Knowledge

Surface plasmon resonance

Source 📝

495:. In their simplest form, SPR reflectivity measurements can be used to detect molecular adsorption, such as polymers, DNA or proteins, etc. Technically, it is common to measure the angle of minimum reflection (angle of maximum absorption). This angle changes in the order of 0.1° during thin (about nm thickness) film adsorption. (See also the Examples.) In other cases the changes in the absorption wavelength is followed. The mechanism of detection is based on the adsorbing molecules causing changes in the local index of refraction, changing the resonance conditions of the surface plasmon waves. The same principle is exploited in the recently developed competitive platform based on loss-less dielectric multilayers ( 469: 458: 567: 20: 34:) is a phenomenon that occurs where electrons in a thin metal sheet become excited by light that is directed to the sheet with a particular angle of incidence, and then travel parallel to the sheet. Assuming a constant light source wavelength and that the metal sheet is thin, the angle of incidence that triggers SPR is related to the refractive index of the material and even a small change in the refractive index will cause SPR to not be observed. This makes SPR a possible technique for detecting particular substances ( 87:
into the dielectric background, though far-field scattering by the particle is also enhanced by the resonance. Light intensity enhancement is a very important aspect of LSPRs and localization means the LSPR has very high spatial resolution (subwavelength), limited only by the size of nanoparticles. Because of the enhanced field amplitude, effects that depend on the amplitude such as magneto-optical effect are also enhanced by LSPRs.
747: 706: 626:, a special configuration of SPR, can be used to characterize layers and stacks of layers. Besides binding kinetics, MP-SPR can also provide information on structural changes in terms of layer true thickness and refractive index. MP-SPR has been applied successfully in measurements of lipid targeting and rupture, CVD-deposited single monolayer of graphene (3.7Å) as well as micrometer thick polymers. 104: 739: 96: 275: 887:
As SPR allows real-time monitoring, individual steps in sequential binding events can be thoroughly assessed when investigating the suitability between antibodies in a sandwich configuration. Additionally, it allows the mapping of epitopes as antibodies of overlapping epitopes will be associated with
725:
One of the first common applications of surface plasmon resonance spectroscopy was the measurement of the thickness (and refractive index) of adsorbed self-assembled nanofilms on gold substrates. The resonance curves shift to higher angles as the thickness of the adsorbed film increases. This example
683:
can be used to deliver therapeutic molecules in targeted ways. In general, SPR biosensing is demonstrating advantages over other approaches in the biomedical field due to this technique being label-free, lower in costs, applicable in point-of-care settings, and capable of producing faster results for
938:
SPR involves the integration of SPR sensors onto the ends of optical fibers, enabling the direct coupling of light with the surface plasmons as the analytes are passed through a hollow SPR core. This format offers enhanced sensitivity and allows for the development of compact sensing devices, making
878:
As SPR biosensors facilitate measurements at different temperatures, thermodynamic analysis can be performed to obtain a better understanding of the studied interaction. By performing measurements at different temperatures, typically between 4 and 40 Â°C, it is possible to relate association and
834:
system, a solution with the analyte is injected over the ligand-covered surface. The binding of the analyte to the ligand causes an increase in the SPR signal (expressed in response units, RU). Following the association time, a solution without the analyte (typically a buffer) is introduced into the
729:
When higher speed observation is desired, one can select an angle right below the resonance point (the angle of minimum reflectance), and measure the reflectivity changes at that point. This is the so-called 'dynamic SPR' measurement. The interpretation of the data assumes that the structure of the
78:
to exist, the real part of the dielectric constant of the conductor must be negative and its magnitude must be greater than that of the dielectric. This condition is met in the infrared-visible wavelength region for air/metal and water/metal interfaces (where the real dielectric constant of a metal
86:
resonances) are collective electron charge oscillations in metallic nanoparticles that are excited by light. They exhibit enhanced near-field amplitude at the resonance wavelength. This field is highly localized at the nanoparticle and decays rapidly away from the nanoparticle/dielectric interface
865:
The detected SPR signal is a consequence of the electromagnetic 'coupling' of the incident light with the surface plasmon of the gold layer. This interaction is particularly sensitive to the characteristics of the layer at the gold–solution interface, which is usually just a few nanometers thick.
922:
increases the sensitivity of detection. The large surface area of graphene also facilitates the immobilization of biomolecules while its low refractive index minimizes its interference. Enhancing SPR sensitivity by incorporating graphene with other materials expands the potential of SPR sensors,
545:
regime that are not present in the bulk metal. This extraordinary absorption increase has been exploited to increase light absorption in photovoltaic cells by depositing metal nanoparticles on the cell surface. The energy (color) of this absorption differs when the light is polarized along or
54:
that propagates in a direction parallel to the negative permittivity/dielectric material interface. Since the wave is on the boundary of the conductor and the external medium (air, water or vacuum for example), these oscillations are very sensitive to any change of this boundary, such as the
691:
to monitor increases in pollution in an ecosystem over time. When SPR instrumentation with a Kretschmann prism configuration was used in the detection of chlorophene, an emerging pollutant, it was demonstrated that SPR has similar precision and accuracy levels as chromatography techniques.
546:
perpendicular to the nanowire. Shifts in this resonance due to changes in the local index of refraction upon adsorption to the nanoparticles can also be used to detect biopolymers such as DNA or proteins. Related complementary techniques include plasmon waveguide resonance,
411:), the metal film is evaporated onto the glass block. The light again illuminates the glass block, and an evanescent wave penetrates through the metal film. The plasmons are excited at the outer side of the film. This configuration is used in most practical applications. 614:
is not required for detection of the analyte. Additionally, the measurements on SPR can be followed real-time allowing the monitoring of individual steps in sequential binding events particularly useful in the assessment of for instance sandwich complexes.
923:
making them practical in a broader range of applications. For instance, the enhanced sensitivity of graphene can be used in conjunction with a silver SPR sensor, providing a cost-effective alternative for measuring glucose levels in urine.
443:
The detectors used in surface plasmon resonance convert the photons of light reflected off the metallic film into an electrical signal. A position sensing detector (PSD) or charged-coupled device (CCD) may be used to operate as detectors.
145: 866:
When substances bind to the surface, it alters the way light is reflected, causing a change in the reflection angle, which can be measured as a signal in SPR experiments. One common application is measuring the kinetics of
901:
Recently, there has been an interest in magnetic surface plasmons. These require materials with large negative magnetic permeability, a property that has only recently been made available with the construction of
822: 765:
constant, representing the equilibrium value for the product quotient. This constant can be determined using dynamic SPR parameters, calculated as the dissociation rate divided by the association rate.
835:
microfluidics to initiate the dissociation of the bound complex between the ligand and analyte. As the analyte dissociates from the ligand, the SPR signal decreases. From these association ('on rate',
1396:
Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F (2012). "Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors".
1269:
Marques Lameirinhas, Ricardo A.; N. Torres, JoĂŁo Paulo; Baptista, AntĂłnio; Marques Martins, Maria JoĂŁo (2022). "A New Method to Determine the Response of Kretschmann's Structure-Based Biosensors".
1136:
GonzĂĄlez-DĂ­az JB, GarcĂ­a-MartĂ­n A, GarcĂ­a-MartĂ­n JM, Cebollada A, Armelles G, SepĂșlveda B, et al. (February 2008). "Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity".
435:
Surface plasmon resonance can be implemented in analytical instrumentation. SPR instruments consist of a light source, an input scheme, a prism with analyte interface, a detector, and computer.
668:
Due to the versatility of SPR instrumentation, this technique pairs well with other approaches, leading to novel applications in various fields, such as biomedical and environmental studies.
879:
dissociation rate constants with activation energy and thereby obtain thermodynamic parameters including binding enthalpy, binding entropy, Gibbs free energy and heat capacity.
1770:
Korhonen K, Granqvist N, Ketolainen J, Laitinen R (October 2015). "Monitoring of drug release kinetics from thin polymer films by multi-parametric surface plasmon resonance".
1353:
Hiep HM, Endo T, Kerman K, Chikae M, Kim DK, Yamamura S, et al. (2007). "A localized surface plasmon resonance based immunosensor for the detection of casein in milk".
687:
In the study of environmental pollutants, SPR instrumentation can be used as a replacement for former chromatography-based techniques. Current pollution research relies on
318: 135:
light (polarization occurs perpendicular to the plane of incidence) cannot excite electronic surface plasmons. Electronic and magnetic surface plasmons obey the following
646:, two SPR curves are acquired by scanning a range of angles at two different wavelengths, which results in a unique solution for both thickness and refractive index. 358: 298: 1520:
Vostakolaei, Mehdi Asghari; Molavi, Ommoleila; Hejazi, Mohammad Saeid; Kordi, Shirafkan; Rahmati, Saman; Barzegari, Abolfazl; Abdolalizadeh, Jalal (September 2019).
270:{\displaystyle k(\omega )={\frac {\omega }{c}}{\sqrt {\frac {\varepsilon _{1}\varepsilon _{2}\mu _{1}\mu _{2}}{\varepsilon _{1}\mu _{1}+\varepsilon _{2}\mu _{2}}}}} 338: 1694:
Granqvist N, Yliperttula M, VÀlimÀki S, Pulkkinen P, Tenhu H, Viitala T (March 2014). "Control of the morphology of lipid layers by substrate surface chemistry".
380: 1343:
Bakhtiar, Ray. "Surface plasmon resonance spectroscopy: a versatile technique in a biochemist’s toolbox." Journal of Chemical Education 90.2 (2013): 203-209.
1091:
Zeng S, Baillargeat D, Ho HP, Yong KT (May 2014). "Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications".
506:
If the surface is patterned with different biopolymers, using adequate optics and imaging sensors (i.e. a camera), the technique can be extended to
2316: 123:
light (polarization occurs parallel to the plane of incidence), this is possible by passing the light through a block of glass to increase the
2082:"Optimum Design of Surface Plasmon Resonance (SPR) Tapered Fiber Optic Biosensing Probe With Graphene–MoS2 Over Layers for DNA Hybridization" 1917:"A Review of Graphene-Based Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Biosensors: Current Status and Future Prospects" 1864:
Quintanilla-Villanueva GE, Luna-Moreno D, Blanco-GĂĄmez EA, RodrĂ­guez-Delgado JM, Villarreal-Chiu JF, RodrĂ­guez-Delgado MM (February 2021).
62:, etc.). The simplest way to approach the problem is to treat each material as a homogeneous continuum, described by a frequency-dependent 2135:"High Sensitivity Surface Plasmon Resonance Magnetic Field Sensor Based on Au/Gold Nanoparticles/Magnetic Fluid in the Hollow Core Fiber" 602:
onto a 600-Ångström silver film, and used the assay to detect anti-human IgG in water solution. Unlike many other immunoassays, such as
1978:"Improved Surface Plasmon Effect in Ag-based SPR Biosensor with Graphene and WS2: An Approach Towards Low Cost Urine-Glucose Detection" 961: 643: 623: 385:
Typical metals that support surface plasmons are silver and gold, but metals such as copper, titanium or chromium have also been used.
771: 1639:"Purification of a Novel Anti-VEGFR2 Single Chain Antibody Fragmentand Evaluation of Binding Affinity by Surface Plasmon Resonance" 638:, which treat the formed thin films as infinite, continuous dielectric layers. This interpretation may result in multiple possible 919: 1637:
Kordi, Shirafkan; Rahmati-Yamchi, Mohammad; Asghari Vostakolaei, Mehdi; Barzegari, Abolfazl; Abdolalizadeh, Jalal (2019-02-21).
934:
Recent advancements in SPR technology have given rise to novel formats increasing the scope and applicability of SPR sensing.
2266: 2247: 2228: 1807:"Applications of surface plasmon resonance (SPR) for the characterization of nanoparticles developed for biomedical purposes" 1029: 58:
To describe the existence and properties of surface plasmon polaritons, one can choose from various models (quantum theory,
507: 595: 510:(SPRI). This method provides a high contrast of the images based on the adsorbed amount of molecules, somewhat similar to 2023:
Jungnickel, Robert; Mirabella, Francesca; Stockmann, Jörg Manfred; Radnik, Jörg; Balasubramanian, Kannan (January 2023).
656:
In many cases no detailed models are applied, but the sensors are calibrated for the specific application, and used with
926:
Graphene has also been shown to improve the resistance of SPR sensors to high-temperature annealing up to 500 Â°C.
551: 1328: 555: 483:
Surface plasmons have been used to enhance the surface sensitivity of several spectroscopic measurements including
1976:
Yadav, Archana; Mishra, Madhusudan; Tripathy, Sukanta K.; Kumar, Anil; Singh, O. P.; Sharan, Preeta (2023-12-01).
111:
In order to excite surface plasmon polaritons in a resonant manner, one can use electron bombardment or incident
757:
SPR can be used to study the real-time kinetics of molecular interactions. Determining the affinity between two
1602:
Rich RL, Myszka DG (February 2007). "Higher-throughput, label-free, real-time molecular interaction analysis".
1050:
Marques Lameirinhas, Ricardo A.; N. Torres, JoĂŁo Paulo; Baptista, AntĂłnio; Marques Martins, Maria JoĂŁo (2022).
692:
Furthermore, SPR sensing surpasses chromatography techniques through its high-speed, straightforward analysis.
675:, SPR biosensors can use nanoparticles as carriers for therapeutic implants. For instance, in the treatment of 2301: 939:
it particularly valuable for applications requiring remote sensing in the field. It also offers an increased
2311: 1522:"Isolation and characterization of a novel scFv antibody fragments specific for Hsp70 as a tumor biomarker" 867: 515: 63: 1575:
Liedberg B, Nylander C, Lunström I (1983). "Surface plasmon resonance for gas detection and biosensing".
1017: 996: 547: 496: 2326: 2133:
Zhang, Qi; Liu, Hailian; Fu, Rao; Li, Bin; Yan, Xin; Zhang, Xuenan; Wang, Fang; Cheng, Tonglei (2023).
492: 2286: 1232:"Size dependence of Au NP-enhanced surface plasmon resonance based on differential phase measurement" 991: 981: 393: 83: 66:
between the external medium and the surface. This quantity, hereafter referred to as the materials' "
47: 1431:
Pillai S, Catchpole KR, Trupke T, Green MA (2007). "Surface plasmon enhanced silicon solar cells".
303: 2291: 521:
For nanoparticles, localized surface plasmon oscillations can give rise to the intense colors of
51: 1805:
Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P, et al. (November 2012).
1052:"A new method to analyse the role of surface plasmon polaritons on dielectric-metal interfaces" 676: 522: 468: 457: 396:. A thin metal film (for example gold) is positioned close enough to the prism wall so that an 388:
When using light to excite SP waves, there are two configurations which are well known. In the
1863: 2296: 762: 611: 343: 283: 2025:"Graphene-on-gold surface plasmon resonance sensors resilient to high-temperature annealing" 340:
is the relative permeability of the material (1: the glass block, 2: the metal film), while
2208: 2146: 2093: 1818: 1742: 1489: 1440: 1405: 1362: 1278: 1243: 1202: 1063: 574:
Illustrative schematic representing of G6 scFv immobilization on an MUA‐modified Ausensor.
132: 120: 71: 323: 8: 2321: 2306: 1731:"Surface plasmon resonance for characterization of large-area atomic-layer graphene film" 1191:"Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array" 511: 500: 419:
When the surface plasmon wave interacts with a local particle or irregularity, such as a
363: 136: 67: 2212: 2190: 2150: 2097: 1866:"A Novel Enzyme-Based SPR Strategy for Detection of the Antimicrobial Agent Chlorophene" 1822: 1746: 1521: 1493: 1444: 1409: 1366: 1282: 1247: 1206: 1067: 642:
and thickness values. Usually only one solution is within the reasonable data range. In
2162: 2109: 2057: 2024: 2005: 1953: 1916: 1892: 1865: 1841: 1806: 1671: 1557: 1378: 1294: 1171: 2262: 2243: 2224: 2166: 2113: 2062: 2044: 2009: 1997: 1958: 1940: 1897: 1846: 1787: 1711: 1676: 1658: 1619: 1588: 1561: 1549: 1541: 1382: 1324: 1298: 1231: 1175: 1163: 1118: 1025: 635: 420: 423:, part of the energy can be re-emitted as light. This emitted light can be detected 2216: 2154: 2101: 2052: 2036: 1989: 1948: 1930: 1887: 1877: 1836: 1826: 1779: 1750: 1703: 1666: 1650: 1611: 1584: 1533: 1497: 1456: 1448: 1413: 1370: 1286: 1268: 1251: 1210: 1153: 1145: 1108: 1100: 1071: 1049: 986: 639: 599: 566: 488: 1783: 19: 956: 710: 534: 400:
can interact with the plasma waves on the surface and hence excite the plasmons.
397: 75: 38:) and SPR biosensors have been developed to detect various important biomarkers. 2134: 1135: 578:
SPR sensogram of the G6 scFv immobilization on an MUA‐modified Au‐sensor slide.
2081: 2040: 1993: 1636: 1502: 1477: 1374: 1076: 1051: 976: 688: 672: 650: 2158: 1638: 1417: 1290: 1255: 888:
an attenuated signal compared to those capable of interacting simultaneously.
2280: 2196: 2105: 2048: 2001: 1977: 1944: 1921: 1662: 1615: 1545: 944: 935: 831: 718: 657: 542: 526: 392:, the light illuminates the wall of a glass block, typically a prism, and is 1755: 1730: 2191:
A selection of free-download papers on Plasmonics in New Journal of Physics
2066: 1962: 1901: 1850: 1791: 1715: 1680: 1623: 1553: 1167: 1149: 1122: 940: 903: 680: 530: 484: 1654: 918:
on top of gold has been shown to improve SPR sensor performance. Its high
2199:(1988). "Surface plasmons on smooth and rough surfaces and on gratings". 1935: 1882: 966: 591: 538: 59: 1113: 2220: 1831: 1158: 1104: 594:
was proposed in 1983 by Liedberg, Nylander, and Lundström, then of the
124: 115:(visible and infrared are typical). The incoming beam has to match its 112: 1707: 1537: 1461: 1452: 1215: 1190: 705: 1693: 1230:
Zeng S, Yu X, Law WC, Zhang Y, Hu R, Dinh XQ, Ho HP, Yong KT (2013).
1022:
Nano-Inspired Biosensors for Protein Assay with Clinical Applications
499:), supporting surface electromagnetic waves with sharper resonances ( 1769: 1320: 915: 128: 116: 2022: 746: 971: 827: 751: 35: 1478:"Phenomenological studies of optical properties of Cu nanowires" 1189:
Du GX, Mori T, Suzuki M, Saito S, Fukuda H, Takahashi M (2010).
817:{\displaystyle K_{\rm {D}}={\frac {k_{\text{d}}}{k_{\text{a}}}}} 758: 853:), the equilibrium dissociation constant ('binding constant', 514:
microscopy (this latter is most commonly used together with a
131:), and achieve the resonance at a given wavelength and angle. 95: 2080:
Raghuwanshi, Sanjeev Kumar; Pandey, Purnendu Shekhar (2022).
603: 103: 1519: 1395: 738: 533:. Nanoparticles or nanowires of noble metals exhibit strong 1804: 730:
film does not change significantly during the measurement.
714: 1515: 1513: 1430: 1729:
Jussila H, Yang H, Granqvist N, Sun Z (5 February 2016).
1975: 1574: 1475: 1728: 1510: 477:
Scheme for a sensor that uses surface plasmon resonance
1314: 649:
Metal particle plasmons are usually modeled using the
74:. In order for the terms that describe the electronic 1090: 1016:
Zhu, Xiaoli; Gao, Tao (2019-01-01), Li, Genxi (ed.),
774: 366: 346: 326: 306: 286: 148: 1352: 634:
The most common data interpretation is based on the
1915:Nurrohman, Devi Taufiq; Chiu, Nan-Fu (2021-01-15). 1310: 1308: 79:is negative and that of air or water is positive). 55:adsorption of molecules to the conducting surface. 1315:Maradudin AA, Sambles JR, Barnes WL, eds. (2014). 816: 374: 352: 332: 312: 292: 269: 2079: 1188: 733: 721:film onto a thin (ca. 38 nanometers) gold sensor. 586:: a single-chain variable fragment of an antibody 2278: 1305: 943:for analytes to bind to the inner lining of the 826:In this process, a ligand is immobilized on the 2256: 709:SPR curves measured during the adsorption of a 700: 1229: 1914: 896: 430: 2132: 882: 618: 1476:Locharoenrat K, Sano H, Mizutani G (2007). 1601: 962:Multi-parametric surface plasmon resonance 644:multi-parametric surface plasmon resonance 624:Multi-parametric surface plasmon resonance 2240:Plasmonics: Fundamentals and Applications 2056: 1952: 1934: 1891: 1881: 1840: 1830: 1754: 1670: 1501: 1460: 1214: 1157: 1112: 1075: 873: 16:Physical phenomenon of electron resonance 745: 737: 704: 565: 427:the metal film from various directions. 102: 94: 18: 2195: 582:Sensogram of Hsp70 in related peptide. 119:to that of the plasmon. In the case of 2279: 2257:Schasfoort RB, Tudos AJ, eds. (2008). 2029:Analytical and Bioanalytical Chemistry 1772:International Journal of Pharmaceutics 1015: 844:) and dissociation rates ('off rate', 830:surface of the SPR crystal. Through a 629: 570:SPR analysis of the purified G6 scFv. 2259:Handbook of Surface Plasmon Resonance 2237: 663: 2086:IEEE Transactions on Plasma Science 742:Association and dissociation signal 13: 2317:Protein–protein interaction assays 2183: 929: 781: 561: 552:extraordinary optical transmission 320:is the relative permittivity, and 90: 14: 2338: 2201:Springer Tracts in Modern Physics 1398:Sensors and Actuators B: Chemical 1236:Sensors and Actuators B: Chemical 596:Linköping Institute of Technology 508:surface plasmon resonance imaging 409:Kretschmann–Raether configuration 382:is the speed of light in vacuum. 1643:Advanced Pharmaceutical Bulletin 1526:Journal of Cellular Biochemistry 556:dual-polarization interferometry 467: 456: 2126: 2073: 2016: 1969: 1908: 1857: 1798: 1763: 1722: 1687: 1630: 1595: 1568: 1469: 1424: 1389: 1346: 726:is a 'static SPR' measurement. 598:(Sweden). They adsorbed human 447: 414: 23:Surface plasmon resonance (SPR) 1337: 1262: 1223: 1182: 1129: 1084: 1043: 1009: 891: 734:Binding constant determination 660:within the calibration curve. 158: 152: 41: 1: 1784:10.1016/j.ijpharm.2015.08.071 1002: 868:antibody-antigen interactions 1589:10.1016/0250-6874(83)85036-7 701:Layer-by-layer self-assembly 438: 394:totally internally reflected 313:{\displaystyle \varepsilon } 52:electromagnetic surface wave 7: 1018:"Chapter 10 - Spectrometry" 997:Quartz crystal microbalance 950: 909: 695: 10: 2343: 2041:10.1007/s00216-022-04450-4 1994:10.1007/s11468-023-01945-3 1503:10.1016/j.stam.2007.02.001 1433:Journal of Applied Physics 1375:10.1016/j.stam.2006.12.010 1077:10.1109/JPHOT.2022.3181967 897:Magnetic plasmon resonance 761:involves establishing the 684:smaller research cohorts. 493:second-harmonic generation 431:Analytical implementations 2159:10.1109/JSEN.2023.3273708 1418:10.1016/j.snb.2012.07.015 1291:10.1109/JSEN.2022.3207896 1256:10.1016/j.snb.2012.09.073 1024:, Elsevier, p. 253, 992:Localized surface plasmon 982:Surface plasmon polariton 883:Pair-wise epitope mapping 619:Material characterization 405:Kretschmann configuration 360:is angular frequency and 107:Kretschmann configuration 84:localized surface plasmon 48:surface plasmon polariton 28:Surface plasmon resonance 2106:10.1109/TPS.2022.3211645 1616:10.1016/j.ab.2006.10.040 1482:Sci. Technol. Adv. Mater 1355:Sci. Technol. Adv. Mater 1093:Chemical Society Reviews 763:equilibrium dissociation 606:, an SPR immunoassay is 516:Langmuir–Blodgett trough 1756:10.1364/OPTICA.3.000151 1604:Analytical Biochemistry 920:electrical conductivity 750:Example of output from 353:{\displaystyle \omega } 293:{\displaystyle \omega } 1439:(9): 093105–093105–8. 1150:10.1002/smll.200700594 1056:IEEE Photonics Journal 874:Thermodynamic analysis 818: 754: 743: 722: 587: 376: 354: 334: 314: 300:) is the wave vector, 294: 271: 108: 100: 24: 1655:10.15171/apb.2019.008 1577:Sensors and Actuators 862:) can be calculated. 819: 749: 741: 708: 569: 377: 355: 335: 315: 295: 272: 106: 98: 64:relative permittivity 22: 2302:Biochemistry methods 2139:IEEE Sensors Journal 1936:10.3390/nano11010216 1883:10.3390/bios11020043 1271:IEEE Sensors Journal 772: 364: 344: 333:{\displaystyle \mu } 324: 304: 284: 146: 72:complex permittivity 2312:Forensic techniques 2213:1988STMP..111.....R 2151:2023ISenJ..2312899Z 2145:(12): 12899–12905. 2098:2022ITPS...50.4767R 1823:2012Senso..1216420C 1817:(12): 16420–16432. 1747:2016Optic...3..151J 1494:2007STAdM...8..277L 1445:2007JAP...101i3105P 1410:2012SeAcB.174..292S 1367:2007STAdM...8..331M 1283:2022ISenJ..2220421M 1277:(21): 20421–20429. 1248:2013SeAcB.176.1128Z 1207:2010ApPhL..96h1915D 1068:2022IPhoJ..1481967L 677:Alzheimer's disease 630:Data interpretation 501:Bloch surface waves 375:{\displaystyle {c}} 137:dispersion relation 68:dielectric function 50:is a non-radiative 2261:. RSC publishing. 2221:10.1007/BFb0048317 1832:10.3390/s121216420 1532:(9): 14711–14724. 1105:10.1039/C3CS60479A 814: 755: 744: 723: 671:When coupled with 664:Novel applications 588: 390:Otto configuration 372: 350: 330: 310: 290: 267: 109: 101: 99:Otto configuration 25: 2327:Optical phenomena 2268:978-0-85404-267-8 2249:978-0-387-33150-8 2230:978-3-540-17363-2 2092:(11): 4767–4774. 1708:10.1021/la4046622 1702:(10): 2799–2809. 1538:10.1002/jcb.28732 1453:10.1063/1.2734885 1323:. pp. 1–23. 1317:Modern Plasmonics 1216:10.1063/1.3334726 1099:(10): 3426–3452. 1031:978-0-12-815053-5 812: 809: 799: 265: 264: 172: 2334: 2287:Electromagnetism 2272: 2253: 2238:Maier S (2007). 2234: 2177: 2176: 2174: 2173: 2130: 2124: 2123: 2121: 2120: 2077: 2071: 2070: 2060: 2020: 2014: 2013: 1988:(6): 2273–2283. 1973: 1967: 1966: 1956: 1938: 1912: 1906: 1905: 1895: 1885: 1861: 1855: 1854: 1844: 1834: 1802: 1796: 1795: 1767: 1761: 1760: 1758: 1726: 1720: 1719: 1691: 1685: 1684: 1674: 1634: 1628: 1627: 1599: 1593: 1592: 1572: 1566: 1565: 1517: 1508: 1507: 1505: 1473: 1467: 1466: 1464: 1428: 1422: 1421: 1393: 1387: 1386: 1350: 1344: 1341: 1335: 1334: 1312: 1303: 1302: 1266: 1260: 1259: 1227: 1221: 1220: 1218: 1195:Appl. Phys. Lett 1186: 1180: 1179: 1161: 1133: 1127: 1126: 1116: 1088: 1082: 1081: 1079: 1047: 1041: 1040: 1039: 1038: 1013: 987:Waves in plasmas 861: 852: 843: 823: 821: 820: 815: 813: 811: 810: 807: 801: 800: 797: 791: 786: 785: 784: 640:refractive index 636:Fresnel formulas 535:absorption bands 489:Raman scattering 471: 460: 381: 379: 378: 373: 371: 359: 357: 356: 351: 339: 337: 336: 331: 319: 317: 316: 311: 299: 297: 296: 291: 276: 274: 273: 268: 266: 263: 262: 261: 252: 251: 239: 238: 229: 228: 218: 217: 216: 207: 206: 197: 196: 187: 186: 176: 175: 173: 165: 2342: 2341: 2337: 2336: 2335: 2333: 2332: 2331: 2277: 2276: 2275: 2269: 2250: 2231: 2186: 2184:Further reading 2181: 2180: 2171: 2169: 2131: 2127: 2118: 2116: 2078: 2074: 2021: 2017: 1974: 1970: 1913: 1909: 1862: 1858: 1803: 1799: 1768: 1764: 1727: 1723: 1692: 1688: 1635: 1631: 1600: 1596: 1573: 1569: 1518: 1511: 1474: 1470: 1429: 1425: 1394: 1390: 1351: 1347: 1342: 1338: 1331: 1313: 1306: 1267: 1263: 1228: 1224: 1187: 1183: 1134: 1130: 1089: 1085: 1048: 1044: 1036: 1034: 1032: 1014: 1010: 1005: 957:Hydrogen sensor 953: 932: 930:Fiber-optic SPR 912: 899: 894: 885: 876: 860: 854: 851: 845: 842: 836: 806: 802: 796: 792: 790: 780: 779: 775: 773: 770: 769: 736: 711:polyelectrolyte 703: 698: 666: 632: 621: 564: 562:SPR immunoassay 529:containing the 481: 480: 479: 478: 474: 473: 472: 463: 462: 461: 450: 441: 433: 417: 407:(also known as 398:evanescent wave 367: 365: 362: 361: 345: 342: 341: 325: 322: 321: 305: 302: 301: 285: 282: 281: 257: 253: 247: 243: 234: 230: 224: 220: 219: 212: 208: 202: 198: 192: 188: 182: 178: 177: 174: 164: 147: 144: 143: 93: 91:Implementations 76:surface plasmon 44: 17: 12: 11: 5: 2340: 2330: 2329: 2324: 2319: 2314: 2309: 2304: 2299: 2294: 2292:Nanotechnology 2289: 2274: 2273: 2267: 2254: 2248: 2235: 2229: 2193: 2187: 2185: 2182: 2179: 2178: 2125: 2072: 2035:(3): 371–377. 2015: 1968: 1907: 1856: 1797: 1778:(1): 531–536. 1762: 1721: 1686: 1629: 1594: 1567: 1509: 1488:(4): 277–281. 1468: 1423: 1388: 1361:(4): 331–338. 1345: 1336: 1329: 1304: 1261: 1222: 1181: 1144:(2): 202–205. 1128: 1083: 1042: 1030: 1007: 1006: 1004: 1001: 1000: 999: 994: 989: 984: 979: 977:Spinplasmonics 974: 969: 964: 959: 952: 949: 931: 928: 911: 908: 898: 895: 893: 890: 884: 881: 875: 872: 858: 849: 840: 805: 795: 789: 783: 778: 735: 732: 719:self-assembled 702: 699: 697: 694: 689:chromatography 673:nanotechnology 665: 662: 651:Mie scattering 631: 628: 620: 617: 612:label molecule 590:The first SPR 563: 560: 512:Brewster angle 476: 475: 466: 465: 464: 455: 454: 453: 452: 451: 449: 446: 440: 437: 432: 429: 416: 413: 370: 349: 329: 309: 289: 278: 277: 260: 256: 250: 246: 242: 237: 233: 227: 223: 215: 211: 205: 201: 195: 191: 185: 181: 171: 168: 163: 160: 157: 154: 151: 92: 89: 43: 40: 15: 9: 6: 4: 3: 2: 2339: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2308: 2305: 2303: 2300: 2298: 2295: 2293: 2290: 2288: 2285: 2284: 2282: 2270: 2264: 2260: 2255: 2251: 2245: 2241: 2236: 2232: 2226: 2222: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2192: 2189: 2188: 2168: 2164: 2160: 2156: 2152: 2148: 2144: 2140: 2136: 2129: 2115: 2111: 2107: 2103: 2099: 2095: 2091: 2087: 2083: 2076: 2068: 2064: 2059: 2054: 2050: 2046: 2042: 2038: 2034: 2030: 2026: 2019: 2011: 2007: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1972: 1964: 1960: 1955: 1950: 1946: 1942: 1937: 1932: 1928: 1924: 1923: 1922:Nanomaterials 1918: 1911: 1903: 1899: 1894: 1889: 1884: 1879: 1875: 1871: 1867: 1860: 1852: 1848: 1843: 1838: 1833: 1828: 1824: 1820: 1816: 1812: 1808: 1801: 1793: 1789: 1785: 1781: 1777: 1773: 1766: 1757: 1752: 1748: 1744: 1740: 1736: 1732: 1725: 1717: 1713: 1709: 1705: 1701: 1697: 1690: 1682: 1678: 1673: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1633: 1625: 1621: 1617: 1613: 1609: 1605: 1598: 1590: 1586: 1582: 1578: 1571: 1563: 1559: 1555: 1551: 1547: 1543: 1539: 1535: 1531: 1527: 1523: 1516: 1514: 1504: 1499: 1495: 1491: 1487: 1483: 1479: 1472: 1463: 1458: 1454: 1450: 1446: 1442: 1438: 1434: 1427: 1419: 1415: 1411: 1407: 1403: 1399: 1392: 1384: 1380: 1376: 1372: 1368: 1364: 1360: 1356: 1349: 1340: 1332: 1330:9780444595263 1326: 1322: 1319:. Amsterdam: 1318: 1311: 1309: 1300: 1296: 1292: 1288: 1284: 1280: 1276: 1272: 1265: 1257: 1253: 1249: 1245: 1242:: 1128–1133. 1241: 1237: 1233: 1226: 1217: 1212: 1208: 1204: 1201:(8): 081915. 1200: 1196: 1192: 1185: 1177: 1173: 1169: 1165: 1160: 1155: 1151: 1147: 1143: 1139: 1132: 1124: 1120: 1115: 1110: 1106: 1102: 1098: 1094: 1087: 1078: 1073: 1069: 1065: 1061: 1057: 1053: 1046: 1033: 1027: 1023: 1019: 1012: 1008: 998: 995: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 954: 948: 946: 942: 937: 927: 924: 921: 917: 907: 905: 904:metamaterials 889: 880: 871: 869: 863: 857: 848: 839: 833: 829: 824: 803: 793: 787: 776: 767: 764: 760: 753: 748: 740: 731: 727: 720: 716: 712: 707: 693: 690: 685: 682: 681:nanoparticles 678: 674: 669: 661: 659: 658:interpolation 654: 652: 647: 645: 641: 637: 627: 625: 616: 613: 609: 605: 601: 597: 593: 585: 581: 577: 573: 568: 559: 557: 553: 549: 544: 543:visible light 540: 536: 532: 531:nanoparticles 528: 524: 519: 517: 513: 509: 504: 502: 498: 494: 490: 486: 470: 459: 445: 436: 428: 426: 422: 421:rough surface 412: 410: 406: 401: 399: 395: 391: 386: 383: 368: 347: 327: 307: 287: 258: 254: 248: 244: 240: 235: 231: 225: 221: 213: 209: 203: 199: 193: 189: 183: 179: 169: 166: 161: 155: 149: 142: 141: 140: 138: 134: 130: 126: 122: 118: 114: 105: 97: 88: 85: 80: 77: 73: 69: 65: 61: 56: 53: 49: 39: 37: 33: 29: 21: 2297:Spectroscopy 2258: 2242:. Springer. 2239: 2204: 2200: 2170:. Retrieved 2142: 2138: 2128: 2117:. Retrieved 2089: 2085: 2075: 2032: 2028: 2018: 1985: 1981: 1971: 1926: 1920: 1910: 1873: 1869: 1859: 1814: 1810: 1800: 1775: 1771: 1765: 1738: 1734: 1724: 1699: 1695: 1689: 1649:(1): 64–69. 1646: 1642: 1632: 1607: 1603: 1597: 1580: 1576: 1570: 1529: 1525: 1485: 1481: 1471: 1436: 1432: 1426: 1401: 1397: 1391: 1358: 1354: 1348: 1339: 1316: 1274: 1270: 1264: 1239: 1235: 1225: 1198: 1194: 1184: 1141: 1137: 1131: 1114:10356/102043 1096: 1092: 1086: 1059: 1055: 1045: 1035:, retrieved 1021: 1011: 941:surface area 933: 925: 913: 900: 886: 877: 864: 855: 846: 837: 825: 768: 756: 728: 724: 686: 670: 667: 655: 648: 633: 622: 607: 589: 583: 579: 575: 571: 520: 505: 485:fluorescence 482: 448:Applications 442: 434: 424: 418: 415:SPR emission 408: 404: 402: 389: 387: 384: 279: 110: 81: 57: 45: 31: 27: 26: 1583:: 299–304. 1404:: 292–298. 1159:10261/17402 967:Nano-optics 945:fiber optic 936:Fiber optic 892:Innovations 713:and then a 592:immunoassay 539:ultraviolet 523:suspensions 133:S-polarized 121:p-polarized 60:Drude model 42:Explanation 2322:Plasmonics 2307:Biophysics 2281:Categories 2172:2023-11-25 2119:2023-11-25 1982:Plasmonics 1929:(1): 216. 1870:Biosensors 1741:(2): 151. 1610:(1): 1–6. 1462:1885/16942 1062:(4): 1–9. 1037:2023-01-17 1003:References 610:in that a 608:label free 125:wavenumber 113:light beam 70:", is the 2197:Raether H 2167:258648690 2114:253318606 2049:1618-2642 2010:259932223 2002:1557-1963 1945:2079-4991 1876:(2): 43. 1663:2228-5881 1562:121351794 1546:0730-2312 1383:136613827 1299:252548497 1176:206490102 914:Layering 832:microflow 439:Detectors 348:ω 328:μ 308:ε 288:ω 255:μ 245:ε 232:μ 222:ε 210:μ 200:μ 190:ε 180:ε 167:ω 156:ω 127:(and the 2067:36447098 1963:33467669 1902:33572259 1851:23443386 1792:26319634 1716:24564782 1696:Langmuir 1681:31011559 1624:17145039 1554:30998271 1321:Elsevier 1168:18196506 1123:24549396 951:See also 916:graphene 910:Graphene 717:mineral 696:Examples 653:theory. 280:where k( 129:momentum 117:momentum 36:analytes 2209:Bibcode 2147:Bibcode 2094:Bibcode 2058:9829571 1954:7830205 1893:7915018 1842:3571790 1819:Bibcode 1811:Sensors 1743:Bibcode 1672:6468230 1490:Bibcode 1441:Bibcode 1406:Bibcode 1363:Bibcode 1279:Bibcode 1244:Bibcode 1203:Bibcode 1064:Bibcode 972:Plasmon 828:dextran 759:ligands 752:Biacore 537:in the 403:In the 82:LSPRs ( 2265:  2246:  2227:  2165:  2112:  2065:  2055:  2047:  2008:  2000:  1961:  1951:  1943:  1900:  1890:  1849:  1839:  1790:  1735:Optica 1714:  1679:  1669:  1661:  1622:  1560:  1552:  1544:  1381:  1327:  1297:  1174:  1166:  1121:  1028:  554:, and 491:, and 425:behind 2163:S2CID 2110:S2CID 2006:S2CID 1558:S2CID 1379:S2CID 1295:S2CID 1172:S2CID 1138:Small 604:ELISA 2263:ISBN 2244:ISBN 2225:ISBN 2063:PMID 2045:ISSN 1998:ISSN 1959:PMID 1941:ISSN 1898:PMID 1847:PMID 1788:PMID 1712:PMID 1677:PMID 1659:ISSN 1620:PMID 1550:PMID 1542:ISSN 1325:ISBN 1164:PMID 1119:PMID 1026:ISBN 715:clay 584:scFv 527:sols 46:The 2217:doi 2205:111 2155:doi 2102:doi 2053:PMC 2037:doi 2033:415 1990:doi 1949:PMC 1931:doi 1888:PMC 1878:doi 1837:PMC 1827:doi 1780:doi 1776:494 1751:doi 1704:doi 1667:PMC 1651:doi 1612:doi 1608:361 1585:doi 1534:doi 1530:120 1498:doi 1457:hdl 1449:doi 1437:101 1414:doi 1402:174 1371:doi 1287:doi 1252:doi 1240:176 1211:doi 1154:hdl 1146:doi 1109:hdl 1101:doi 1072:doi 600:IgG 580:(C) 576:(B) 572:(A) 548:QCM 525:or 518:). 503:). 497:DBR 32:SPR 2283:: 2223:. 2215:. 2207:. 2203:. 2161:. 2153:. 2143:23 2141:. 2137:. 2108:. 2100:. 2090:50 2088:. 2084:. 2061:. 2051:. 2043:. 2031:. 2027:. 2004:. 1996:. 1986:18 1984:. 1980:. 1957:. 1947:. 1939:. 1927:11 1925:. 1919:. 1896:. 1886:. 1874:11 1872:. 1868:. 1845:. 1835:. 1825:. 1815:12 1813:. 1809:. 1786:. 1774:. 1749:. 1737:. 1733:. 1710:. 1700:30 1698:. 1675:. 1665:. 1657:. 1645:. 1641:. 1618:. 1606:. 1579:. 1556:. 1548:. 1540:. 1528:. 1524:. 1512:^ 1496:. 1484:. 1480:. 1455:. 1447:. 1435:. 1412:. 1400:. 1377:. 1369:. 1357:. 1307:^ 1293:. 1285:. 1275:22 1273:. 1250:. 1238:. 1234:. 1209:. 1199:96 1197:. 1193:. 1170:. 1162:. 1152:. 1140:. 1117:. 1107:. 1097:43 1095:. 1070:. 1060:14 1058:. 1054:. 1020:, 947:. 906:. 870:. 679:, 558:. 550:, 487:, 139:: 2271:. 2252:. 2233:. 2219:: 2211:: 2175:. 2157:: 2149:: 2122:. 2104:: 2096:: 2069:. 2039:: 2012:. 1992:: 1965:. 1933:: 1904:. 1880:: 1853:. 1829:: 1821:: 1794:. 1782:: 1759:. 1753:: 1745:: 1739:3 1718:. 1706:: 1683:. 1653:: 1647:9 1626:. 1614:: 1591:. 1587:: 1581:4 1564:. 1536:: 1506:. 1500:: 1492:: 1486:8 1465:. 1459:: 1451:: 1443:: 1420:. 1416:: 1408:: 1385:. 1373:: 1365:: 1359:8 1333:. 1301:. 1289:: 1281:: 1258:. 1254:: 1246:: 1219:. 1213:: 1205:: 1178:. 1156:: 1148:: 1142:4 1125:. 1111:: 1103:: 1080:. 1074:: 1066:: 859:D 856:K 850:d 847:k 841:a 838:k 808:a 804:k 798:d 794:k 788:= 782:D 777:K 541:– 369:c 259:2 249:2 241:+ 236:1 226:1 214:2 204:1 194:2 184:1 170:c 162:= 159:) 153:( 150:k 30:(

Index


analytes
surface plasmon polariton
electromagnetic surface wave
Drude model
relative permittivity
dielectric function
complex permittivity
surface plasmon
localized surface plasmon


light beam
momentum
p-polarized
wavenumber
momentum
S-polarized
dispersion relation
totally internally reflected
evanescent wave
rough surface


fluorescence
Raman scattering
second-harmonic generation
DBR
Bloch surface waves
surface plasmon resonance imaging

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑