Knowledge

Galactic tide

Source đź“ť

304: 136:, will be more prominent. Tidal bridges are typically harder to distinguish than tidal tails: in the first instance, the bridge may be absorbed by the passing galaxy or the resulting merged galaxy, making it visible for a shorter duration than a typical large tail. Secondly, if one of the two galaxies is in the foreground, then the second galaxy — and the bridge between them — may be partially obscured. Together, these effects can make it hard to see where one galaxy ends and the next begins. 1679: 1691: 197:
symmetric, and follow a very similar orbit, effectively tracing the satellite's path. However, if the satellite is reasonably large—typically over one ten thousandth the mass of its host—then the satellite's own gravity may affect the tails, breaking the symmetry and accelerating the tails in different directions. The resulting structure is dependent on both the mass and orbit of the satellite, and the mass and structure of the conjectured
91: 232: 120:. Such tails are typically strongly curved. If a tail appears to be straight, it is probably being viewed edge-on. The stars and gas that comprise the tails will have been pulled from the easily distorted galactic discs (or other extremities) of one or both bodies, rather than the gravitationally bound galactic centers. Two very prominent examples of collisions producing tidal tails are the 20: 149: 338:. This shows that the effects of the galactic tide are quite complex, and depend heavily on the behaviour of individual objects within a planetary system. However, cumulatively, the effect can be quite significant; up to 90% of all comets originating from an Oort cloud may be the result of the galactic tide. 164:
Because tidal effects are strongest in the immediate vicinity of a galaxy, satellite galaxies are particularly likely to be affected. Such an external force upon a satellite can produce ordered motions within it, leading to large-scale observable effects: the interior structure and motions of a dwarf
101:
Tidal forces are dependent on the gradient of a gravitational field, rather than its strength, and so tidal effects are usually limited to the immediate surroundings of a galaxy. Two large galaxies undergoing collisions or passing nearby each other will be subjected to very large tidal forces, often
211:
Over many orbits of its parent galaxy, or if the orbit passes too close to it, a dwarf satellite may eventually be completely disrupted, to form a tidal stream of stars and gas wrapping around the larger body. It has been suggested that the extended discs of gas and stars around some galaxies, such
131:
Just as the Moon raises two water tides on opposite sides of the Earth, so a galactic tide produces two arms in its galactic companion. While a large tail is formed if the perturbed galaxy is equal to or less massive than its partner, if it is significantly more massive than the perturbing galaxy,
105:
Two interacting galaxies will rarely (if ever) collide head-on, and the tidal forces will distort each galaxy along an axis pointing roughly towards and away from its perturber. As the two galaxies briefly orbit each other, these distorted regions, which are pulled away from the main body of each
319:
in radius. Across such a vast distance, the gradient of the Milky Way's gravitational field plays a far more noticeable role. Because of this gradient, galactic tides may then deform an otherwise spherical Oort cloud, stretching the cloud in the direction of the galactic centre and compressing it
196:
The stripping mechanism is the same as between two comparable galaxies, although its comparatively weak gravitational field ensures that only the satellite, not the host galaxy, is affected. If the satellite is very small compared to the host, the tidal debris tails produced are likely to be
292:. Typically, a star's gravity will dominate within its own system, with only the passage of other stars substantially affecting dynamics. However, at the outer reaches of the system, the star's gravity is weak and galactic tides may be significant. In the Solar System, the theoretical 331:. Such a body, being composed of a rock and ice mixture, would become a comet when subjected to the increased solar radiation present in the inner Solar System. 173:
that occurs in galactic collisions, where stars and gas are torn from the extremities of a galaxy, possibly to be absorbed by its companion. The dwarf galaxy
334:
It has been suggested that the galactic tide may also contribute to the formation of an Oort cloud, by increasing the perihelia of planetesimals with large
1501: 708:
Peñarrubia, Jorge; McConnachie, Alan; Babul, Arif (2006-10-10). "On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies".
284:
Tidal effects are also present within a galaxy, where their gradients are likely to be steepest. This can have consequences for the formation of
165:
satellite galaxy may be severely affected by a galactic tide, inducing rotation (as with the tides of the Earth's oceans) or an anomalous mass-to-
1548: 212:
as Andromeda, may be the result of the complete tidal disruption (and subsequent merger with the parent galaxy) of a dwarf satellite galaxy.
1198: 185:
to tidal stripping, while a high star formation rate in the remaining core may be the result of tidally-induced motions of the remaining
588:
Johnston, Kathryn V.; Hernquist, Lars; Bolte, Michael (July 1996). "Fossil Signatures of Ancient Accretion Events in the Halo".
160:
at the top left, just above the edge of Andromeda's disk, whose outer arms have been stripped away by Andromeda's tidal forces.
323:
The Sun's gravity is sufficiently weak at such a distance that these small galactic perturbations are enough to dislodge some
931: 1614: 1533: 189:(Because tidal forces can knead and compress the interstellar gas clouds inside galaxies, they induce large amounts of 271: 1717: 914: 1619: 253: 249: 1722: 1346: 205: 820:
Higuchi, A.; Kokubo, E.; Mukai, T. (May 2005). "Orbital Evolution of Planetesimals by the Galactic Tide".
1516: 769:
Fouchard, Marc; et al. (2006-09-27). "Long-term effects of the Galactic tide on cometary dynamics".
497:
Piatek, S.; Pryor, C. (1993-12-01). "Can Galactic Tides Inflate the Apparent M/L's of Dwarf Galaxies?".
1634: 1589: 1456: 1397: 1293: 986: 981: 954: 1235: 1315: 1013: 1538: 1599: 1511: 1506: 1412: 1308: 1266: 976: 949: 327:
from such distant orbits, sending them towards the Sun and planets by significantly reducing their
1594: 1579: 1558: 1526: 1185: 1173: 1168: 1082: 1047: 1018: 1008: 242: 1097: 996: 529: 1659: 1624: 1521: 1223: 320:
along the other two axes, just as the Earth distends in response to the gravity of the Moon.
107: 1654: 1604: 1439: 1351: 1087: 971: 907: 860: 829: 778: 727: 672: 607: 554: 506: 461: 404: 8: 1727: 1417: 1325: 1256: 1163: 1148: 1023: 111: 40: 864: 833: 782: 731: 676: 611: 558: 510: 465: 408: 132:
then the trailing arm will be relatively minor, and the leading arm, sometimes called a
1649: 1644: 1629: 1584: 1553: 1424: 1261: 1213: 1203: 802: 751: 717: 690: 662: 631: 597: 570: 544: 479: 451: 367: 80: 52: 1690: 1682: 1664: 1639: 1609: 1488: 1330: 1320: 1303: 1064: 1030: 991: 944: 878: 873: 849:"Periodic variation of Oort Cloud flux and cometary impacts on the Earth and Jupiter" 848: 806: 794: 743: 685: 650: 623: 474: 439: 420: 221: 125: 95: 755: 635: 574: 483: 166: 1694: 1496: 1471: 1451: 1446: 1434: 1288: 1109: 1042: 868: 786: 735: 694: 680: 615: 562: 469: 412: 357: 289: 198: 178: 153: 60: 651:"The dynamics of tidal tails from massive satellites: The dynamics of tidal tails" 1543: 1466: 1158: 1131: 1102: 1054: 900: 186: 170: 102:
producing the most visually striking demonstrations of galactic tides in action.
16:
Tidal force experienced by objects subject to the gravitational field of a galaxy
1732: 1407: 1240: 1143: 1138: 1092: 1035: 190: 790: 437: 303: 1711: 1563: 1429: 1126: 1114: 966: 961: 882: 798: 747: 627: 525: 424: 324: 315:
The Oort cloud is a vast shell surrounding the Solar System, possibly over a
121: 24: 1461: 1402: 1387: 1218: 1003: 362: 140:, where a tail joins with its parent galaxy at both ends, are rarer still. 68: 56: 438:
Wehner, E. H.; Gallagher, J. S.; Papaderos, P.; et al. (2006-09-21).
395:
Toomre, Alar; Toomre, Juri (December 1972). "Galactic Bridges and Tails".
1476: 1366: 1356: 1153: 1119: 1059: 939: 722: 667: 602: 549: 456: 372: 352: 202: 36: 1361: 1298: 347: 316: 308: 293: 256: in this section. Unsourced material may be challenged and removed. 182: 174: 157: 116: 64: 1371: 530:"A New Formation Model for M32: A Threshed Early-Type Spiral Galaxy?" 328: 48: 231: 90: 739: 619: 566: 416: 768: 51:. Particular areas of interest concerning galactic tides include 1208: 1193: 923: 44: 649:
Choi, Jun-Hwan; Weinberg, Martin D.; Katz, Neal (2007-10-10).
1281: 1276: 1271: 1228: 440:"NGC 3310 and its tidal debris: remnants of galaxy evolution" 335: 297: 169:
ratio. Satellite galaxies can also be subjected to the same
892: 285: 707: 528:; Drinkwater, Michael J.; Gregg, Michael D. (2001-08-10). 148: 19: 523: 201:
around the host, and may provide a means of probing the
847:
Nurmi, P.; Valtonen, M. J.; Zheng, J. Q. (2001-11-11).
587: 215: 846: 819: 853:Monthly Notices of the Royal Astronomical Society 655:Monthly Notices of the Royal Astronomical Society 444:Monthly Notices of the Royal Astronomical Society 1709: 648: 74: 1549:List of the most distant astronomical objects 908: 822:Bulletin of the American Astronomical Society 499:Bulletin of the American Astronomical Society 517: 394: 771:Celestial Mechanics and Dynamical Astronomy 496: 915: 901: 390: 388: 63:, and the Milky Way's tidal effect on the 872: 721: 684: 666: 601: 548: 473: 455: 272:Learn how and when to remove this message 143: 94:The lengthy tidal tails of the colliding 302: 147: 106:galaxy, will be sheared by the galaxy's 89: 18: 385: 1710: 39:experienced by objects subject to the 896: 300:, lies in this transitional region. 254:adding citations to reliable sources 225: 85: 208:of a galaxy such as the Milky Way. 13: 14: 1744: 216:Effects on bodies within a galaxy 1689: 1678: 1677: 874:10.1046/j.1365-8711.2001.04854.x 686:10.1111/j.1365-2966.2007.12313.x 475:10.1111/j.1365-2966.2006.10757.x 230: 840: 241:needs additional citations for 222:Oort cloud § Tidal effects 1620:Galaxy formation and evolution 1615:Galaxy color–magnitude diagram 813: 762: 701: 642: 581: 490: 431: 1: 378: 296:, source of most long-period 922: 156:. Note its satellite galaxy 75:Effects on external galaxies 7: 1502:Galaxies named after people 341: 10: 1749: 1635:Gravitational microlensing 1590:Galactic coordinate system 219: 78: 1673: 1572: 1487: 1380: 1339: 1249: 1184: 1075: 930: 791:10.1007/s10569-006-9027-8 710:The Astrophysical Journal 590:The Astrophysical Journal 537:The Astrophysical Journal 397:The Astrophysical Journal 1600:Galactic magnetic fields 1413:Brightest cluster galaxy 1309:Luminous infrared galaxy 177:, a satellite galaxy of 1718:Extragalactic astronomy 1595:Galactic habitable zone 1580:Extragalactic astronomy 1169:Supermassive black hole 1083:Active galactic nucleus 1347:Low surface brightness 1098:Central massive object 312: 193:in small satellites.) 161: 144:Satellite interactions 98: 28: 1625:Galaxy rotation curve 306: 151: 108:differential rotation 93: 22: 1723:Interacting galaxies 1660:Population III stars 1655:Intergalactic travel 1605:Galactic orientation 1472:Voids and supervoids 250:improve this article 181:, may have lost its 55:, the disruption of 1650:Intergalactic stars 1539:Large quasar groups 1534:Groups and clusters 1398:Groups and clusters 1257:Lyman-alpha emitter 1149:Interstellar medium 865:2001MNRAS.327.1367N 834:2005DDA....36.0205H 783:2006CeMDA..95..299F 732:2006ApJ...650L..33P 677:2007MNRAS.381..987C 612:1996ApJ...465..278J 559:2001ApJ...557L..39B 511:1993AAS...183.5701P 466:2006MNRAS.371.1047W 409:1972ApJ...178..623T 112:intergalactic space 110:and flung off into 53:galactic collisions 41:gravitational field 1645:Intergalactic dust 1630:Gravitational lens 1585:Galactic astronomy 1554:Starburst galaxies 1294:blue compact dwarf 1250:Energetic galaxies 1214:BL Lacertae object 368:Interacting galaxy 313: 162: 99: 81:Interacting galaxy 61:satellite galaxies 29: 1705: 1704: 1665:Galaxy X (galaxy) 1640:Illustris project 1610:Galactic quadrant 1331:Wolf-Rayet galaxy 1321:Green bean galaxy 1316:Hot dust-obscured 1267:Luminous infrared 1031:Elliptical galaxy 526:Couch, Warrick J. 290:planetary systems 282: 281: 274: 126:Antennae Galaxies 96:Antennae Galaxies 86:Galaxy collisions 1740: 1693: 1681: 1680: 1326:Hanny's Voorwerp 1236:Relativistic jet 1110:Dark matter halo 917: 910: 903: 894: 893: 887: 886: 876: 859:(4): 1367–1376. 844: 838: 837: 817: 811: 810: 777:(1–4): 299–326. 766: 760: 759: 725: 723:astro-ph/0606101 705: 699: 698: 688: 670: 668:astro-ph/0702353 646: 640: 639: 605: 603:astro-ph/9602060 585: 579: 578: 552: 550:astro-ph/0107117 534: 521: 515: 514: 494: 488: 487: 477: 459: 457:astro-ph/0607088 450:(3): 1047–1056. 435: 429: 428: 392: 358:Satellite galaxy 277: 270: 266: 263: 257: 234: 226: 187:molecular clouds 154:Andromeda Galaxy 1748: 1747: 1743: 1742: 1741: 1739: 1738: 1737: 1708: 1707: 1706: 1701: 1669: 1568: 1483: 1376: 1335: 1245: 1180: 1159:Galaxy filament 1103:Galactic Center 1071: 926: 921: 891: 890: 845: 841: 818: 814: 767: 763: 706: 702: 661:(3): 987–1000. 647: 643: 586: 582: 532: 522: 518: 495: 491: 436: 432: 393: 386: 381: 344: 307:Diagram of the 278: 267: 261: 258: 247: 235: 224: 218: 171:tidal stripping 146: 88: 83: 77: 17: 12: 11: 5: 1746: 1736: 1735: 1730: 1725: 1720: 1703: 1702: 1700: 1699: 1687: 1674: 1671: 1670: 1668: 1667: 1662: 1657: 1652: 1647: 1642: 1637: 1632: 1627: 1622: 1617: 1612: 1607: 1602: 1597: 1592: 1587: 1582: 1576: 1574: 1570: 1569: 1567: 1566: 1561: 1556: 1551: 1546: 1541: 1536: 1531: 1530: 1529: 1524: 1519: 1514: 1509: 1504: 1493: 1491: 1485: 1484: 1482: 1481: 1480: 1479: 1469: 1464: 1459: 1457:Stellar stream 1454: 1449: 1444: 1443: 1442: 1437: 1432: 1422: 1421: 1420: 1415: 1410: 1405: 1395: 1390: 1384: 1382: 1378: 1377: 1375: 1374: 1369: 1364: 1359: 1354: 1349: 1343: 1341: 1337: 1336: 1334: 1333: 1328: 1323: 1318: 1313: 1312: 1311: 1306: 1301: 1296: 1286: 1285: 1284: 1279: 1274: 1264: 1259: 1253: 1251: 1247: 1246: 1244: 1243: 1238: 1233: 1232: 1231: 1226: 1216: 1211: 1206: 1201: 1196: 1190: 1188: 1182: 1181: 1179: 1178: 1177: 1176: 1166: 1161: 1156: 1151: 1146: 1144:Galactic ridge 1141: 1139:Galactic plane 1136: 1135: 1134: 1124: 1123: 1122: 1112: 1107: 1106: 1105: 1095: 1090: 1085: 1079: 1077: 1073: 1072: 1070: 1069: 1068: 1067: 1057: 1052: 1051: 1050: 1040: 1039: 1038: 1028: 1027: 1026: 1021: 1016: 1011: 1001: 1000: 999: 994: 989: 984: 979: 974: 969: 959: 958: 957: 952: 942: 936: 934: 928: 927: 920: 919: 912: 905: 897: 889: 888: 839: 812: 761: 740:10.1086/508656 716:(1): L33–L36. 700: 641: 620:10.1086/177418 580: 567:10.1086/323075 543:(1): L39–L42. 524:Bekki, Kenji; 516: 489: 430: 417:10.1086/151823 383: 382: 380: 377: 376: 375: 370: 365: 360: 355: 350: 343: 340: 280: 279: 238: 236: 229: 217: 214: 191:star formation 145: 142: 87: 84: 79:Main article: 76: 73: 15: 9: 6: 4: 3: 2: 1745: 1734: 1731: 1729: 1726: 1724: 1721: 1719: 1716: 1715: 1713: 1698: 1697: 1692: 1688: 1686: 1685: 1676: 1675: 1672: 1666: 1663: 1661: 1658: 1656: 1653: 1651: 1648: 1646: 1643: 1641: 1638: 1636: 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1611: 1608: 1606: 1603: 1601: 1598: 1596: 1593: 1591: 1588: 1586: 1583: 1581: 1578: 1577: 1575: 1571: 1565: 1562: 1560: 1559:Superclusters 1557: 1555: 1552: 1550: 1547: 1545: 1542: 1540: 1537: 1535: 1532: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1499: 1498: 1495: 1494: 1492: 1490: 1486: 1478: 1475: 1474: 1473: 1470: 1468: 1465: 1463: 1462:Superclusters 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1441: 1438: 1436: 1433: 1431: 1428: 1427: 1426: 1423: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1400: 1399: 1396: 1394: 1393:Galactic tide 1391: 1389: 1386: 1385: 1383: 1379: 1373: 1370: 1368: 1365: 1363: 1360: 1358: 1355: 1353: 1352:Ultra diffuse 1350: 1348: 1345: 1344: 1342: 1338: 1332: 1329: 1327: 1324: 1322: 1319: 1317: 1314: 1310: 1307: 1305: 1302: 1300: 1297: 1295: 1292: 1291: 1290: 1287: 1283: 1280: 1278: 1275: 1273: 1270: 1269: 1268: 1265: 1263: 1260: 1258: 1255: 1254: 1252: 1248: 1242: 1239: 1237: 1234: 1230: 1227: 1225: 1222: 1221: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1191: 1189: 1187: 1186:Active nuclei 1183: 1175: 1172: 1171: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1150: 1147: 1145: 1142: 1140: 1137: 1133: 1130: 1129: 1128: 1125: 1121: 1118: 1117: 1116: 1113: 1111: 1108: 1104: 1101: 1100: 1099: 1096: 1094: 1091: 1089: 1086: 1084: 1081: 1080: 1078: 1074: 1066: 1063: 1062: 1061: 1058: 1056: 1053: 1049: 1046: 1045: 1044: 1041: 1037: 1034: 1033: 1032: 1029: 1025: 1022: 1020: 1017: 1015: 1012: 1010: 1007: 1006: 1005: 1002: 998: 995: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 964: 963: 960: 956: 953: 951: 948: 947: 946: 943: 941: 938: 937: 935: 933: 929: 925: 918: 913: 911: 906: 904: 899: 898: 895: 884: 880: 875: 870: 866: 862: 858: 854: 850: 843: 835: 831: 827: 823: 816: 808: 804: 800: 796: 792: 788: 784: 780: 776: 772: 765: 757: 753: 749: 745: 741: 737: 733: 729: 724: 719: 715: 711: 704: 696: 692: 687: 682: 678: 674: 669: 664: 660: 656: 652: 645: 637: 633: 629: 625: 621: 617: 613: 609: 604: 599: 595: 591: 584: 576: 572: 568: 564: 560: 556: 551: 546: 542: 538: 531: 527: 520: 512: 508: 504: 500: 493: 485: 481: 476: 471: 467: 463: 458: 453: 449: 445: 441: 434: 426: 422: 418: 414: 410: 406: 402: 398: 391: 389: 384: 374: 371: 369: 366: 364: 361: 359: 356: 354: 351: 349: 346: 345: 339: 337: 332: 330: 326: 325:planetesimals 321: 318: 310: 305: 301: 299: 295: 291: 287: 276: 273: 265: 255: 251: 245: 244: 239:This section 237: 233: 228: 227: 223: 213: 209: 207: 204: 200: 199:galactic halo 194: 192: 188: 184: 180: 176: 172: 168: 159: 155: 150: 141: 139: 135: 129: 127: 123: 122:Mice Galaxies 119: 118: 113: 109: 103: 97: 92: 82: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 33:galactic tide 26: 25:Mice Galaxies 21: 1695: 1683: 1418:fossil group 1392: 1340:Low activity 1174:Ultramassive 1004:Dwarf galaxy 987:intermediate 982:grand design 856: 852: 842: 825: 821: 815: 774: 770: 764: 713: 709: 703: 658: 654: 644: 593: 589: 583: 540: 536: 519: 502: 498: 492: 447: 443: 433: 400: 396: 363:Dwarf galaxy 333: 322: 314: 283: 268: 259: 248:Please help 243:verification 240: 210: 195: 163: 137: 133: 130: 115: 104: 100: 69:Solar System 47:such as the 32: 30: 1477:void galaxy 1440:cannibalism 1425:Interacting 1381:Interaction 1367:Blue Nugget 1357:Dark galaxy 1262:Lyman-break 1154:Protogalaxy 1120:Disc galaxy 373:Tidal force 353:Roche limit 203:dark matter 183:spiral arms 138:Tidal loops 117:tidal tails 37:tidal force 1728:Oort cloud 1712:Categories 1517:Polar-ring 1362:Red nugget 1304:faint blue 1164:Spiral arm 1019:spheroidal 1009:elliptical 992:Magellanic 977:flocculent 945:Lenticular 932:Morphology 505:: 57.01D. 379:References 348:Oort cloud 317:light-year 309:Oort cloud 294:Oort cloud 262:April 2015 220:See also: 167:luminosity 114:, forming 65:Oort cloud 1452:Satellite 1447:Jellyfish 1435:collision 1372:Dead disk 1289:Starburst 1204:Markarian 1076:Structure 1043:Irregular 1014:irregular 883:0035-8711 807:123126965 799:0923-2958 748:0004-637X 628:0004-637X 425:0004-637X 329:perihelia 206:potential 179:Andromeda 49:Milky Way 1684:Category 1573:See also 1497:Galaxies 1224:X-shaped 1055:Peculiar 997:unbarred 955:unbarred 924:Galaxies 756:17292044 636:16091481 575:18707442 484:14563215 342:See also 124:and the 27:NGC 4676 1544:Quasars 1512:Nearest 1507:Largest 1408:cluster 1241:Seyfert 861:Bibcode 830:Bibcode 828:: 521. 779:Bibcode 728:Bibcode 695:6261478 673:Bibcode 608:Bibcode 596:: 278. 555:Bibcode 507:Bibcode 462:Bibcode 405:Bibcode 403:: 623. 336:aphelia 67:of the 1696:Portal 1527:Spiral 1430:merger 1209:Quasar 1194:Blazar 1132:corona 1048:barred 1024:spiral 972:barred 967:anemic 962:Spiral 950:barred 881:  805:  797:  754:  746:  693:  634:  626:  573:  482:  423:  298:comets 134:bridge 45:galaxy 1733:Tides 1564:Voids 1489:Lists 1467:Walls 1403:group 1388:Field 1282:ELIRG 1277:HLIRG 1272:ULIRG 1229:DRAGN 1219:Radio 1199:LINER 1093:Bulge 1065:Polar 803:S2CID 752:S2CID 718:arXiv 691:S2CID 663:arXiv 632:S2CID 598:arXiv 571:S2CID 545:arXiv 533:(PDF) 480:S2CID 452:arXiv 286:stars 57:dwarf 43:of a 35:is a 1522:Ring 1127:Halo 1115:Disc 1060:Ring 940:Disc 879:ISSN 795:ISSN 744:ISSN 624:ISSN 421:ISSN 288:and 152:The 23:The 1299:pea 1088:Bar 869:doi 857:327 787:doi 736:doi 714:650 681:doi 659:381 616:doi 594:465 563:doi 541:557 503:183 470:doi 448:371 413:doi 401:178 252:by 175:M32 158:M32 59:or 1714:: 1036:cD 877:. 867:. 855:. 851:. 826:37 824:. 801:. 793:. 785:. 775:95 773:. 750:. 742:. 734:. 726:. 712:. 689:. 679:. 671:. 657:. 653:. 630:. 622:. 614:. 606:. 592:. 569:. 561:. 553:. 539:. 535:. 501:. 478:. 468:. 460:. 446:. 442:. 419:. 411:. 399:. 387:^ 128:. 71:. 31:A 916:e 909:t 902:v 885:. 871:: 863:: 836:. 832:: 809:. 789:: 781:: 758:. 738:: 730:: 720:: 697:. 683:: 675:: 665:: 638:. 618:: 610:: 600:: 577:. 565:: 557:: 547:: 513:. 509:: 486:. 472:: 464:: 454:: 427:. 415:: 407:: 311:. 275:) 269:( 264:) 260:( 246:.

Index


Mice Galaxies
tidal force
gravitational field
galaxy
Milky Way
galactic collisions
dwarf
satellite galaxies
Oort cloud
Solar System
Interacting galaxy

Antennae Galaxies
differential rotation
intergalactic space
tidal tails
Mice Galaxies
Antennae Galaxies

Andromeda Galaxy
M32
luminosity
tidal stripping
M32
Andromeda
spiral arms
molecular clouds
star formation
galactic halo

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑