: 1962: 1938: 1932: 1898: 1892: 1873: 1867: 1848: 1790: 1784: 1751: 1507: 1456: 1441: 1437:adding to it 1432: 1403: 1388: 1350: 1337: 1322: 1294: 1269: 1218: 1204: 1186: 1177: 1164: 1160:adding to it 1155: 1098: 1076:in 2008 and 1051: 1009: 984: 964:Project Echo 957: 931: 904: 887: 866: 852:polar motion 837: 816:inclinations 809: 790: 772: 765: 758: 752: 708: 688:polar motion 659: 639: 581: 563: 559:adding to it 554: 524:oceanography 513: 509:polar motion 476: 471: 450:by means of 443: 442: 185:Technologies 157: 140: / 52:Fundamentals 2042:Attribution 1109:water vapor 1090:wavelengths 1056:(1978) and 829:pseudorange 520:hydrography 63:Geodynamics 2075:2021-02-19 2030:2022-08-20 1998:2022-08-20 1718:References 1499:incomplete 1457:Examples: 1301:TerraSAR-X 1219:Examples: 1187:Examples: 1117:ionosphere 1113:atmosphere 1094:ionosphere 1066:spacecraft 1010:Example: 999:altimeters 958:Examples: 905:Examples: 867:Examples: 676:geodynamic 600:Transit-1B 588:Explorer 1 528:geophysics 516:navigation 503:, such as 2109:0277-6669 1510:June 2011 1444:June 2011 1404:Example: 1338:Example: 1295:Example: 1167:June 2011 1024:Altimetry 840:surveying 824:ephemeris 747:altimetry 592:Sputnik 2 566:June 2011 142:Longitude 68:Geomatics 2146:Category 1925:24519422 1847:(2022). 1701:See also 1640:ICESat-2 1635:ICESat-1 1590:Geo-IK-2 1576:"Ajisai" 1416:tracking 946:Santiago 602:and the 321:ISO 6709 219:(Europe) 217:Galileo 203:(Russia) 201:GLONASS 138:Latitude 127:Geodesic 85:Concepts 2012:H2A-LRE 1943:Bibcode 1903:Bibcode 1694:WESTPAC 1689:TRANSIT 1615:GLONASS 1585:Galileo 1554:Envisat 1544:Diadème 1524:ANNA-1B 1353:gravity 1276:geodesy 1249:Envisat 1245:Jason-2 1241:Jason-1 1111:in the 1086:terrain 1082:orbital 1078:Jason-3 1074:Jason-2 1070:Jason-1 1046:Jason-1 968:ANNA 1B 907:Transit 889:Doppler 877:Galileo 873:GLONASS 856:crustal 662:Transit 627:US Army 615:ANNA-1B 584:Sputnik 538:History 448:geodesy 381:Geo URI 351:NAVD 88 261:NGVD 29 235:(Japan) 227:(India) 211:(China) 73:History 58:Geodesy 35:Geodesy 27:station 2107:  2055:: 1975:  1923:  1880:  1855:  1797:  1772:  1674:Seasat 1669:PAGEOS 1655:Larets 1645:LAGEOS 1600:Geosat 1595:GEOS-3 1569:Etalon 1529:Beidou 1397:GEOS-3 1331:tensor 1326:vector 1297:Seasat 1225:Geosat 1221:Seasat 1189:ICESat 1054:Seasat 1012:LAGEOS 960:PAGEOS 854:, and 745:, and 717:, and 686:, and 621:, the 611:PAGEOS 607:Echo 1 371:GCJ-02 361:ETRS89 341:WGS 84 331:NAD 83 311:GRS 80 271:OSGB36 225:NAVIC 106:radius 2137:Aviso 2132:CHAMP 2127:GRACE 2096:(PDF) 2069:(PDF) 2062:(PDF) 1921:S2CID 1828:(PDF) 1660:H-IIA 1650:LARES 1620:GRACE 1610:GFZ-1 1564:ERS-2 1559:ERS-1 1539:CHAMP 1534:BLITS 1459:CHAMP 1406:GRACE 1393:ATS-6 1376:GRACE 1357:orbit 1272:radar 1237:ERS-2 1233:ERS-1 1062:radar 987:light 950:Chile 915:Argos 911:DORIS 898:DORIS 735:DORIS 715:GRACE 711:CHAMP 704:GRACE 635:geoid 486:geoid 456:Earth 301:SAD69 281:SK-42 96:Geoid 2122:GOCE 2105:ISSN 1973:ISBN 1878:ISBN 1853:ISBN 1795:ISBN 1770:ISBN 1625:GOCE 1549:Echo 1463:GOCE 1414:GNSS 1395:and 1340:GOCE 1278:and 1193:MOLA 1038:CNES 1034:NASA 842:and 800:GNSS 719:GOCE 660:The 642:ICBM 619:NASA 590:and 526:and 507:and 291:ED50 108:and 1951:doi 1911:doi 1762:doi 1664:LRE 1630:GPS 1505:. 1439:. 1383:GPS 1162:. 871:, 869:GPS 812:GPS 743:GPS 739:SLR 671:GPS 623:DoD 561:. 472:not 470:is 446:is 2148:: 1949:, 1919:, 1909:, 1836:^ 1809:^ 1768:. 1760:. 1726:^ 1461:, 1363:A 1299:, 1251:, 1247:, 1243:, 1239:, 1235:, 1231:, 1227:, 1223:, 1214:. 1205:A 1191:, 1178:A 1128:. 1096:. 1068:. 966:, 962:, 913:, 909:, 875:, 850:, 775:). 768:), 761:), 741:, 737:, 721:. 713:, 690:. 682:, 534:. 522:, 518:, 488:, 2111:. 2078:. 2033:. 2001:. 1953:: 1945:: 1913:: 1905:: 1886:. 1861:. 1803:. 1778:. 1764:: 1662:- 1512:) 1508:( 1446:) 1442:( 1378:. 1195:. 1169:) 1165:( 1140:. 1036:/ 948:( 827:" 788:. 749:. 568:) 564:( 496:) 432:e 425:t 418:v 112:) 104:(

Index


satellite laser ranging
Geodesy

Geodesy
Geodynamics
Geomatics
History
Geographical distance
Geoid
Figure of the Earth
radius
circumference
Geodetic coordinates
Geodetic datum
Geodesic
Horizontal position representation
Latitude
Longitude
Map projection
Reference ellipsoid
Satellite geodesy
Spatial reference system
Spatial relations
Vertical positions
Global Nav. Sat. Systems (GNSSs)
Global Pos. System (GPS)
GLONASS (Russia)
BeiDou (BDS) (China)
Galileo (Europe)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑