Knowledge

Figure of the Earth

Source 📝

1535: 1512: 51: 566: 641: 1364: 705: 693: 2308: 684:
of 6,371 km (3,959 mi). Regardless of the model, any radius falls between the polar minimum of about 6,357 km (3,950 mi) and the equatorial maximum of about 6,378 km (3,963 mi). The difference 21 km (13 mi) correspond to the polar radius being approximately 0.3% shorter than the equatorial radius.
1466:
closely approximating the size and shape of the Earth in the area of the survey. The actual measurements made on the surface of the Earth with certain instruments are however referred to the geoid. The ellipsoid is a mathematically defined regular surface with specific dimensions. The geoid, on the
1028:, which is simply the radius of the sphere. More complex surfaces have radii of curvature that vary over the surface. The radius of curvature describes the radius of the sphere that best approximates the surface at that point. Oblate ellipsoids have a constant radius of curvature east to west along 1020:
are used. In practice, many reference ellipsoids have been developed over the centuries from different surveys. The flattening value varies slightly from one reference ellipsoid to another, reflecting local conditions and whether the reference ellipsoid is intended to model the entire Earth or only
683:
The Earth is only approximately spherical, so no single value serves as its natural radius. Distances from points on the surface to the center range from 6,353 km (3,948 mi) to 6,384 km (3,967 mi). Several different ways of modeling the Earth as a sphere each yield a mean radius
664:
from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius" normally is a characteristic of perfect spheres, the Earth deviates from spherical by only a third of a percent, sufficiently close to treat it as a sphere in many contexts and justifying the term "the radius of
1252:
The possibility that the Earth's equator is better characterized as an ellipse rather than a circle and therefore that the ellipsoid is triaxial has been a matter of scientific inquiry for many years. Modern technological developments have furnished new and rapid methods for data collection and,
1486:
everywhere and to which the direction of gravity is always perpendicular. The latter is particularly important because optical instruments containing gravity-reference leveling devices are commonly used to make geodetic measurements. When properly adjusted, the vertical axis of the instrument
1344:
refined the estimate to a 45 m (148 ft) difference between north and south polar radii, owing to a 19 m (62 ft) "stem" rising in the North Pole and a 26 m (85 ft) depression in the South Pole. The polar asymmetry is about a thousand times smaller than the Earth's
1457:
It was stated earlier that measurements are made on the apparent or topographic surface of the Earth and it has just been explained that computations are performed on an ellipsoid. One other surface is involved in geodetic measurement: the geoid. In geodetic surveying, the computation of the
1257:, orbital data have been used to investigate the theory of ellipticity. More recent results indicate a 70 m difference between the two equatorial major and minor axes of inertia, with the larger semidiameter pointing to 15° W longitude (and also 180-degree away). 600:. This funding also drove the expansion of geoscientific disciplines, fostering the creation and growth of various geoscience departments at many universities. These developments benefited many civilian pursuits as well, such as weather and communication 2217: 585:. Improved maps and better measurement of distances and areas of national territories motivated these early attempts. Surveying instrumentation and techniques improved over the ensuing centuries. Models for the figure of the Earth improved in step. 538:
to model the Earth as a close approximation. However, a more accurate figure is needed for measuring distances and areas on the scale beyond the purely local. Better approximations can be made by modeling the entire surface as an
1945:
Marchenko, A.N. (2009): Current estimation of the Earth’s mechanical and geometrical para meters. In Sideris, M.G., ed. (2009): Observing our changing Earth. IAG Symp. Proceed. 133., pp. 473–481. DOI:10.1007/978-3-540-85426-5_57
966:
Eccentricity and flattening are different ways of expressing how squashed the ellipsoid is. When flattening appears as one of the defining quantities in geodesy, generally it is expressed by its reciprocal. For example, in the
822:
An ellipsoid of revolution is uniquely defined by two quantities. Several conventions for expressing the two quantities are used in geodesy, but they are all equivalent to and convertible with each other:
1601:, and others, a body having a uniform density of 5,515 kg/m that rotates like the Earth should have a flattening of 1:229. This can be concluded without any information about the composition of 1294:
in 1958. It was found to vary in its long periodic orbit, with the Southern Hemisphere exhibiting higher gravitational attraction than the Northern Hemisphere. This indicated a flattening at the
1635:, which is the net effect of gravitation (due to mass attraction) and centrifugal force (due to rotation). It can be measured very accurately at the surface and remotely by satellites. True 1475:. As a result of the uneven distribution of the Earth's mass, the geoidal surface is irregular and, since the ellipsoid is a regular surface, the separations between the two, referred to as 592:
contributed to drastic improvements in the accuracy of the figure of the Earth. The primary utility of this improved accuracy was to provide geographical and gravitational data for the
1114: 1194: 1119:
because the pole is flattened: the flatter the surface, the larger the sphere must be to approximate it. Conversely, the ellipsoid's north–south radius of curvature at the equator
1425: 2414: 2383: 1491:
which is perpendicular to the geoid (sometimes called "the vertical") and the perpendicular to the ellipsoid (sometimes called "the ellipsoidal normal") is defined as the
616:
The models for the figure of the Earth vary in the way they are used, in their complexity, and in the accuracy with which they represent the size and shape of the Earth.
1467:
other hand, coincides with that surface to which the oceans would conform over the entire Earth if free to adjust to the combined effect of the Earth's mass attraction (
523:. While it is the surface on which Earth measurements are made, mathematically modeling it while taking the irregularities into account would be extremely complicated. 562:
surveys are made for relatively small areas without considering the size and shape of the entire Earth. A survey of a city, for example, might be conducted this way.
1452: 1144: 1061: 997: 1237: 1217: 960: 940: 918: 895: 869: 845: 2361: 31: 1012:
The difference between a sphere and a reference ellipsoid for Earth is small, only about one part in 300. Historically, flattening was computed from
410: 2427: 1998: 1310:
to be slightly flattened and the southern middle latitudes correspondingly bulged. Potential factors involved in this aberration include
232: 515:
surface is apparent with its variety of land forms and water areas. This topographic surface is generally the concern of topographers,
400: 368: 1763:
Cloud, John (2000). "Crossing the Olentangy River: The Figure of the Earth and the Military-Industrial-Academic Complex, 1947–1972".
558:
For surveys of small areas, a planar (flat) model of Earth's surface suffices because the local topography overwhelms the curvature.
378: 1036:
is drawn on the surface, but varying curvature in any other direction. For an oblate ellipsoid, the polar radius of curvature
2046:
O’Keefe, J. A., Eckeis, A., and Squires, R. K. (1959). "Vanguard Measurements Give Pear-Shaped Component of Earth’s Figure".
2008: 1967: 1817: 358: 534:
offers a simple surface that is easy to deal with mathematically. Many astronomical and navigational computations use a
338: 2141: 1025: 139: 577:
By the late 1600s, serious effort was devoted to modeling the Earth as an ellipsoid, beginning with French astronomer
438: 1271:
found that the length of a degree was apparently shorter north of Paris than to the south, implying the Earth to be
2391: 807:
shape that most nearly approximates the shape of the Earth. A spheroid describing the figure of the Earth or other
1325: 1562:
for the given point on the ellipsoid surface. This concept aids the interpretation of terrestrial and planetary
724: 1069: 652:
across the image, and the bases of the buildings on the far shore are below that horizon and hidden by the sea.
224: 1454:, respectively, corresponding to degree and order numbers 2.2 for the triaxiality and 3.0 for the pear shape. 1279:
dubiously suggested that the Earth was pear-shaped based on his disparate mobile readings of the angle of the
1152: 1487:
coincides with the direction of gravity and is, therefore, perpendicular to the geoid. The angle between the
1290:
The theory of a slightly pear-shaped Earth arose when data was received from the U.S.'s artificial satellite
240: 2156: 1708: 1033: 484: 1558:
direction. The center of the osculating sphere is offset from the center of the ellipsoid, but is at the
1315: 744: 680:
about 240 BC, with estimates of the accuracy of Eratosthenes's measurement ranging from −1% to 15%.
1551: 608:
location-finding, which would be impossible without highly accurate models for the figure of the Earth.
1605:. However, the measured flattening is 1:298.25, which is closer to a sphere and a strong argument that 1534: 898: 1268: 727:
as that of Earth. For comparison, the light blue circle within has a diameter equal to the ellipse's
203: 2174: 2031: 1805: 1723: 1390: 1329: 968: 635: 593: 170: 117: 2424: 2165: 800: 308: 268: 1593:
Determining the exact figure of the Earth is not only a geometric task of geodesy, but also has
1542:
The best local spherical approximation to the ellipsoid in the vicinity of a given point is the
2401: 2169: 1809: 1799: 1606: 288: 1613:
must be a function of the depth, ranging from 2,600 kg/m at the surface (rock density of
1713: 1664: 1578: 1328:
and co-authors are credited with the discovery that the Earth had a significant third degree
1306:
increased about 9 m (30 ft) at the latter. This theory implies the northern middle
431: 348: 98: 1511: 1430: 2271: 2077: 1955: 1903: 1868: 1772: 1733: 1640: 1459: 1276: 1122: 1039: 248: 198: 124: 8: 2461: 2346: 1994: 1632: 1602: 1588: 1559: 1523: 1515: 1492: 1472: 1463: 1380: 1029: 974: 812: 762: 716: 552: 160: 2275: 2081: 1907: 1872: 1776: 2237: 2202: 2123: 2101: 1919: 1728: 1636: 1584: 1346: 1333: 1222: 1219:
is the distance from the center of the ellipsoid to the equator (semi-major axis), and
1202: 945: 925: 903: 880: 854: 830: 772: 544: 80: 50: 2166:
International Loran Association (ILA) – 32nd Annual Convention and Technical Symposium
1784: 2287: 2283: 2256: 2241: 2093: 2004: 1973: 1963: 1923: 1813: 1563: 1545: 1341: 1337: 1017: 1013: 597: 464: 180: 165: 2436: 565: 2456: 2357: 2279: 2229: 2198: 2105: 2085: 2051: 1911: 1876: 1780: 1743: 1738: 1652: 1631:
Also with implications for the physical exploration of the Earth's interior is the
1626: 1476: 796: 780: 424: 175: 2431: 2233: 2055: 1674: 1555: 1363: 1319: 756: 748: 697: 625: 540: 531: 480: 468: 20: 2318: 2127: 1845: 2451: 2336: 2027: 1703: 1655:
and mantle can be determined by geodetic-geophysical models of the subsurface.
1598: 1284: 808: 673: 669: 582: 570: 527: 388: 155: 129: 1977: 656:
The simplest model for the shape of the entire Earth is a sphere. The Earth's
2445: 2379: 2312: 2291: 2097: 1483: 589: 1894:
Burša, Milan (1993). "Parameters of the Earth's tri-axial level ellipsoid".
1880: 704: 640: 1689: 1684: 768: 677: 631: 113: 1680: 803:
obtained by rotating an ellipse about its shorter axis. It is the regular
676:. The first scientific estimation of the radius of the Earth was given by 2331: 2068:
King-Hele, D. G.; Cook, G. E. (1973). "Refining the Earth's Pear Shape".
1594: 1468: 732: 578: 559: 516: 479:
and many other purposes. Several models with greater accuracy (including
70: 467:
depends on application, including the precision needed for the model. A
1915: 1718: 1651:
disturb the gravitational field. Therefore, the gross structure of the
1644: 1566: 1488: 1299: 1295: 1291: 1280: 971:
spheroid used by today's GPS systems, the reciprocal of the flattening
776: 728: 709: 520: 512: 488: 24: 2189:
Razin, Sheldon (Fall 1967). "Explicit (Noniterative) Loran Solution".
2089: 1307: 1303: 1254: 804: 736: 601: 492: 476: 472: 149: 75: 1387:
figure: they are represented by the spherical harmonic coefficients
719:, with north at the top. The outer edge of the dark blue line is an 569:
Topographic view of Earth relative to Earth's center (instead of to
2367: 1569:
measurements and in some navigation and surveillance applications.
1495:. It has two components: an east–west and a north–south component. 792: 661: 500: 496: 328: 145: 134: 1479:, geoid heights, or geoid separations, will be irregular as well. 471:
is a well-known historical approximation that is satisfactory for
2373: 2311:
This article incorporates text from this source, which is in the
1614: 1610: 788: 784: 720: 692: 649: 452: 208: 65: 42: 1379:
Modern geodesy tends to retain the ellipsoid of revolution as a
1859:
Heiskanen, W. A. (1962). "Is the Earth a triaxial ellipsoid?".
1239:
is the distance from the center to the pole. (semi-minor axis)
672:, but remained a matter of philosophical speculation until the 657: 535: 318: 278: 216: 1597:
considerations. According to theoretical arguments by Newton,
1669: 1384: 1372: 1368: 1358: 740: 645: 548: 460: 103: 2351: 1367:
Map of the undulation of the geoid in meters (based on the
1311: 713: 405: 298: 668:
The concept of a spherical Earth dates back to around the
1272: 605: 1960:
Admiral of the Ocean Sea: A Life of Christopher Columbus
1247: 2419: 1639:
generally does not correspond to theoretical vertical (
1617:, etc.), up to 13,000 kg/m within the inner core. 2316: 1843: 1572: 1383:
and treat triaxiality and pear shape as a part of the
588:
In the mid- to late 20th century, research across the
1433: 1393: 1283:, which he incorrectly interpreted as having varying 1225: 1205: 1155: 1125: 1072: 1042: 977: 948: 928: 906: 883: 857: 833: 2158:
On Loran-C Time-Difference to Co-ordinate Converters
2003:(1st ed.). New York: W. W. Norton. p. 61. 1936:
Torge & Müller (2012) Geodesy, De Gruyter, p.100
1620: 1526:
is appropriate for analysis across small distances.
1765:
Studies in History and Philosophy of Modern Physics
32:
Empirical evidence for the spherical shape of Earth
19:For the historical development of the concept, see 2254: 2191:Navigation: Journal of the Institute of Navigation 1962:. Boston: Little, Brown and Company. p. 557. 1446: 1419: 1336:using Vanguard 1 satellite data. Based on further 1231: 1211: 1188: 1138: 1108: 1055: 991: 954: 934: 912: 889: 863: 839: 16:Size and shape used to model the Earth for geodesy 2228:(1). Mathematical Association of America: 25–29. 2155:Williams, Paul; Last, David (3–7 November 2003). 1848:(Report) (4th ed.). United States Air Force. 815:. The reference ellipsoid for Earth is called an 700:, highly exaggerated relative to the actual Earth 2443: 2345:Determination of the European geoid by means of 2118:King-Hele, D. (1967). "The Shape of the Earth". 2000:Death By Black Hole: And Other Cosmic Quandaries 791:represents the figure of the Earth as an oblate 1482:The geoid is a surface along which the gravity 648:. The curvature of the Earth is evident in the 644:A view across a 20-km-wide bay in the coast of 1554:, and its radial direction coincides with the 2425:Changes in Earth shape due to climate changes 2067: 432: 2372:. Geowissenschaftliche Mitteilungen Band 5, 2264:Physics of the Earth and Planetary Interiors 2154: 1242: 581:'s measurement of a degree of arc along the 2255:Dziewonski, A. M.; Anderson, D. L. (1981), 1503:Simpler local approximations are possible. 1267:Following work by Picard, Italian polymath 459:is the size and shape used to model planet 2036:. New York: Harper & Row. p. 242. 687: 439: 425: 406:Spatial Reference System Identifier (SRID) 401:International Terrestrial Reference System 2173: 1858: 1109:{\displaystyle r_{p}={\frac {a^{2}}{b}},} 2148: 1533: 1510: 1362: 1189:{\displaystyle r_{e}={\frac {b^{2}}{a}}} 703: 691: 639: 564: 2218:"Euler and the Flattening of the Earth" 2026: 1954: 1498: 551:, or modeling a region with a best-fit 2444: 1506: 1298:and a bulge of the same degree at the 1248:Triaxiality (equatorial eccentricity) 2215: 2188: 2182: 2022: 2020: 1993: 1893: 1839: 1837: 1835: 1833: 1831: 1829: 1797: 1762: 1609:is extremely compact. Therefore, the 1462:of points is commonly performed on a 1345:flattening and even smaller than its 30:For effects of and evidence for, see 2437:Jos Leys "The shape of Planet Earth" 2415:Reference Ellipsoids (PCI Geomatics) 2370:/ Das isostatische Geoid 31. Ordnung 2248: 1989: 1987: 1552:Earth's Gaussian radius of curvature 1529: 1262: 739:, while the yellow band denotes the 2257:"Preliminary reference Earth model" 1573:Earth rotation and Earth's interior 1471:) and the centrifugal force of the 411:Universal Transverse Mercator (UTM) 373:European Terrestrial Ref. Sys. 1989 13: 2325: 2321:(Report). United States Air Force. 2203:10.1002/j.2161-4296.1967.tb02208.x 2017: 1826: 1801:Early Greek Astronomy to Aristotle 1016:. Nowadays, geodetic networks and 283:Ordnance Survey Great Britain 1936 249:Discrete Global Grid and Geocoding 140:Horizontal position representation 14: 2473: 2408: 1984: 1621:Global and regional gravity field 2306: 2076:(5428). Springer Nature: 86–88. 573:, as in common topographic maps) 199:Global Nav. Sat. Systems (GNSSs) 49: 2317:Defense Mapping Agency (1983). 2209: 2133: 2112: 2061: 2040: 1896:Studia Geophysica et Geodaetica 1861:Journal of Geophysical Research 1844:Defense Mapping Agency (1983). 1538:Ellipsoid and osculating sphere 735:100 km (62 mi) above 731:. The red curve represents the 487:can serve the precise needs of 363:N. American Vertical Datum 1988 1948: 1939: 1930: 1887: 1852: 1791: 1756: 1063:is larger than the equatorial 503:, and various other concerns. 483:) have been developed so that 393:Internet link to a point 2010 323:Geodetic Reference System 1980 241:Quasi-Zenith Sat. Sys. (QZSS) 1: 2420:Reference Ellipsoids (ScanEx) 1785:10.1016/S1355-2198(00)00017-4 1749: 1709:Earth's circumference#History 1420:{\displaystyle C_{22},S_{22}} 506: 383:Chinese obfuscated datum 2002 2284:10.1016/0031-9201(81)90046-7 2234:10.4169/mathhorizons.21.1.25 2056:10.1126/science.129.3348.565 333:Geographic point coord. 1983 7: 2394:, Wien & New York 2005. 1658: 293:Systema Koordinat 1942 goda 10: 2478: 2354:10th Gen. Ass., Rome 1954. 1643:ranges up to 50") because 1624: 1582: 1576: 1493:deflection of the vertical 1356: 1146:is smaller than the polar 795:. The oblate spheroid, or 760: 754: 629: 623: 353:World Geodetic System 1984 29: 18: 1269:Giovanni Domenico Cassini 1243:Non-spheroidal deviations 619: 611: 594:inertial guidance systems 343:North American Datum 1983 313:South American Datum 1969 1806:Cornell University Press 1724:Friedrich Robert Helmert 1352: 1330:zonal spherical harmonic 204:Global Pos. System (GPS) 171:Spatial reference system 2430:22 January 2009 at the 2340:, Oxford 1952 and 1980. 1881:10.1029/JZ067i001p00321 801:ellipsoid of revolution 708:A scale diagram of the 688:Ellipsoid of revolution 2402:Defense Mapping Agency 2398:Geodesy for the Layman 2319:Geodesy for the Layman 2216:Heine, George (2013). 2139:Günter Seeber (2008), 2050:, 129(3348), 565–566. 1846:Geodesy for the Layman 1714:Earth's radius#History 1539: 1519: 1448: 1447:{\displaystyle C_{30}} 1421: 1376: 1371:gravity model and the 1233: 1213: 1190: 1140: 1110: 1057: 1024:A sphere has a single 993: 956: 936: 914: 891: 865: 841: 752: 701: 653: 574: 2168:. Boulder, Colorado. 1956:Morison, Samuel Eliot 1583:Further information: 1537: 1514: 1449: 1422: 1375:reference ellipsoid). 1366: 1234: 1214: 1191: 1141: 1139:{\displaystyle r_{e}} 1111: 1058: 1056:{\displaystyle r_{p}} 999:is set to be exactly 994: 957: 937: 915: 892: 866: 842: 761:Further information: 707: 695: 643: 636:Earth's circumference 630:Further information: 568: 99:Geographical distance 2347:vertical deflections 2145:, Walter de Gruyter. 1995:Tyson, Neil deGrasse 1798:Dicks, D.R. (1970). 1739:Meridian arc#History 1734:History of the metre 1550:. Its radius equals 1499:Local approximations 1460:geodetic coordinates 1431: 1391: 1277:Christopher Columbus 1253:since the launch of 1223: 1203: 1153: 1123: 1070: 1040: 1021:some portion of it. 975: 946: 926: 904: 881: 855: 851:), and polar radius 831: 273:Sea Level Datum 1929 125:Geodetic coordinates 2362:Gottfried Gerstbach 2350:. Rpt of Comm. 14, 2276:1981PEPI...25..297D 2120:Scientific American 2082:1973Natur.246...86K 2033:Splendor in the Sky 1908:1993StGG...37....1B 1873:1962JGR....67..321H 1777:2000SHPMP..31..371C 1633:gravitational field 1589:Theoretical gravity 1560:center of curvature 1524:local tangent plane 1516:Local tangent plane 1507:Local tangent plane 1464:reference ellipsoid 1381:reference ellipsoid 1334:gravitational field 1026:radius of curvature 992:{\displaystyle 1/f} 813:reference ellipsoid 763:Reference ellipsoid 717:reference ellipsoid 553:reference ellipsoid 547:to approximate the 545:spherical harmonics 457:figure of the Earth 303:European Datum 1950 261:Standards (history) 161:Reference ellipsoid 109:Figure of the Earth 2404:, St. Louis, 1983. 2028:Hawkins, Gerald S. 1916:10.1007/BF01613918 1729:History of geodesy 1665:Clairaut's theorem 1585:Structure of Earth 1579:Clairaut's theorem 1540: 1520: 1484:potential is equal 1444: 1417: 1377: 1347:geoidal undulation 1275:-shaped. In 1498, 1229: 1209: 1186: 1136: 1106: 1053: 1014:grade measurements 989: 952: 932: 910: 887: 861: 837: 827:Equatorial radius 773:Christiaan Huygens 753: 702: 654: 598:ballistic missiles 575: 485:coordinate systems 181:Vertical positions 2142:Satellite Geodesy 2122:, 217(4), 67-80. 2010:978-0-393-11378-5 1969:978-0-316-58478-4 1819:978-0-8014-0561-7 1649:geological masses 1564:radio occultation 1530:Osculating sphere 1477:geoid undulations 1349:in some regions. 1342:Desmond King-Hele 1338:satellite geodesy 1263:Egg or pear shape 1232:{\displaystyle b} 1212:{\displaystyle a} 1184: 1101: 1018:satellite geodesy 955:{\displaystyle f} 935:{\displaystyle a} 913:{\displaystyle e} 890:{\displaystyle a} 864:{\displaystyle b} 840:{\displaystyle a} 779:at the poles and 449: 448: 397: 396: 176:Spatial relations 166:Satellite geodesy 121: 2469: 2388:Physical Geodesy 2384:Bernhard Hofmann 2366:Die horizontale 2358:Karl Ledersteger 2322: 2310: 2309: 2295: 2294: 2261: 2252: 2246: 2245: 2213: 2207: 2206: 2186: 2180: 2179: 2177: 2163: 2152: 2146: 2137: 2131: 2128:10.2307/24926147 2116: 2110: 2109: 2090:10.1038/246086a0 2065: 2059: 2044: 2038: 2037: 2024: 2015: 2014: 1991: 1982: 1981: 1952: 1946: 1943: 1937: 1934: 1928: 1927: 1891: 1885: 1884: 1856: 1850: 1849: 1841: 1824: 1823: 1804:. Ithaca, N.Y.: 1795: 1789: 1788: 1760: 1744:Seconds pendulum 1679:Horizon §§  1627:Gravity of Earth 1603:Earth's interior 1473:Earth's rotation 1453: 1451: 1450: 1445: 1443: 1442: 1426: 1424: 1423: 1418: 1416: 1415: 1403: 1402: 1238: 1236: 1235: 1230: 1218: 1216: 1215: 1210: 1195: 1193: 1192: 1187: 1185: 1180: 1179: 1170: 1165: 1164: 1145: 1143: 1142: 1137: 1135: 1134: 1115: 1113: 1112: 1107: 1102: 1097: 1096: 1087: 1082: 1081: 1062: 1060: 1059: 1054: 1052: 1051: 1008: 1007: 1004: 998: 996: 995: 990: 985: 961: 959: 958: 953: 941: 939: 938: 933: 919: 917: 916: 911: 896: 894: 893: 888: 870: 868: 867: 862: 846: 844: 843: 838: 797:oblate ellipsoid 767:As theorized by 441: 434: 427: 265: 264: 244: 236: 228: 220: 212: 152: 111: 53: 39: 38: 2477: 2476: 2472: 2471: 2470: 2468: 2467: 2466: 2442: 2441: 2432:Wayback Machine 2411: 2328: 2326:Further reading 2307: 2299: 2298: 2259: 2253: 2249: 2214: 2210: 2187: 2183: 2175:10.1.1.594.6212 2161: 2153: 2149: 2138: 2134: 2117: 2113: 2066: 2062: 2045: 2041: 2025: 2018: 2011: 1992: 1985: 1970: 1953: 1949: 1944: 1940: 1935: 1931: 1892: 1888: 1857: 1853: 1842: 1827: 1820: 1796: 1792: 1761: 1757: 1752: 1675:Gravity formula 1661: 1629: 1623: 1591: 1581: 1575: 1556:geodetic normal 1532: 1509: 1501: 1438: 1434: 1432: 1429: 1428: 1411: 1407: 1398: 1394: 1392: 1389: 1388: 1361: 1355: 1326:John A. O'Keefe 1320:plate tectonics 1292:Vanguard 1 1265: 1250: 1245: 1224: 1221: 1220: 1204: 1201: 1200: 1175: 1171: 1169: 1160: 1156: 1154: 1151: 1150: 1130: 1126: 1124: 1121: 1120: 1092: 1088: 1086: 1077: 1073: 1071: 1068: 1067: 1047: 1043: 1041: 1038: 1037: 1005: 1002: 1000: 981: 976: 973: 972: 947: 944: 943: 942:and flattening 927: 924: 923: 905: 902: 901: 882: 879: 878: 856: 853: 852: 832: 829: 828: 817:Earth ellipsoid 775:, the Earth is 765: 759: 757:Earth ellipsoid 749:low Earth orbit 698:oblate spheroid 690: 638: 628: 626:Spherical Earth 622: 614: 541:oblate spheroid 532:spherical Earth 509: 469:spherical Earth 445: 416: 415: 262: 254: 253: 242: 234: 226: 218: 210: 194: 186: 185: 144: 94: 86: 85: 61: 35: 28: 21:Spherical Earth 17: 12: 11: 5: 2475: 2465: 2464: 2459: 2454: 2440: 2439: 2434: 2422: 2417: 2410: 2409:External links 2407: 2406: 2405: 2395: 2377: 2355: 2341: 2327: 2324: 2304: 2303: 2297: 2296: 2270:(4): 297–356, 2247: 2208: 2197:(3): 265–269. 2181: 2147: 2132: 2111: 2060: 2039: 2016: 2009: 1983: 1968: 1947: 1938: 1929: 1886: 1867:(1): 321–327. 1851: 1825: 1818: 1790: 1771:(3): 371–404. 1754: 1753: 1751: 1748: 1747: 1746: 1741: 1736: 1731: 1726: 1721: 1716: 1711: 1706: 1704:Pierre Bouguer 1700: 1699: 1697: 1693: 1692: 1687: 1677: 1672: 1667: 1660: 1657: 1625:Main article: 1622: 1619: 1599:Leonhard Euler 1577:Main article: 1574: 1571: 1531: 1528: 1508: 1505: 1500: 1497: 1441: 1437: 1414: 1410: 1406: 1401: 1397: 1357:Main article: 1354: 1351: 1285:diurnal motion 1264: 1261: 1249: 1246: 1244: 1241: 1228: 1208: 1197: 1196: 1183: 1178: 1174: 1168: 1163: 1159: 1133: 1129: 1117: 1116: 1105: 1100: 1095: 1091: 1085: 1080: 1076: 1050: 1046: 988: 984: 980: 964: 963: 951: 931: 921: 909: 886: 876: 873:semiminor axis 860: 849:semimajor axis 836: 809:celestial body 755:Main article: 723:with the same 689: 686: 674:3rd century BC 670:6th century BC 624:Main article: 621: 618: 613: 610: 583:Paris meridian 571:mean sea level 508: 505: 463:. The kind of 447: 446: 444: 443: 436: 429: 421: 418: 417: 414: 413: 408: 403: 395: 394: 391: 385: 384: 381: 375: 374: 371: 365: 364: 361: 355: 354: 351: 345: 344: 341: 335: 334: 331: 325: 324: 321: 315: 314: 311: 305: 304: 301: 295: 294: 291: 285: 284: 281: 275: 274: 271: 263: 260: 259: 256: 255: 252: 251: 246: 238: 230: 222: 214: 206: 201: 195: 192: 191: 188: 187: 184: 183: 178: 173: 168: 163: 158: 156:Map projection 153: 142: 137: 132: 130:Geodetic datum 127: 122: 106: 101: 95: 92: 91: 88: 87: 84: 83: 78: 73: 68: 62: 59: 58: 55: 54: 46: 45: 15: 9: 6: 4: 3: 2: 2474: 2463: 2460: 2458: 2455: 2453: 2450: 2449: 2447: 2438: 2435: 2433: 2429: 2426: 2423: 2421: 2418: 2416: 2413: 2412: 2403: 2399: 2396: 2393: 2389: 2385: 2381: 2380:Helmut Moritz 2378: 2375: 2371: 2369: 2363: 2359: 2356: 2353: 2349: 2348: 2343:Guy Bomford, 2342: 2339: 2338: 2333: 2330: 2329: 2323: 2320: 2314: 2313:public domain 2301: 2300: 2293: 2289: 2285: 2281: 2277: 2273: 2269: 2265: 2258: 2251: 2243: 2239: 2235: 2231: 2227: 2223: 2222:Math Horizons 2219: 2212: 2204: 2200: 2196: 2192: 2185: 2176: 2171: 2167: 2160: 2159: 2151: 2144: 2143: 2136: 2129: 2125: 2121: 2115: 2107: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2064: 2057: 2053: 2049: 2043: 2035: 2034: 2029: 2023: 2021: 2012: 2006: 2002: 2001: 1996: 1990: 1988: 1979: 1975: 1971: 1965: 1961: 1957: 1951: 1942: 1933: 1925: 1921: 1917: 1913: 1909: 1905: 1901: 1897: 1890: 1882: 1878: 1874: 1870: 1866: 1862: 1855: 1847: 1840: 1838: 1836: 1834: 1832: 1830: 1821: 1815: 1811: 1807: 1803: 1802: 1794: 1786: 1782: 1778: 1774: 1770: 1766: 1759: 1755: 1745: 1742: 1740: 1737: 1735: 1732: 1730: 1727: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1705: 1702: 1701: 1698: 1695: 1694: 1691: 1688: 1686: 1682: 1678: 1676: 1673: 1671: 1668: 1666: 1663: 1662: 1656: 1654: 1653:Earth's crust 1650: 1646: 1642: 1638: 1634: 1628: 1618: 1616: 1612: 1608: 1604: 1600: 1596: 1590: 1586: 1580: 1570: 1568: 1565: 1561: 1557: 1553: 1549: 1547: 1536: 1527: 1525: 1517: 1513: 1504: 1496: 1494: 1490: 1485: 1480: 1478: 1474: 1470: 1465: 1461: 1455: 1439: 1435: 1412: 1408: 1404: 1399: 1395: 1386: 1382: 1374: 1370: 1365: 1360: 1350: 1348: 1343: 1339: 1335: 1331: 1327: 1323: 1321: 1318:motion (e.g. 1317: 1313: 1309: 1305: 1301: 1297: 1293: 1288: 1286: 1282: 1278: 1274: 1270: 1260: 1258: 1256: 1240: 1226: 1206: 1181: 1176: 1172: 1166: 1161: 1157: 1149: 1148: 1147: 1131: 1127: 1103: 1098: 1093: 1089: 1083: 1078: 1074: 1066: 1065: 1064: 1048: 1044: 1035: 1031: 1027: 1022: 1019: 1015: 1010: 986: 982: 978: 970: 949: 929: 922: 907: 900: 884: 877: 874: 858: 850: 834: 826: 825: 824: 820: 818: 814: 810: 806: 802: 798: 794: 790: 786: 782: 778: 774: 770: 764: 758: 750: 746: 743:range of the 742: 738: 734: 730: 726: 722: 718: 715: 711: 706: 699: 694: 685: 681: 679: 675: 671: 666: 663: 659: 651: 647: 642: 637: 633: 627: 617: 609: 607: 603: 599: 595: 591: 586: 584: 580: 572: 567: 563: 561: 556: 554: 550: 546: 542: 537: 533: 530:concept of a 529: 524: 522: 521:geophysicists 518: 517:hydrographers 514: 504: 502: 498: 494: 490: 486: 482: 478: 474: 470: 466: 462: 458: 454: 442: 437: 435: 430: 428: 423: 422: 420: 419: 412: 409: 407: 404: 402: 399: 398: 392: 390: 387: 386: 382: 380: 377: 376: 372: 370: 367: 366: 362: 360: 357: 356: 352: 350: 347: 346: 342: 340: 337: 336: 332: 330: 327: 326: 322: 320: 317: 316: 312: 310: 307: 306: 302: 300: 297: 296: 292: 290: 287: 286: 282: 280: 277: 276: 272: 270: 267: 266: 258: 257: 250: 247: 245: 239: 237: 231: 229: 223: 221: 217:BeiDou (BDS) 215: 213: 207: 205: 202: 200: 197: 196: 190: 189: 182: 179: 177: 174: 172: 169: 167: 164: 162: 159: 157: 154: 151: 147: 143: 141: 138: 136: 133: 131: 128: 126: 123: 119: 118:circumference 115: 110: 107: 105: 102: 100: 97: 96: 90: 89: 82: 79: 77: 74: 72: 69: 67: 64: 63: 57: 56: 52: 48: 47: 44: 41: 40: 37: 33: 26: 22: 2397: 2387: 2365: 2344: 2335: 2305: 2267: 2263: 2250: 2225: 2221: 2211: 2194: 2190: 2184: 2157: 2150: 2140: 2135: 2119: 2114: 2073: 2069: 2063: 2047: 2042: 2032: 1999: 1959: 1950: 1941: 1932: 1899: 1895: 1889: 1864: 1860: 1854: 1800: 1793: 1768: 1764: 1758: 1690:Meridian arc 1683:​ and 1648: 1630: 1607:Earth's core 1592: 1543: 1541: 1521: 1502: 1481: 1456: 1378: 1324: 1289: 1266: 1259: 1251: 1198: 1118: 1023: 1011: 965: 899:eccentricity 872: 848: 821: 816: 811:is called a 769:Isaac Newton 766: 725:eccentricity 712:of the 2003 682: 678:Eratosthenes 667: 665:the Earth". 655: 632:Earth radius 615: 604:control and 587: 576: 557: 525: 510: 456: 450: 193:Technologies 148: / 108: 60:Fundamentals 36: 2332:Guy Bomford 2302:Attribution 1902:(1): 1–13. 1808:. pp.  1595:geophysical 1469:gravitation 1302:, with the 733:Karman line 590:geosciences 579:Jean Picard 560:Plane-table 528:Pythagorean 513:topographic 71:Geodynamics 2462:Geophysics 2446:Categories 1978:1154365097 1750:References 1719:Flat Earth 1645:topography 1641:deflection 1567:refraction 1546:osculating 1489:plumb line 1316:subcrustal 1300:North Pole 1296:South Pole 1281:North Star 729:minor axis 710:oblateness 507:Motivation 489:navigation 25:Flat Earth 2368:Isostasie 2292:0031-9201 2242:126412032 2170:CiteSeerX 2098:0028-0836 2030:(1969) . 1958:(1991) . 1924:128674427 1685:Curvature 1308:latitudes 1304:sea level 1255:Sputnik 1 1034:graticule 1030:parallels 805:geometric 777:flattened 737:sea level 602:satellite 493:surveying 481:ellipsoid 477:astronomy 473:geography 150:Longitude 76:Geomatics 2428:Archived 2392:Springer 1997:(2007). 1681:Distance 1659:See also 1647:and all 1637:vertical 1544:Earth's 871:(called 847:(called 799:, is an 793:spheroid 787:. Thus, 741:altitude 662:distance 543:, using 511:Earth's 501:land use 497:cadastre 329:ISO 6709 227:(Europe) 225:Galileo 211:(Russia) 209:GLONASS 146:Latitude 135:Geodesic 93:Concepts 2457:Geodesy 2374:TU Wien 2337:Geodesy 2272:Bibcode 2106:4260099 2078:Bibcode 2048:Science 1904:Bibcode 1869:Bibcode 1773:Bibcode 1696:History 1615:granite 1611:density 1332:in its 1032:, if a 1001:298.257 789:geodesy 785:equator 783:at the 721:ellipse 660:is the 650:horizon 453:geodesy 389:Geo URI 359:NAVD 88 269:NGVD 29 243:(Japan) 235:(India) 219:(China) 81:History 66:Geodesy 43:Geodesy 2315:: 2290:  2240:  2172:  2126:  2104:  2096:  2070:Nature 2007:  1976:  1966:  1922:  1816:  1810:72–198 1548:sphere 1340:data, 1199:where 969:WGS 84 781:bulged 658:radius 620:Sphere 612:Models 536:sphere 519:, and 465:figure 455:, the 379:GCJ-02 369:ETRS89 349:WGS 84 339:NAD 83 319:GRS 80 279:OSGB36 233:NAVIC 114:radius 2452:Earth 2376:1975. 2260:(PDF) 2238:S2CID 2162:(PDF) 2124:JSTOR 2102:S2CID 1920:S2CID 1670:EGM96 1385:geoid 1373:WGS84 1369:EGM96 1359:Geoid 1353:Geoid 1312:tides 646:Spain 549:geoid 461:Earth 309:SAD69 289:SK-42 104:Geoid 2382:and 2360:and 2352:IUGG 2288:ISSN 2094:ISSN 2005:ISBN 1974:OCLC 1964:ISBN 1814:ISBN 1587:and 1522:The 1427:and 1314:and 897:and 771:and 714:IERS 634:and 526:The 299:ED50 116:and 23:and 2280:doi 2230:doi 2199:doi 2086:doi 2074:246 2052:doi 1912:doi 1877:doi 1781:doi 1322:). 1273:egg 1006:563 1003:223 747:in 745:ISS 696:An 606:GPS 596:of 451:In 2448:: 2400:, 2390:. 2386:, 2364:, 2334:, 2286:, 2278:, 2268:25 2266:, 2262:, 2236:. 2226:21 2224:. 2220:. 2195:14 2193:. 2164:. 2100:. 2092:. 2084:. 2072:. 2019:^ 1986:^ 1972:. 1918:. 1910:. 1900:37 1898:. 1875:. 1865:67 1863:. 1828:^ 1812:. 1779:. 1769:31 1767:. 1440:30 1413:22 1400:22 1287:. 1009:. 875:); 819:. 555:. 499:, 495:, 491:, 475:, 2282:: 2274:: 2244:. 2232:: 2205:. 2201:: 2178:. 2130:. 2108:. 2088:: 2080:: 2058:. 2054:: 2013:. 1980:. 1926:. 1914:: 1906:: 1883:. 1879:: 1871:: 1822:. 1787:. 1783:: 1775:: 1518:. 1436:C 1409:S 1405:, 1396:C 1227:b 1207:a 1182:a 1177:2 1173:b 1167:= 1162:e 1158:r 1132:e 1128:r 1104:, 1099:b 1094:2 1090:a 1084:= 1079:p 1075:r 1049:p 1045:r 987:f 983:/ 979:1 962:. 950:f 930:a 920:; 908:e 885:a 859:b 835:a 751:. 440:e 433:t 426:v 120:) 112:( 34:. 27:.

Index

Spherical Earth
Flat Earth
Empirical evidence for the spherical shape of Earth
Geodesy

Geodesy
Geodynamics
Geomatics
History
Geographical distance
Geoid
Figure of the Earth
radius
circumference
Geodetic coordinates
Geodetic datum
Geodesic
Horizontal position representation
Latitude
Longitude
Map projection
Reference ellipsoid
Satellite geodesy
Spatial reference system
Spatial relations
Vertical positions
Global Nav. Sat. Systems (GNSSs)
Global Pos. System (GPS)
GLONASS (Russia)
BeiDou (BDS) (China)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.