Knowledge

Spiral arm

Source 📝

781: 728: 675: 622: 569: 848:
In practice, it is challenging to ascertain whether the arms of a given galaxy are leading or trailing. To observe the spiral structure, the galaxy should not be tilted excessively towards the picture plane. However, a slight tilt is necessary to determine the direction of rotation. Additionally, the side of the galaxy closer to the observer needs to be identified. A review of the observational data indicates that the majority of galaxies exhibit trailing spiral arms, with leading arms being relatively uncommon. For instance, among the two hundred galaxies studied in this manner, only two may have leading arms. In some instances, galaxies exhibit both leading and trailing spiral arms, as exemplified by
989: 124: 393: 432: 1063:, which describe disparate variants of the spiral structure. The first explanation posits that spiral arms are perpetually forming and dissipating without sufficient time to undergo significant twisting – such spiral arms are designated as material arms. The density wave theory posits that the spiral pattern is a density wave, thereby rotating independently of the disc as a solid body. Consequently, spiral arms are designated as wave arms. It is possible for these types of spiral arms to occur simultaneously within the same galaxy. 1140:
regions where the concentration of stars is higher. Concurrently, at various points in time, different stars emerge within the spiral arm, resulting in the density wave moving at a different speed than the stellar disc. Consequently, the density wave is not subject to twisting. The influence of this mechanism results in the formation of a large-scale, ordered spiral structure, which is also observed in the infrared. The concentration of stars in the spiral arm increases by a mere 10-20%, yet this relatively modest change in
368:
ordered two-arm structure in the interior, which becomes irregular at the periphery. Nevertheless, in almost all cases, both types of structure are present in the spiral structure. Even grand design galaxies have details that do not fit into the spiral pattern. Additionally, there are galaxies that exhibit different types of spiral structure when observed across different spectral ranges. The distinction between the two main types of spiral arms appears to be related to fundamental physical differences between them.
1128: 222: 447: 466: 338: 378: 4813: 940:. In galaxies with a pronounced spiral pattern, the magnetic fields are orientated along the arms. However, in some cases, the magnetic field may form a separate spiral structure that runs in the space between the visible spiral arms. Conversely, magnetic fields can influence the movement of gas within the galaxy and contribute to the formation of spiral arms. However, they are insufficiently strong to play a dominant role in the formation of spiral arms. 527:. In the case of the logarithmic spiral, the pitch angle is constant. It decreases with increasing distance from the centre in the Archimedean spiral and increases in the hyperbolic spiral. The measurements of twist angles in galaxies indicate that only a minority of spiral galaxies have pitch angles of the arms that are close to constant. More than two-thirds of galaxies have pitch angles that vary by more than 20%. The average twist angle is found to 4825: 308: 323: 1233:. In contrast to the density wave theory, the manifold theory does not posit the emergence of colour gradients in spiral arms, which are in fact observed in numerous galaxies. The fact that in galaxies with a bar, spiral arms originate from a region proximate to the bar may suggest a correlation between these structures and the manifold theory. However, this is not the sole theory that explains the genesis of arms due to bars. 872: 833: 1109:
region allows it to stretch into a short arc. Given that starburst is a continuous process occurring in different regions of the disc, there are numerous such arcs at different times throughout the disc, which can be observed as a flocculent spiral pattern. Given that such spiral arms are only visible due to young stars, they have a minimal impact on the mass distribution within the galaxy and are rarely observed in the
17: 408: 1155:, which is a region where the spiral arm moves at the same speed as the stars. It can be identified by observing colour gradients within the arms. Since the stellar population forms within an arm and subsequently reddens over time, a colour gradient should be observed across the arm if its velocity differs from that of the arm. It is hypothesised that density waves are created and maintained by the 1085: 1242: 512:. The pitch angle is the angle between the tangent to spiral arm at a given point and the perpendicular to the radius drawn to that point. In the majority of spiral galaxies, the average pitch angle lies within the range of 5° to 30°. Spiral arms with a small pitch angle are called tightly wound, while those with a larger pitch angle are called open. 295:, spiral galaxies are divided into types Sa, Sb, Sc. Barred spiral galaxies are divided into types SBa, SBb and SBc. The spiral arms of early type Sa and SBa galaxies are tightly wound and smooth, while those of late type Sc and SBc galaxies are knotty and loosely wound. Types Sb and SBb exhibit intermediate characteristics. 1199: 1181: 1139:
occur within a disc, giving rise to a density wave - the stars move within the disc in such a way that they converge in specific regions and become more concentrated. The density wave exerts a governing influence not only on the stars but also on the gas, thereby promoting a more active starburst in
847:
Spiral arms may additionally be categorized as either trailing or leading. In the case of trailing spiral arms, their outer tips point in the direction opposite to the direction of galaxy rotation. In the case of leading arms, their outer tips point in the same direction in which the galaxy rotates.
157:
they originate at the ends of the bar. The spiral arms do not extend over the entire radius of the disc and cease at the distance at which the disc can still be discerned. A galaxy typically comprises two or more spiral arms. The collective configuration of these arms within a galaxy is referred to
1220:
Some theories propose alternative mechanisms for the appearance of spiral arms that differ from the density wave theory and the SSPSF model. These theories are not intended to replace the aforementioned theories entirely, but rather to explain the appearance of spiral arms in specific cases. For
367:
The remainder of the galaxies are of an intermediate type, referred to as "multi-armed", which exhibit the proberties of both the flocculent and grand design galaxies. For example, they may appear to be grand design galaxies, yet possess more than two arms. Alternatively, they may exhibit a more
1108:
in the gas, thereby facilitating the spread of star formation across the galactic disk. In a period of less than 100 million years, the brightest stars in this region have time to extinguish. This is less than the time required for one revolution of the galaxy. The differential rotation of this
1260:
In 1896, the problem of twisting was formulated. If spiral arms were material entities, due to differential rotation, they would twist very rapidly to the point where they would be impossible to observe. Consequently, the question of the nature of the spiral structure remained unresolved for a
972:
as one of the classification criteria, subsequent analysis has revealed that this value correlates with the morphological type to a lesser extent than, for example, the indicator of the colour of the spiral arms. The correlation between the pitch angle and the aforementioned parameters can be
885:
The ratio of the luminosity of the spiral structure to the luminosity of the entire galaxy is greatest for grand design spiral galaxies. For these galaxies, this ratio is 21% on average, with some reaching as high as 40-50%. For flocculent and multi-arm galaxies, the ratio is 13% and 14%,
421:
Additionally, spiral arms are subdivided into two categories: massive and filamentary. In the first instance, the spiral arms are wide, diffuse, and do not contrast significantly with the space between them. In contrast, in the second instance, the spiral arms are narrow and clearly
1225:. According to this theory, the gravitational influence of the bar causes the orbits of the stars to be arranged in a certain way, creating spiral arms and moving along them. The name of the theory is related to the fact that in this model the stars moving in spiral arms form a 1170:
The density wave theory postulates that only trailing spiral arms are stable, and that any leading structure must at some point transition into a trailing one. Concurrently, the structure itself is amplified for a period following the transformation, which is called swing
1204: 1202: 1186: 1184: 1299:
The classification of galaxies into flocculent, multi-armed, and grand design categories is derived from a more complex morphological classification scheme involving 10 classes that describe the type of spiral pattern. The classification scheme was developed by
1203: 1185: 265:, older stars contribute more, which makes the spiral arms appear smoother, but less contrasted. Radiation from interstellar dust makes the spiral arms bright in the far infrared, while radiation from neutral hydrogen and molecules makes them bright at 1201: 1183: 104:. These theories describe different variants of the spiral structure and do not exclude each other. In addition to these theories, there are other theories that can explain the appearance of spiral structure in some cases. 886:
respectively. Additionally, the proportion of spiral arms in the total luminosity increases in later morphological types. For Sa-type galaxies, this proportion averages 13%, while for Sc-type galaxies it averages 30%.
84:
can reach 40–50% for some galaxies. The characteristics of spiral arms are correlated with other properties of galaxies, for example, the twist angle of spiral arms is related to parameters such as the mass of the
218:, and bright stars than in the remainder of the disk. While spiral arms are primarily identifiable due to their young stellar population, there also exists an increased concentration of old stars within them. 2943:"The start of the Sagittarius spiral arm (Sagittarius origin) and the start ot the Norma spiral arm (Norma origin): Model-computed and observed arm tangents at galactic longitudes −20° < l < +23°" 1069:
observed in interacting galaxies are also considered material spiral arms. Due to the low velocity of matter at a distance from the galaxy, tidal tails appear to persist for an extended period of time.
360:
exhibit a symmetrical and clear pattern comprising two spiral arms that extend throughout the galaxy. They account for 10% of the total number of spiral galaxies. In contrast, the spiral structure of
1055:
rather than as solid bodies, any structure in the disc should curve significantly and disappear in approximately one to two revolutions. The two most prevalent solutions to this issue are the
973:
theoretically explained. The described quantities are related to the mass distribution within the galaxy, which affects the manner in which the density wave propagates within the galaxy disc.
976:
In more massive galaxies with a more ordered structure, spiral arms are observed to be more pronounced and contrasting. Additionally, the contrast between spiral arms is more pronounced in
825: 772: 719: 666: 1019:
The precise location, length, and number of spiral arms remain uncertain. However, the prevailing view is that the Milky Way contains four major spiral arms: two main ones - the
613: 46:. Typically, spiral galaxies exhibit two or more spiral arms. The collective configuration of these arms is referred to as the spiral pattern or spiral structure of the galaxy. 1200: 1182: 968:
appear to be more increasing. However, these dependencies are not particularly pronounced. Although the pitch angle of the spiral arms was originally introduced into the
863:
The width of spiral arms in the majority of galaxies increases with increasing distance from the centre. Grand design galaxies exhibit the greatest width of spiral arms.
189: 561: 510: 487: 1311:
Despite the considerable successes of the density wave theory, the physical nature of spiral arms remains a topic of debate, with no clear consensus yet reached.
1746:
Bittner, A.; Gadotti, D.A.; Elmegreen, B.G.; Athanassoula, E.; Elmegreen, D.M.; Bosma, A.; Muñoz-Mateos, J. (2020-01-01). Valluri, M.; Sellwood, J.A. (eds.).
980:, although this correlation is relatively weak. In general, flocculent galaxies have a lower mass and a later morphological type than grand design galaxies. 4635: 364:
consists of numerous small fragments of arms that are not connected to each other. Among spiral galaxies, the fraction of such galaxies is equal to 30%.
2779: 2714: 2505: 2258: 2123: 1992: 1265:, who in 1961 correctly concluded that the spiral arms arise due to gravitational interaction between the stars in the disc. Subsequently, in 1964, 3257:
Peterken, T.G.; Merrifield, M.R.; Aragón-Salamanca, A.; Drory, N.; Krawczyk, C.M.; Masters, K.L.; Weijmans, A.-M.; Westfall, K.B. (February 2019).
1151:
It is challenging to confirm the presence of a density wave in practice. However, it is possible to do so, for instance, by detecting a specific
2051:
Shields, D.; Boe, B.; Pfountz, C.; Davis, B.L.; Hartley, M.; Miller, R.; Slade, Z.; Abdeen, M.S.; Kennefick D., D.; Kennefick, J. (2022-10-01).
780: 727: 674: 621: 568: 1096:
becomes active within a region of the galaxy. The presence of young, bright stars in this region has the effect of influencing the surrounding
53:
exhibit a symmetrical and distinct pattern, comprising two spiral arms that extend throughout the galaxy. In contrast, the spiral structure of
4682: 3740:
Shields, D.; Boe, B.; Pfountz, C.; Davis, B.L.; Hartley, M.; Miller, R.; Slade, Z.; Abdeen, M.S.; Kennefick, D.; Kennefick, J. (2022-10-01).
952:
with other galaxy properties. For instance, it is established that galaxies with a greater pitch angle typically exhibit a lower mass of the
4332: 3215: 2342: 1816: 3152: 198:
The spiral arms exhibit considerable variation in their appearance. In general, they are characterized by an increased concentration of
1004:
through optical observation, given that the Sun is situated within the plane of the Milky Way disc, and the light is being absorbed by
3479: 3203: 2423: 1948: 1804: 1492: 2501:"Updating the (supermassive black hole mass)-(spiral arm pitch angle) relation: a strong correlation for galaxies with pseudobulges" 900:(anemic spirals). These galaxies are distinguished by a diffuse, faint spiral pattern, which is attributed to a reduced quantity of 3672: 3603: 3546: 3388: 2999: 2877: 2565: 1747: 1692: 932:
are observed in the spiral arms than in the remainder of the galaxy. The average value of magnetic fields in spiral galaxies is 10
1621: 1051:
The prevalence of spiral galaxies indicates that spiral structure is a long-lived phenomenon. However, since galaxies themselves
57:
comprises numerous small fragments of arms that are not connected to each other. The appearance of spiral arms varies across the
3258: 2842: 1420: 1296:
in our galaxy were measured with a high degree of accuracy. This enabled the discovery of a spiral structure in the Milky Way.
1277:
that spiral arms can be conceptualised as density waves. The SSPSF model was first proposed in 1978, although the concept of a
4017: 3957: 3930: 3899: 3860: 3835: 2708:
Bittner, A.; Gadotti, D.A.; Elmegreen B.G.; Athanassoula, E.; Elmegreen, D.M.; Bosma, A.; Muñoz-Mateos, J.-C. (2017-10-01).
1748:"The sequence of spiral arm classes: Observational signatures of persistent spiral density waves in grand-design galaxies" 4065: 969: 392: 285: 3000:"The Spiral Arms of the Milky Way: The Relative Location of Each Different Arm Tracer within a Typical Spiral Arm Width" 4748: 4667: 1428: 1331: 4048: 3891: 3157: 2566:"Constraining Dark Matter Halo Profiles and Galaxy Formation Models Using Spiral Arm Morphology. I. Method Outline" 2435: 2195: 1953: 1650: 1459: 1357: 1144:
has a profound impact on the gas dynamics. The gas accelerates, and shock waves can occur in it, appearing as dark
916:, which results in the rapid loss of gas. It is hypothesized that this type of galaxy may be in-between spiral and 908:
rate in comparison to normal spiral galaxies of the same morphological type. Anemic galaxies are more prevalent in
3324:"Precision Determination of Corotation Radii in Galaxy Disks: Tremaine–Weinberg versus Font–Beckman for NGC 3433" 431: 4753: 856:
have demonstrated that leading spiral arms can emerge in specific circumstances. One such instance is when the
145:
and exhibit heightened brightness relative to their surrounding environment. Such structures take the form of
4480: 992:
A model of the Milky Way. The yellow dot indicates the position of the Sun, the red dots the position of the
161:
Around two thirds of all massive galaxies are spiral galaxies. Spiral arms have been observed in galaxies at
377: 195:
was less than half of the present one. This suggests that the spiral structure is a long-lived phenomenon.
789: 736: 683: 630: 4650: 2775:"Identification of Grand-design and Flocculent spirals from SDSS using deep convolutional neural network" 577: 4768: 4723: 4590: 4531: 4427: 4120: 4115: 4088: 3922: 3484: 3112: 1759: 1497: 988: 446: 407: 357: 269:. The greatest contrast and amount of fine detail in spiral arms can be seen when observed in emission 50: 4369: 889:
The colour of the spiral arms becomes increasingly blue for galaxies of late morphological types. The
4449: 4147: 3677: 3608: 3551: 3393: 3328: 2637: 2570: 1308:
in 1987. Subsequently, they proposed a simplified scheme, which is the one that is currently in use.
531:
with a number of different galaxy parameters. For example, the spiral arms of galaxies with brighter
4672: 2254:"A multiwavelength study of spiral structure in galaxies. I. General characteristics in the optical" 115:. The nature of spiral structure in galaxies remained unresolved for a considerable period of time. 64:
In addition to increased brightness, spiral arms are characterised by an increased concentration of
4851: 4733: 4645: 4640: 4546: 4442: 4400: 4110: 4083: 3004: 2947: 1020: 540: 300: 278: 250: 249:
The appearance and expression of spiral branches in a galaxy may vary depending on the part of the
226: 58: 2710:"How do spiral arm contrasts relate to bars, disc breaks and other fundamental galaxy properties?" 4728: 4713: 4692: 4660: 4319: 4307: 4302: 4216: 4181: 4152: 4142: 2847: 1141: 953: 86: 168: 4866: 4231: 4130: 1222: 150: 4793: 4758: 4655: 4357: 3166: 2350: 1052: 893:
g-r for Sc-type galaxies is approximately 0.3-0.4, while for Sa-type galaxies it is 0.5-0.6.
337: 123: 3511: 3223: 3129: 3107: 2453: 2213: 2183: 1824: 1524: 1008:. Nevertheless, spiral arms can be observed, for instance, when mapping the distribution of 4788: 4738: 4573: 4485: 4221: 4105: 4041: 3767: 3690: 3621: 3564: 3507: 3416: 3351: 3284: 3219: 3125: 3017: 2903: 2802: 2737: 2660: 2593: 2528: 2449: 2386: 2281: 2209: 2146: 2078: 2015: 1890: 1820: 1773: 1708: 1520: 1156: 977: 853: 154: 131: 3531: 3243: 2473: 1962: 1844: 1544: 843:
in different directions, indicating the presence of both leading and trailing spiral arms.
546: 495: 472: 8: 4551: 4459: 4390: 4297: 4282: 4157: 1293: 1278: 1274: 1122: 1101: 1097: 1060: 961: 361: 192: 101: 65: 54: 3983: 3771: 3714: 3694: 3645: 3625: 3588: 3568: 3440: 3420: 3355: 3288: 3231: 3041: 3021: 2927: 2907: 2806: 2741: 2664: 2617: 2597: 2532: 2390: 2285: 2150: 2082: 2019: 1894: 1874: 1832: 1789: 1777: 1732: 1712: 943: 28:
Spiral-shaped regions of enhanced brightness within the galactic disc in spiral galaxies
4856: 4783: 4778: 4763: 4718: 4687: 4558: 4395: 4347: 4337: 3995: 3757: 3497: 3406: 3341: 3274: 2960: 2893: 2792: 2727: 2650: 2583: 2518: 2439: 2271: 2199: 2136: 2068: 2005: 1763: 1510: 520: 516: 307: 230: 3428: 3108:"Stochastic self-propagating star formation with anisotropic probability distribution" 2915: 1629: 4824: 4816: 4798: 4773: 4743: 4622: 4464: 4454: 4437: 4198: 4164: 4125: 4078: 4013: 3963: 3953: 3926: 3895: 3856: 3831: 3785: 3706: 3637: 3580: 3523: 3432: 3369: 3300: 3235: 3133: 3033: 2980: 2975: 2942: 2919: 2820: 2755: 2678: 2609: 2546: 2465: 2404: 2299: 2225: 2164: 2096: 2033: 1906: 1836: 1724: 1536: 1152: 1131:
Schematic representation of colour gradients in spiral arms if they are density waves
1005: 917: 524: 3308: 3029: 2852: 1493:"The shapes of spiral arms in the S4G survey and their connection with stellar bars" 1432: 4861: 4828: 4630: 4605: 4585: 4580: 4568: 4422: 4243: 4176: 4005: 3775: 3698: 3629: 3572: 3515: 3424: 3359: 3292: 3270: 3227: 3025: 2970: 2911: 2810: 2745: 2668: 2601: 2536: 2457: 2394: 2289: 2217: 2154: 2086: 2023: 1898: 1828: 1781: 1716: 1528: 1282: 1250: 1164: 1093: 993: 905: 901: 857: 238: 207: 199: 73: 21: 3519: 1622:"Звёздная астрономия в лекциях. 17.1 Наблюдательные данные о спиральной структуре" 1532: 1035:
arms. Their pitch angle is approximately 12°, and their width is estimated at 800
322: 191:, and on occasion even at greater distances, which corresponds to a time when the 4677: 4600: 4292: 4265: 4236: 4188: 4034: 3912: 3873: 2788: 2723: 2514: 2267: 2132: 2001: 1305: 1301: 1262: 1135:
In the context of density wave theory, spiral arms are understood to emerge when
1032: 1013: 965: 437: 398: 292: 274: 258: 138: 35: 356:
The spiral structure of galaxies exhibits considerable diversity in appearance.
4541: 4374: 4277: 4272: 4226: 4169: 3949: 3686: 3617: 3560: 3402: 3364: 3337: 3323: 3013: 2956: 2889: 2673: 2646: 2632: 2579: 1902: 1720: 1266: 957: 929: 909: 532: 257:
parts of the spectrum, the spiral arms are well defined due to the presence of
96:
Two main theories have been proposed to explain the origin of spiral arms: the
90: 77: 4009: 3296: 2461: 2399: 2372: 2221: 1785: 1289:
as early as 1953. This observation formed the basis of the subsequent theory.
1175:
Influence of differential rotation on the structure of spiral arms (animation)
1127: 4845: 4697: 4563: 4526: 4260: 4248: 4100: 4095: 3967: 3887: 3789: 3780: 3741: 3710: 3641: 3584: 3527: 3436: 3387:
Martínez-García, E.E.; González-Lópezlira, R.A.; Bruzual-A, G. (2009-03-01).
3373: 3304: 3239: 3137: 3037: 2984: 2923: 2824: 2815: 2774: 2759: 2682: 2613: 2550: 2469: 2408: 2303: 2229: 2168: 2159: 2118: 2100: 2091: 2052: 2037: 1910: 1840: 1728: 1540: 1339: 1261:
considerable period of time. Since 1927, this question has been addressed by
1009: 897: 879: 270: 262: 221: 142: 43: 3855:] (in Russian) (2, revised and supplemented ed.). Fryazino: Век 2. 3153:"Structure and Evolution of Irregular Galaxies. 4.3 SSPSF: A Possible Model" 2750: 2709: 2541: 2500: 2294: 2253: 2028: 1987: 1286: 4595: 4536: 4521: 4352: 4137: 3493: 3121: 2377: 1506: 1491:
Díaz-García, S.; Salo, H.; Knapen, J.H.; Herrera-Endoqui, M. (2019-11-01).
913: 289: 211: 69: 3943: 3386: 1039:. In addition to the large arms, smaller, similar formations, such as the 1000:
It is challenging to ascertain the presence of spiral arms in the disc of
956:
at their centre and a smaller galaxy mass in general. Additionally, their
153:
usually originate from a region near the centre of the galaxy, whereas in
80:
strength in galaxies. The contribution of spiral arms to the total galaxy
4610: 4500: 4490: 4287: 4253: 4193: 4073: 3389:"Spiral Density Wave Triggering of Star Formation in SA and SAB Galaxies" 2588: 2204: 1230: 1160: 1136: 1079: 1056: 1024: 890: 528: 465: 254: 234: 215: 203: 97: 2707: 2633:"On the Connection between Spiral Arm Pitch Angle and Galaxy Properties" 1658: 1467: 1365: 515:
The shape of spiral arms is often described in a simplified manner as a
4495: 4432: 3883: 3872:
Karttunen, H.; Kroger, P.; Oja, H.; Poutanen, M.; Donner, K.J. (2016).
3322:
Beckman, J.E.; Font, J.; Borlaff, A.; García-Lorenzo, B. (2018-02-26).
3256: 2119:"Bar-driven leading spiral arms in a counter-rotating dark matter halo" 1254: 1105: 1066: 1001: 937: 933: 452: 383: 266: 112: 108: 81: 3259:"A direct test of density wave theory in a grand-design spiral galaxy" 2252:
Savchenko, S.; Marchuk, A.; Mosenkov, A.; Grishunin, K. (2020-03-01).
539:
Several galaxies for which measurements of the pitch angle were made,
4505: 3918: 1270: 1145: 1040: 1028: 949: 944:
Correlation between spiral arm parameters and other galaxy properties
1490: 137:
Spiral arms are a defining feature of the structural composition of
3762: 3702: 3633: 3576: 3502: 3346: 3279: 2965: 2898: 2797: 2773:
Sarkar, S.; Narayanan, G.; Banerjee, A.; Prakash, P. (2023-01-01).
2732: 2655: 2605: 2523: 2444: 2276: 2141: 2073: 1768: 1745: 1515: 1226: 1110: 1084: 875: 849: 837: 413: 343: 313: 242: 162: 127: 4000: 3480:"Manifold spirals in barred galaxies with multiple pattern speeds" 3411: 2010: 871: 832: 3477: 3162: 2564:
Seigar, M.S.; Bullock, J.S.; Barth, A.J.; Ho, L.C. (2006-07-01).
2251: 1958: 492:
The shape of the arm is usually parameterised by the pitch angle
16: 3478:
Efthymiopoulos, C.; Harsoula, M.; Contopoulos, G. (2020-04-01).
3321: 4342: 4327: 4057: 3879: 3827: 1036: 146: 39: 2772: 1192:"Material" spiral arms twist greatly in a short amount of time 4415: 4410: 4405: 4362: 1886: 1704: 3604:"Stochastic star formation and spiral structure of galaxies" 1241: 960:
contributes less to the total luminosity, they have a lower
912:. Apparently, the galaxies in these clusters are subject to 4026: 3753: 2064: 3742:"Spirality: A Novel Way to Measure Spiral Arm Pitch Angle" 2053:"Spirality: A Novel Way to Measure Spiral Arm Pitch Angle" 1046: 328: 284:
The appearance of spiral arms is one of the criteria for
1057:
stochastic self-propagating star formation model (SSPSF)
299:
Spiral galaxies of different morphological types in the
3826:] (in Russian) (2, rev. and supplement ed.). 3739: 2499:
Davis, B.L.; Graham, A.W.; Seigar, M.S. (2017-10-01).
2050: 2116: 792: 739: 686: 633: 580: 549: 498: 475: 171: 107:
The spiral structure was first identified in 1850 by
3982:
Buta, R.J. (2011). Oswalt, T.D.; Keel, W.C. (eds.).
2563: 1221:
instance, the manifold theory is applicable only to
1210:
Density waves create arms that don't twist over time
1092:
The SSPSF model posits that spiral arms emerge when
983: 2181: 2117:Lieb E.; Collier, A.; Madigan, A.-M. (2022-01-01). 996:, which serve as indicators of the spiral structure 519:. However, spiral arms may also be described as an 426:
Galaxies with different spiral structure morphology
372:
Galaxies with different spiral structure morphology
49:The appearance of spiral sleeves is quite diverse. 3670: 819: 766: 713: 660: 607: 555: 504: 481: 183: 42:-shaped regions of enhanced brightness within the 2780:Monthly Notices of the Royal Astronomical Society 2715:Monthly Notices of the Royal Astronomical Society 2506:Monthly Notices of the Royal Astronomical Society 2498: 2259:Monthly Notices of the Royal Astronomical Society 2124:Monthly Notices of the Royal Astronomical Society 1993:Monthly Notices of the Royal Astronomical Society 4843: 3910: 1593: 98:stochastic self-propagating star formation model 3671:Elmegreen, D.M.; Elmegreen, B.G. (1987-03-01). 3105: 1338:. Vol. 6. pp. 298–301. Archived from 1285:in neighbouring regions was first proposed by 4683:List of the most distant astronomical objects 4042: 1752:Galactic Dynamics in the Era of Large Surveys 1249:The spiral arms were first discovered in the 3846: 3601: 3186: 3081: 2182:Capozziello, S.; Lattanzi, A. (2006-01-01). 1860: 1569: 1404: 3208:Annual Review of Astronomy and Astrophysics 3204:"Six Decades of Spiral Density Wave Theory" 3150: 1988:"Pitch angle variations in spiral galaxies" 1809:Annual Review of Astronomy and Astrophysics 1805:"Six Decades of Spiral Density Wave Theory" 1088:Emergence of spiral arms in the SSPSF model 4049: 4035: 3547:"On the Spiral Structure of Disk Galaxies" 1875:"Spiral Arm Morphology of Nearby Galaxies" 1693:"Spiral Arm Morphology of Nearby Galaxies" 860:rotates in opposition to the galaxy disk. 118: 89:at the centre and the contribution of the 3999: 3779: 3761: 3673:"Arm Classifications for Spiral Galaxies" 3501: 3410: 3363: 3345: 3278: 2974: 2964: 2897: 2814: 2796: 2749: 2731: 2672: 2654: 2587: 2540: 2522: 2443: 2398: 2293: 2275: 2203: 2158: 2140: 2090: 2072: 2027: 2009: 1985: 1767: 1514: 1257:identified the spiral structure in 1850. 253:in which it is observed. In the blue and 158:as a spiral pattern or spiral structure. 3106:Jungwiert, B.; Palous, J. (1994-07-01). 1889:: Korean Astronomical Society: 141–149. 1707:: Korean Astronomical Society: 141–149. 1240: 1126: 1083: 987: 870: 866: 831: 464: 460: 220: 122: 15: 3602:Gerola, H.; Seiden, P.E. (1978-07-01). 2878:"The spiral structure of the Milky Way" 2875: 1215: 1047:Theories on the spiral structure origin 24:(M51) has a pronounced spiral structure 4844: 3941: 3817: 3802: 3658: 3544: 3465: 3453: 3197: 3195: 3093: 3077: 3075: 3066: 3054: 2997: 2940: 2882:Research in Astronomy and Astrophysics 2876:Xu, Y.; Hou, L.; Wu, Y. (2018-12-01). 2871: 2869: 2836: 2834: 2695: 2486: 2316: 1879:Journal of Korean Astronomical Society 1872: 1856: 1854: 1697:Journal of Korean Astronomical Society 1690: 1651:"Физика галактик и галактических ядер" 1557: 1292:In 1953, the distances to the various 1116: 936:, while in their spiral arms it is 25 4030: 3871: 2247: 2245: 2243: 2241: 2239: 2112: 2110: 1981: 1979: 1616: 1614: 1581: 1385: 3981: 3727: 2630: 2424:"Magnetic fields in spiral galaxies" 2421: 2370: 2328: 2184:"Spiral Galaxies as Chiral Objects?" 1935: 1923: 1678: 1605: 1486: 1484: 1457: 1453: 1451: 1449: 1415: 1413: 1400: 1398: 1396: 1394: 1351: 1349: 1325: 1323: 820:{\displaystyle \mu =45{,}1^{\circ }} 767:{\displaystyle \mu =29{,}7^{\circ }} 714:{\displaystyle \mu =25{,}7^{\circ }} 661:{\displaystyle \mu =12{,}6^{\circ }} 3988:Planets, Stars, and Stellar Systems 3911:Binney, J.; Merrifield, M. (1998). 3847:Засов, А.В.; Постнов, К.А. (2011). 3545:Lin, C.C.; Shu, F.H. (1964-08-01). 3232:10.1146/annurev-astro-081915-023426 3201: 3192: 3151:Gallagher, J.S. III.; Hunter, D.A. 3072: 2866: 2831: 2340: 1873:Ann, H.B.; Lee, H-R. (2013-06-01). 1851: 1833:10.1146/annurev-astro-081915-023426 1802: 1691:Ann, H.B.; Lee, H-R. (2013-06-01). 1329: 1236: 1027:arms, and two secondary ones - the 970:galaxy morphological classification 608:{\displaystyle \mu =7{,}3^{\circ }} 286:galaxy morphological classification 281:lines produced by cold gas clouds. 13: 2631:Yu, S.-Y.; Ho, L.C. (2019-02-01). 2236: 2107: 1976: 1611: 1429:Swinburne University of Technology 233:: from left to right are bands u ( 76:, a bluer colour, and an enhanced 14: 4878: 3975: 2840: 2428:Astronomy and Astrophysics Review 1481: 1446: 1410: 1391: 1355: 1346: 1320: 984:Spiral structure of the Milky Way 923: 4823: 4812: 4811: 3158:NASA/IPAC Extragalactic Database 3057:, p. 172—175, 199, 202—207) 2347:Internet Encyclopedia of Science 1954:NASA/IPAC Extragalactic Database 1197: 1179: 904:and, consequently, a diminished 779: 726: 673: 620: 567: 445: 430: 406: 391: 376: 336: 321: 306: 3811: 3796: 3733: 3721: 3664: 3652: 3595: 3538: 3471: 3459: 3447: 3380: 3315: 3250: 3180: 3144: 3099: 3087: 3060: 3048: 2991: 2934: 2766: 2701: 2689: 2624: 2557: 2492: 2480: 2415: 2364: 2334: 2322: 2310: 2175: 2044: 1941: 1929: 1917: 1866: 1796: 1739: 1684: 1672: 1643: 1599: 1587: 1575: 1460:"Спиральная структура галактик" 1336:Большая российская энциклопедия 1245:Sketch of the M51 by Lord Rosse 543:images (the obtained values of 4754:Galaxy formation and evolution 4749:Galaxy color–magnitude diagram 2188:Astrophysics and Space Science 1986:Savchenko, S.S. (2013-12-01). 1563: 1551: 1379: 1073: 978:galaxies with a pronounced bar 948:The parameters of spiral arms 836:The spiral arms of the galaxy 469:Pitch angle of the spiral arm 386:, a grand design spiral galaxy 210:, and a greater prevalence of 1: 1594:Binney & Merrifield (1998 1314: 401:, a multi-armed spiral galaxy 351: 4056: 3994:. N.Y.: Springer Reference. 3945:Spiral structure in galaxies 416:, a flocculent spiral galaxy 358:Grand design spiral galaxies 141:, which are situated within 51:Grand design spiral galaxies 7: 4636:Galaxies named after people 3520:10.1051/0004-6361/201936871 3429:10.1088/0004-637X/694/1/512 2998:Vallée, J.P. (2014-07-01). 2941:Vallée, J.P. (2016-02-09). 2916:10.1088/1674-4527/18/12/146 1533:10.1051/0004-6361/201936000 1358:"Спиральные ветви галактик" 10: 4883: 4769:Gravitational microlensing 4724:Galactic coordinate system 3923:Princeton University Press 3485:Astronomy and Astrophysics 3113:Astronomy and Astrophysics 2976:10.3847/0004-6256/151/3/55 2373:"Galactic magnetic fields" 1903:10.5303/JKAS.2013.46.3.141 1760:Cambridge University Press 1721:10.5303/JKAS.2013.46.3.141 1498:Astronomy and Astrophysics 1120: 1077: 1043:, are also distinguished. 184:{\displaystyle z\approx 1} 130:is a spiral galaxy with a 34:are a defining feature of 4807: 4706: 4621: 4514: 4473: 4383: 4318: 4209: 4064: 4010:10.1007/978-94-007-5609-0 3948:. San Rafael California: 3678:The Astrophysical Journal 3609:The Astrophysical Journal 3552:The Astrophysical Journal 3394:The Astrophysical Journal 3329:The Astrophysical Journal 3297:10.1038/s41550-018-0627-5 3187:Засов & Постнов (2011 3082:Засов & Постнов (2011 3069:, pp. 40–44, 94–104) 3030:10.1088/0004-6256/148/1/5 2638:The Astrophysical Journal 2571:The Astrophysical Journal 2462:10.1007/s00159-015-0084-4 2400:10.4249/scholarpedia.2411 2222:10.1007/s10509-006-1984-6 1861:Засов & Постнов (2011 1786:10.1017/S1743921319008160 1570:Засов & Постнов (2011 1405:Засов & Постнов (2011 964:in the centre, and their 535:tend to be wound tighter. 93:to the total luminosity. 66:interstellar gas and dust 4734:Galactic magnetic fields 4547:Brightest cluster galaxy 4443:Luminous infrared galaxy 3781:10.3390/galaxies10050100 3661:, pp. 36–40, 94–98) 3365:10.3847/1538-4357/aaa965 3202:Shu, F.H. (2016-09-01). 3005:The Astronomical Journal 2948:The Astronomical Journal 2674:10.3847/1538-4357/aaf895 2092:10.3390/galaxies10050100 1803:Shu, F.H. (2016-09-01). 896:Additionally, there are 279:polyaromatic hydrocarbon 251:electromagnetic spectrum 59:electromagnetic spectrum 4729:Galactic habitable zone 4714:Extragalactic astronomy 4303:Supermassive black hole 4217:Active galactic nucleus 3512:2020A&A...636A..44E 3224:2016ARA&A..54..667S 3130:1994A&A...287...55J 2848:Encyclopedia Britannica 2454:2015A&ARv..24....4B 2422:Beck, R. (2015-12-01). 2371:Beck, R. (2007-08-17). 2214:2006Ap&SS.301..189C 1825:2016ARA&A..54..667S 1525:2019A&A...631A..94D 1142:gravitational potential 1137:mechanical oscillations 954:supermassive black hole 119:General characteristics 87:supermassive black hole 4481:Low surface brightness 4232:Central massive object 2816:10.1093/mnras/stac3096 2160:10.1093/mnras/stab2904 1582:Karttunen et al. (2016 1386:Karttunen et al. (2016 1246: 1223:barred spiral galaxies 1132: 1089: 997: 882: 844: 821: 768: 715: 662: 609: 563:are given in brackets) 557: 506: 489: 483: 246: 225:Images of M 51 in the 185: 134: 25: 4759:Galaxy rotation curve 3942:Seigar, M.S. (2017). 3875:Fundamental Astronomy 3818:Сурдин, В.Г. (2017). 2751:10.1093/mnras/stx1646 2542:10.1093/mnras/stx1794 2295:10.1093/mnras/staa258 2029:10.1093/mnras/stt1627 1425:astronomy.swin.edu.au 1244: 1130: 1087: 1053:rotate differentially 991: 874: 867:Luminosity and colour 854:Numerical simulations 835: 822: 769: 716: 663: 610: 558: 507: 484: 468: 461:Shape and pitch angle 293:classification scheme 224: 186: 126: 19: 4794:Population III stars 4789:Intergalactic travel 4739:Galactic orientation 4606:Voids and supervoids 3853:General Astrophysics 1608:, pp. 129, 167) 1294:stellar associations 1216:Alternative theories 790: 737: 684: 631: 578: 556:{\displaystyle \mu } 547: 505:{\displaystyle \mu } 496: 482:{\displaystyle \mu } 473: 440:has filamentary arms 169: 4784:Intergalactic stars 4673:Large quasar groups 4668:Groups and clusters 4532:Groups and clusters 4391:Lyman-alpha emitter 4283:Interstellar medium 3984:"Galaxy Morphology" 3805:, pp. 126–129) 3772:2022Galax..10..100S 3695:1987ApJ...314....3E 3626:1978ApJ...223..129G 3569:1964ApJ...140..646L 3421:2009ApJ...694..512M 3356:2018ApJ...854..182B 3289:2019NatAs...3..178P 3189:, pp. 385–387) 3084:, pp. 385–386) 3022:2014AJ....148....5V 2908:2018RAA....18..146X 2807:2023MNRAS.518.1022S 2742:2017MNRAS.471.1070B 2698:, pp. 108–123) 2665:2019ApJ...871..194Y 2598:2006ApJ...645.1012S 2533:2017MNRAS.471.2187D 2391:2007SchpJ...2.2411B 2319:, pp. 224–225) 2286:2020MNRAS.493..390S 2151:2022MNRAS.509..685L 2083:2022Galax..10..100S 2020:2013MNRAS.436.1074S 1895:2013JKAS...46..141A 1863:, pp. 384–386) 1778:2020IAUS..353..140B 1713:2013JKAS...46..141A 1596:, pp. 153–154) 1584:, pp. 388–391) 1572:, pp. 382–384) 1388:, pp. 389–390) 1279:supernova explosion 1123:Density wave theory 1117:Density wave theory 1102:supernova explosion 1098:interstellar medium 1061:density wave theory 962:velocity dispersion 362:flocculent galaxies 193:age of the Universe 102:density wave theory 68:, bright stars and 55:flocculent galaxies 38:. They manifest as 4779:Intergalactic dust 4764:Gravitational lens 4719:Galactic astronomy 4688:Starburst galaxies 4428:blue compact dwarf 4384:Energetic galaxies 4348:BL Lacertae object 3914:Galactic Astronomy 3096:, pp. 94–104) 2843:"Milky Way Galaxy" 1949:"Spiral Structure" 1681:, pp. 11, 34) 1247: 1159:of galaxies or by 1133: 1100:. For instance, a 1090: 998: 883: 845: 817: 764: 711: 658: 605: 553: 517:logarithmic spiral 502: 490: 479: 288:. For example, in 247: 181: 135: 26: 4839: 4838: 4799:Galaxy X (galaxy) 4774:Illustris project 4744:Galactic quadrant 4465:Wolf-Rayet galaxy 4455:Green bean galaxy 4450:Hot dust-obscured 4401:Luminous infrared 4165:Elliptical galaxy 4019:978-94-007-5609-0 3959:978-1-6817-4609-8 3932:978-0-691-23332-1 3901:978-3-662-53045-0 3862:978-5-85099-188-3 3849:Общая астрофизика 3837:978-5-9221-1726-5 3730:, pp. 33–37) 3468:, pp. 78–84) 3456:, pp. 53–54) 1560:, pp. 31–32) 1205: 1187: 1153:corotation radius 1006:interstellar dust 994:embedded clusters 525:hyperbolic spiral 261:. In the red and 231:photometric bands 151:unbarred galaxies 4874: 4827: 4815: 4814: 4460:Hanny's Voorwerp 4370:Relativistic jet 4244:Dark matter halo 4051: 4044: 4037: 4028: 4027: 4023: 4003: 3971: 3936: 3905: 3866: 3841: 3806: 3800: 3794: 3793: 3783: 3765: 3737: 3731: 3725: 3719: 3718: 3713:. Archived from 3668: 3662: 3656: 3650: 3649: 3644:. Archived from 3599: 3593: 3592: 3587:. Archived from 3542: 3536: 3535: 3530:. Archived from 3505: 3475: 3469: 3463: 3457: 3451: 3445: 3444: 3439:. Archived from 3414: 3384: 3378: 3377: 3367: 3349: 3319: 3313: 3312: 3307:. Archived from 3282: 3271:Nature Portfolio 3263:Nature Astronomy 3254: 3248: 3247: 3242:. Archived from 3199: 3190: 3184: 3178: 3177: 3175: 3174: 3165:. Archived from 3148: 3142: 3141: 3103: 3097: 3091: 3085: 3079: 3070: 3064: 3058: 3052: 3046: 3045: 3040:. Archived from 2995: 2989: 2988: 2978: 2968: 2938: 2932: 2931: 2926:. Archived from 2901: 2873: 2864: 2863: 2861: 2860: 2851:. Archived from 2838: 2829: 2828: 2818: 2800: 2770: 2764: 2763: 2753: 2735: 2705: 2699: 2693: 2687: 2686: 2676: 2658: 2628: 2622: 2621: 2616:. Archived from 2591: 2589:astro-ph/0603622 2561: 2555: 2554: 2544: 2526: 2496: 2490: 2484: 2478: 2477: 2472:. Archived from 2447: 2419: 2413: 2412: 2402: 2368: 2362: 2361: 2359: 2358: 2349:. Archived from 2338: 2332: 2326: 2320: 2314: 2308: 2307: 2297: 2279: 2249: 2234: 2233: 2207: 2205:astro-ph/0509487 2179: 2173: 2172: 2162: 2144: 2114: 2105: 2104: 2094: 2076: 2048: 2042: 2041: 2031: 2013: 1983: 1974: 1973: 1971: 1970: 1961:. Archived from 1945: 1939: 1933: 1927: 1921: 1915: 1914: 1870: 1864: 1858: 1849: 1848: 1843:. Archived from 1800: 1794: 1793: 1788:. Archived from 1771: 1743: 1737: 1736: 1731:. Archived from 1688: 1682: 1676: 1670: 1669: 1667: 1666: 1657:. Archived from 1647: 1641: 1640: 1638: 1637: 1628:. Archived from 1618: 1609: 1603: 1597: 1591: 1585: 1579: 1573: 1567: 1561: 1555: 1549: 1548: 1543:. Archived from 1518: 1488: 1479: 1478: 1476: 1475: 1466:. Archived from 1455: 1444: 1443: 1441: 1440: 1431:. Archived from 1417: 1408: 1402: 1389: 1383: 1377: 1376: 1374: 1373: 1364:. Archived from 1353: 1344: 1343: 1327: 1253:(M51), in which 1251:Whirlpool Galaxy 1237:Research history 1207: 1206: 1189: 1188: 1021:Scutum-Centaurus 1014:molecular clouds 1010:neutral hydrogen 858:dark matter halo 826: 824: 823: 818: 816: 815: 806: 783: 773: 771: 770: 765: 763: 762: 753: 730: 720: 718: 717: 712: 710: 709: 700: 677: 667: 665: 664: 659: 657: 656: 647: 624: 614: 612: 611: 606: 604: 603: 594: 571: 562: 560: 559: 554: 511: 509: 508: 503: 488: 486: 485: 480: 455:has massive arms 449: 434: 410: 395: 380: 340: 325: 310: 277:, as well as in 275:emission nebulae 259:blue supergiants 208:active starburst 190: 188: 187: 182: 22:Whirlpool Galaxy 4882: 4881: 4877: 4876: 4875: 4873: 4872: 4871: 4852:Spiral galaxies 4842: 4841: 4840: 4835: 4803: 4702: 4617: 4510: 4469: 4379: 4314: 4293:Galaxy filament 4237:Galactic Center 4205: 4060: 4055: 4020: 3978: 3960: 3933: 3902: 3863: 3838: 3814: 3809: 3801: 3797: 3738: 3734: 3726: 3722: 3669: 3665: 3657: 3653: 3600: 3596: 3543: 3539: 3476: 3472: 3464: 3460: 3452: 3448: 3385: 3381: 3320: 3316: 3255: 3251: 3200: 3193: 3185: 3181: 3172: 3170: 3149: 3145: 3104: 3100: 3092: 3088: 3080: 3073: 3065: 3061: 3053: 3049: 2996: 2992: 2939: 2935: 2888:(12). Bristol: 2874: 2867: 2858: 2856: 2839: 2832: 2789:Wiley-Blackwell 2771: 2767: 2724:Wiley-Blackwell 2706: 2702: 2694: 2690: 2629: 2625: 2562: 2558: 2515:Wiley-Blackwell 2497: 2493: 2485: 2481: 2420: 2416: 2369: 2365: 2356: 2354: 2343:"Spiral galaxy" 2339: 2335: 2327: 2323: 2315: 2311: 2268:Wiley-Blackwell 2250: 2237: 2180: 2176: 2133:Wiley-Blackwell 2115: 2108: 2049: 2045: 2002:Wiley-Blackwell 1984: 1977: 1968: 1966: 1947: 1946: 1942: 1934: 1930: 1922: 1918: 1871: 1867: 1859: 1852: 1801: 1797: 1744: 1740: 1689: 1685: 1677: 1673: 1664: 1662: 1649: 1648: 1644: 1635: 1633: 1620: 1619: 1612: 1604: 1600: 1592: 1588: 1580: 1576: 1568: 1564: 1556: 1552: 1489: 1482: 1473: 1471: 1458:Марочник, Л.С. 1456: 1447: 1438: 1436: 1419: 1418: 1411: 1403: 1392: 1384: 1380: 1371: 1369: 1354: 1347: 1328: 1321: 1317: 1306:Bruce Elmegreen 1263:Bertil Lindblad 1239: 1218: 1211: 1208: 1198: 1193: 1190: 1180: 1125: 1119: 1082: 1076: 1049: 986: 966:rotation curves 946: 930:magnetic fields 926: 910:galaxy clusters 898:anemic galaxies 869: 828: 811: 807: 802: 791: 788: 787: 784: 775: 758: 754: 749: 738: 735: 734: 731: 722: 705: 701: 696: 685: 682: 681: 678: 669: 652: 648: 643: 632: 629: 628: 625: 616: 599: 595: 590: 579: 576: 575: 572: 548: 545: 544: 497: 494: 493: 474: 471: 470: 463: 456: 450: 441: 435: 417: 411: 402: 396: 387: 381: 354: 347: 341: 332: 326: 317: 311: 170: 167: 166: 155:barred galaxies 139:spiral galaxies 121: 36:spiral galaxies 29: 12: 11: 5: 4880: 4870: 4869: 4864: 4859: 4854: 4837: 4836: 4834: 4833: 4821: 4808: 4805: 4804: 4802: 4801: 4796: 4791: 4786: 4781: 4776: 4771: 4766: 4761: 4756: 4751: 4746: 4741: 4736: 4731: 4726: 4721: 4716: 4710: 4708: 4704: 4703: 4701: 4700: 4695: 4690: 4685: 4680: 4675: 4670: 4665: 4664: 4663: 4658: 4653: 4648: 4643: 4638: 4627: 4625: 4619: 4618: 4616: 4615: 4614: 4613: 4603: 4598: 4593: 4591:Stellar stream 4588: 4583: 4578: 4577: 4576: 4571: 4566: 4556: 4555: 4554: 4549: 4544: 4539: 4529: 4524: 4518: 4516: 4512: 4511: 4509: 4508: 4503: 4498: 4493: 4488: 4483: 4477: 4475: 4471: 4470: 4468: 4467: 4462: 4457: 4452: 4447: 4446: 4445: 4440: 4435: 4430: 4420: 4419: 4418: 4413: 4408: 4398: 4393: 4387: 4385: 4381: 4380: 4378: 4377: 4372: 4367: 4366: 4365: 4360: 4350: 4345: 4340: 4335: 4330: 4324: 4322: 4316: 4315: 4313: 4312: 4311: 4310: 4300: 4295: 4290: 4285: 4280: 4278:Galactic ridge 4275: 4273:Galactic plane 4270: 4269: 4268: 4258: 4257: 4256: 4246: 4241: 4240: 4239: 4229: 4224: 4219: 4213: 4211: 4207: 4206: 4204: 4203: 4202: 4201: 4191: 4186: 4185: 4184: 4174: 4173: 4172: 4162: 4161: 4160: 4155: 4150: 4145: 4135: 4134: 4133: 4128: 4123: 4118: 4113: 4108: 4103: 4093: 4092: 4091: 4086: 4076: 4070: 4068: 4062: 4061: 4054: 4053: 4046: 4039: 4031: 4025: 4024: 4018: 3977: 3976:External links 3974: 3973: 3972: 3958: 3950:IOP Publishing 3938: 3937: 3931: 3907: 3906: 3900: 3878:(6 ed.). 3868: 3867: 3861: 3843: 3842: 3836: 3813: 3810: 3808: 3807: 3795: 3732: 3720: 3717:on 2022-03-03. 3703:10.1086/165034 3687:IOP Publishing 3663: 3651: 3648:on 2023-01-24. 3634:10.1086/156243 3618:IOP Publishing 3594: 3591:on 2023-02-04. 3577:10.1086/147955 3561:IOP Publishing 3537: 3534:on 2023-01-24. 3470: 3458: 3446: 3443:on 2022-06-21. 3403:IOP Publishing 3401:(1). Bristol: 3379: 3338:IOP Publishing 3336:(2). Bristol: 3314: 3311:on 2023-01-17. 3249: 3246:on 2023-06-18. 3216:Annual Reviews 3191: 3179: 3143: 3098: 3086: 3071: 3059: 3047: 3044:on 2023-04-04. 3014:IOP Publishing 3012:(1). Bristol: 2990: 2957:IOP Publishing 2955:(3). Bristol: 2933: 2930:on 2022-01-24. 2890:IOP Publishing 2865: 2830: 2765: 2700: 2688: 2647:IOP Publishing 2645:(2). Bristol: 2623: 2620:on 2022-06-16. 2606:10.1086/504463 2580:IOP Publishing 2578:(2). Bristol: 2556: 2491: 2479: 2476:on 2022-10-13. 2414: 2363: 2333: 2321: 2309: 2235: 2174: 2106: 2043: 1975: 1940: 1928: 1916: 1865: 1850: 1847:on 2023-06-18. 1817:Annual Reviews 1795: 1792:on 2023-01-03. 1738: 1735:on 2023-01-03. 1683: 1671: 1642: 1610: 1598: 1586: 1574: 1562: 1550: 1547:on 2023-02-20. 1480: 1445: 1409: 1407:, p. 382) 1390: 1378: 1345: 1342:on 2023-01-01. 1330:Ефремов, Ю.Н. 1318: 1316: 1313: 1267:Chia-Chiao Lin 1238: 1235: 1217: 1214: 1213: 1212: 1209: 1196: 1194: 1191: 1178: 1176: 1171:amplification. 1121:Main article: 1118: 1115: 1078:Main article: 1075: 1072: 1048: 1045: 985: 982: 945: 942: 925: 924:Magnetic field 922: 906:star formation 868: 865: 830: 829: 814: 810: 805: 801: 798: 795: 785: 778: 776: 761: 757: 752: 748: 745: 742: 732: 725: 723: 708: 704: 699: 695: 692: 689: 679: 672: 670: 655: 651: 646: 642: 639: 636: 626: 619: 617: 602: 598: 593: 589: 586: 583: 573: 566: 564: 552: 501: 478: 462: 459: 458: 457: 451: 444: 442: 436: 429: 427: 419: 418: 412: 405: 403: 397: 390: 388: 382: 375: 373: 353: 350: 349: 348: 342: 335: 333: 327: 320: 318: 312: 305: 303: 271:spectral lines 180: 177: 174: 132:pronounced bar 120: 117: 78:magnetic field 27: 9: 6: 4: 3: 2: 4879: 4868: 4867:Galactic arms 4865: 4863: 4860: 4858: 4855: 4853: 4850: 4849: 4847: 4832: 4831: 4826: 4822: 4820: 4819: 4810: 4809: 4806: 4800: 4797: 4795: 4792: 4790: 4787: 4785: 4782: 4780: 4777: 4775: 4772: 4770: 4767: 4765: 4762: 4760: 4757: 4755: 4752: 4750: 4747: 4745: 4742: 4740: 4737: 4735: 4732: 4730: 4727: 4725: 4722: 4720: 4717: 4715: 4712: 4711: 4709: 4705: 4699: 4696: 4694: 4693:Superclusters 4691: 4689: 4686: 4684: 4681: 4679: 4676: 4674: 4671: 4669: 4666: 4662: 4659: 4657: 4654: 4652: 4649: 4647: 4644: 4642: 4639: 4637: 4634: 4633: 4632: 4629: 4628: 4626: 4624: 4620: 4612: 4609: 4608: 4607: 4604: 4602: 4599: 4597: 4596:Superclusters 4594: 4592: 4589: 4587: 4584: 4582: 4579: 4575: 4572: 4570: 4567: 4565: 4562: 4561: 4560: 4557: 4553: 4550: 4548: 4545: 4543: 4540: 4538: 4535: 4534: 4533: 4530: 4528: 4527:Galactic tide 4525: 4523: 4520: 4519: 4517: 4513: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4486:Ultra diffuse 4484: 4482: 4479: 4478: 4476: 4472: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4448: 4444: 4441: 4439: 4436: 4434: 4431: 4429: 4426: 4425: 4424: 4421: 4417: 4414: 4412: 4409: 4407: 4404: 4403: 4402: 4399: 4397: 4394: 4392: 4389: 4388: 4386: 4382: 4376: 4373: 4371: 4368: 4364: 4361: 4359: 4356: 4355: 4354: 4351: 4349: 4346: 4344: 4341: 4339: 4336: 4334: 4331: 4329: 4326: 4325: 4323: 4321: 4320:Active nuclei 4317: 4309: 4306: 4305: 4304: 4301: 4299: 4296: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4267: 4264: 4263: 4262: 4259: 4255: 4252: 4251: 4250: 4247: 4245: 4242: 4238: 4235: 4234: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4214: 4212: 4208: 4200: 4197: 4196: 4195: 4192: 4190: 4187: 4183: 4180: 4179: 4178: 4175: 4171: 4168: 4167: 4166: 4163: 4159: 4156: 4154: 4151: 4149: 4146: 4144: 4141: 4140: 4139: 4136: 4132: 4129: 4127: 4124: 4122: 4119: 4117: 4114: 4112: 4109: 4107: 4104: 4102: 4099: 4098: 4097: 4094: 4090: 4087: 4085: 4082: 4081: 4080: 4077: 4075: 4072: 4071: 4069: 4067: 4063: 4059: 4052: 4047: 4045: 4040: 4038: 4033: 4032: 4029: 4021: 4015: 4011: 4007: 4002: 3997: 3993: 3989: 3985: 3980: 3979: 3969: 3965: 3961: 3955: 3951: 3947: 3946: 3940: 3939: 3934: 3928: 3924: 3920: 3916: 3915: 3909: 3908: 3903: 3897: 3893: 3889: 3885: 3881: 3877: 3876: 3870: 3869: 3864: 3858: 3854: 3850: 3845: 3844: 3839: 3833: 3830:: Физматлит. 3829: 3825: 3821: 3816: 3815: 3804: 3799: 3791: 3787: 3782: 3777: 3773: 3769: 3764: 3759: 3755: 3751: 3747: 3743: 3736: 3729: 3724: 3716: 3712: 3708: 3704: 3700: 3696: 3692: 3688: 3684: 3680: 3679: 3674: 3667: 3660: 3655: 3647: 3643: 3639: 3635: 3631: 3627: 3623: 3619: 3615: 3611: 3610: 3605: 3598: 3590: 3586: 3582: 3578: 3574: 3570: 3566: 3562: 3558: 3554: 3553: 3548: 3541: 3533: 3529: 3525: 3521: 3517: 3513: 3509: 3504: 3499: 3495: 3491: 3487: 3486: 3481: 3474: 3467: 3462: 3455: 3450: 3442: 3438: 3434: 3430: 3426: 3422: 3418: 3413: 3408: 3404: 3400: 3396: 3395: 3390: 3383: 3375: 3371: 3366: 3361: 3357: 3353: 3348: 3343: 3339: 3335: 3331: 3330: 3325: 3318: 3310: 3306: 3302: 3298: 3294: 3290: 3286: 3281: 3276: 3272: 3268: 3264: 3260: 3253: 3245: 3241: 3237: 3233: 3229: 3225: 3221: 3217: 3214:. Pato Alto: 3213: 3209: 3205: 3198: 3196: 3188: 3183: 3169:on 2023-01-17 3168: 3164: 3160: 3159: 3154: 3147: 3139: 3135: 3131: 3127: 3123: 3119: 3115: 3114: 3109: 3102: 3095: 3090: 3083: 3078: 3076: 3068: 3063: 3056: 3051: 3043: 3039: 3035: 3031: 3027: 3023: 3019: 3015: 3011: 3007: 3006: 3001: 2994: 2986: 2982: 2977: 2972: 2967: 2962: 2958: 2954: 2950: 2949: 2944: 2937: 2929: 2925: 2921: 2917: 2913: 2909: 2905: 2900: 2895: 2891: 2887: 2883: 2879: 2872: 2870: 2855:on 2022-01-19 2854: 2850: 2849: 2844: 2837: 2835: 2826: 2822: 2817: 2812: 2808: 2804: 2799: 2794: 2791:: 1022–1040. 2790: 2786: 2782: 2781: 2776: 2769: 2761: 2757: 2752: 2747: 2743: 2739: 2734: 2729: 2726:: 1070–1087. 2725: 2721: 2717: 2716: 2711: 2704: 2697: 2692: 2684: 2680: 2675: 2670: 2666: 2662: 2657: 2652: 2648: 2644: 2640: 2639: 2634: 2627: 2619: 2615: 2611: 2607: 2603: 2599: 2595: 2590: 2585: 2582:: 1012–1023. 2581: 2577: 2573: 2572: 2567: 2560: 2552: 2548: 2543: 2538: 2534: 2530: 2525: 2520: 2517:: 2187–2203. 2516: 2512: 2508: 2507: 2502: 2495: 2489:, p. 81) 2488: 2483: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2446: 2441: 2437: 2433: 2429: 2425: 2418: 2410: 2406: 2401: 2396: 2392: 2388: 2384: 2380: 2379: 2374: 2367: 2353:on 2022-06-16 2352: 2348: 2344: 2337: 2331:, p. 36) 2330: 2325: 2318: 2313: 2305: 2301: 2296: 2291: 2287: 2283: 2278: 2273: 2269: 2265: 2261: 2260: 2255: 2248: 2246: 2244: 2242: 2240: 2231: 2227: 2223: 2219: 2215: 2211: 2206: 2201: 2197: 2194:(1–4). N.Y.: 2193: 2189: 2185: 2178: 2170: 2166: 2161: 2156: 2152: 2148: 2143: 2138: 2134: 2130: 2126: 2125: 2120: 2113: 2111: 2102: 2098: 2093: 2088: 2084: 2080: 2075: 2070: 2066: 2062: 2058: 2054: 2047: 2039: 2035: 2030: 2025: 2021: 2017: 2012: 2007: 2004:: 1074–1083. 2003: 1999: 1995: 1994: 1989: 1982: 1980: 1965:on 2022-10-12 1964: 1960: 1956: 1955: 1950: 1944: 1938:, p. 34) 1937: 1932: 1926:, p. 34) 1925: 1920: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1869: 1862: 1857: 1855: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1815:. San Mateo: 1814: 1810: 1806: 1799: 1791: 1787: 1783: 1779: 1775: 1770: 1765: 1761: 1757: 1753: 1749: 1742: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1687: 1680: 1675: 1661:on 2023-01-03 1660: 1656: 1652: 1646: 1632:on 2020-01-07 1631: 1627: 1623: 1617: 1615: 1607: 1602: 1595: 1590: 1583: 1578: 1571: 1566: 1559: 1554: 1546: 1542: 1538: 1534: 1530: 1526: 1522: 1517: 1512: 1508: 1504: 1500: 1499: 1494: 1487: 1485: 1470:on 2021-11-28 1469: 1465: 1461: 1454: 1452: 1450: 1435:on 2023-02-03 1434: 1430: 1426: 1422: 1416: 1414: 1406: 1401: 1399: 1397: 1395: 1387: 1382: 1368:on 2018-08-18 1367: 1363: 1359: 1352: 1350: 1341: 1337: 1333: 1326: 1324: 1319: 1312: 1309: 1307: 1303: 1297: 1295: 1290: 1288: 1284: 1280: 1276: 1273:proposed the 1272: 1268: 1264: 1258: 1256: 1252: 1243: 1234: 1232: 1228: 1224: 1195: 1177: 1174: 1173: 1172: 1168: 1166: 1162: 1158: 1154: 1149: 1148:in the arms. 1147: 1143: 1138: 1129: 1124: 1114: 1112: 1107: 1103: 1099: 1095: 1086: 1081: 1071: 1068: 1064: 1062: 1058: 1054: 1044: 1042: 1038: 1034: 1030: 1026: 1022: 1017: 1015: 1011: 1007: 1003: 995: 990: 981: 979: 974: 971: 967: 963: 959: 955: 951: 941: 939: 935: 931: 921: 919: 915: 911: 907: 903: 899: 894: 892: 887: 881: 880:anemic galaxy 877: 873: 864: 861: 859: 855: 851: 842: 839: 834: 812: 808: 803: 799: 796: 793: 782: 777: 759: 755: 750: 746: 743: 740: 729: 724: 706: 702: 697: 693: 690: 687: 676: 671: 653: 649: 644: 640: 637: 634: 623: 618: 600: 596: 591: 587: 584: 581: 570: 565: 550: 542: 538: 537: 536: 534: 530: 526: 522: 518: 513: 499: 476: 467: 454: 448: 443: 439: 433: 428: 425: 424: 423: 415: 409: 404: 400: 394: 389: 385: 379: 374: 371: 370: 369: 365: 363: 359: 345: 339: 334: 330: 324: 319: 315: 309: 304: 302: 298: 297: 296: 294: 291: 287: 282: 280: 276: 272: 268: 264: 263:near-infrared 260: 256: 252: 244: 240: 236: 232: 228: 223: 219: 217: 213: 212:star clusters 209: 205: 201: 196: 194: 178: 175: 172: 164: 159: 156: 152: 148: 144: 140: 133: 129: 125: 116: 114: 110: 105: 103: 99: 94: 92: 88: 83: 79: 75: 71: 70:star clusters 67: 62: 60: 56: 52: 47: 45: 44:galactic disc 41: 37: 33: 23: 18: 4829: 4817: 4552:fossil group 4474:Low activity 4308:Ultramassive 4138:Dwarf galaxy 4121:intermediate 4116:grand design 3991: 3987: 3944: 3913: 3874: 3852: 3848: 3823: 3819: 3812:Bibliography 3803:Seigar (2017 3798: 3752:(5). Basel: 3749: 3745: 3735: 3723: 3715:the original 3682: 3676: 3666: 3659:Seigar (2017 3654: 3646:the original 3613: 3607: 3597: 3589:the original 3556: 3550: 3540: 3532:the original 3494:EDP Sciences 3492:. Les Ulis: 3489: 3483: 3473: 3466:Seigar (2017 3461: 3454:Seigar (2017 3449: 3441:the original 3398: 3392: 3382: 3333: 3327: 3317: 3309:the original 3266: 3262: 3252: 3244:the original 3211: 3207: 3182: 3171:. Retrieved 3167:the original 3156: 3146: 3122:EDP Sciences 3120:. Les Ulis: 3117: 3111: 3101: 3094:Seigar (2017 3089: 3067:Seigar (2017 3062: 3055:Сурдин (2017 3050: 3042:the original 3009: 3003: 2993: 2952: 2946: 2936: 2928:the original 2885: 2881: 2857:. Retrieved 2853:the original 2846: 2841:Hodge, P.W. 2784: 2778: 2768: 2719: 2713: 2703: 2696:Seigar (2017 2691: 2642: 2636: 2626: 2618:the original 2575: 2569: 2559: 2510: 2504: 2494: 2487:Seigar (2017 2482: 2474:the original 2431: 2427: 2417: 2382: 2378:Scholarpedia 2376: 2366: 2355:. Retrieved 2351:the original 2346: 2341:Darling, D. 2336: 2324: 2317:Сурдин (2017 2312: 2263: 2257: 2191: 2187: 2177: 2128: 2122: 2063:(5). Basel: 2060: 2056: 2046: 1997: 1991: 1967:. Retrieved 1963:the original 1952: 1943: 1931: 1919: 1882: 1878: 1868: 1845:the original 1812: 1808: 1798: 1790:the original 1755: 1751: 1741: 1733:the original 1700: 1696: 1686: 1674: 1663:. Retrieved 1659:the original 1654: 1645: 1634:. Retrieved 1630:the original 1625: 1601: 1589: 1577: 1565: 1558:Seigar (2017 1553: 1545:the original 1507:EDP Sciences 1505:. Les Ulis: 1502: 1496: 1472:. Retrieved 1468:the original 1463: 1437:. Retrieved 1433:the original 1424: 1421:"Spiral Arm" 1381: 1370:. Retrieved 1366:the original 1361: 1356:Засов, А.В. 1340:the original 1335: 1332:"ГАЛА́КТИКА" 1310: 1298: 1291: 1281:stimulating 1259: 1248: 1219: 1169: 1150: 1134: 1104:generates a 1091: 1065: 1050: 1018: 999: 975: 947: 927: 914:ram pressure 895: 891:colour index 888: 884: 862: 846: 840: 514: 491: 420: 366: 355: 283: 273:produced by 248: 216:H II regions 197: 160: 136: 106: 95: 63: 48: 31: 30: 4611:void galaxy 4574:cannibalism 4559:Interacting 4515:Interaction 4501:Blue Nugget 4491:Dark galaxy 4396:Lyman-break 4288:Protogalaxy 4254:Disc galaxy 3685:. Bristol: 3620:: 129–139. 3616:. Bristol: 3559:. Bristol: 3405:: 512–545. 3273:: 178–182. 3269:(2). N.Y.: 3218:: 667–724. 2787:(1). Oxf.: 2722:(1). Oxf.: 2513:(2). Oxf.: 2385:(8): 2411. 2270:: 390–409. 2266:(1). Oxf.: 2198:: 189–193. 2135:: 685–692. 2131:(1). Oxf.: 2000:(2). Oxf.: 1819:: 686–687. 1762:: 140–143. 1231:phase space 1161:tidal force 1080:SSPSF model 1074:SSPSF model 1067:Tidal tails 1033:Sagittarius 521:Archimedean 255:ultraviolet 235:ultraviolet 149:, which in 32:Spiral arms 4846:Categories 4651:Polar-ring 4496:Red nugget 4438:faint blue 4298:Spiral arm 4153:spheroidal 4143:elliptical 4126:Magellanic 4111:flocculent 4079:Lenticular 4066:Morphology 3884:Heidelberg 3763:1511.06365 3728:Buta (2011 3503:1910.06653 3347:1801.07476 3280:1809.08048 3173:2023-01-17 2966:1602.02183 2899:1810.08819 2859:2022-01-19 2798:2205.08733 2733:1706.09904 2656:1812.06010 2524:1707.04001 2445:1509.04522 2357:2022-06-07 2329:Buta (2011 2277:2001.09110 2142:2110.02149 2074:1511.06365 1969:2023-01-01 1936:Buta (2011 1924:Buta (2011 1769:1910.01139 1679:Buta (2011 1665:2023-01-03 1636:2023-01-01 1606:Buta (2011 1516:1908.04246 1474:2023-01-24 1439:2022-12-03 1372:2022-12-03 1315:References 1287:Ernst Opik 1255:Lord Rosse 1165:satellites 1146:dust lanes 1002:our galaxy 938:microgauss 934:microgauss 920:galaxies. 918:lenticular 786:NGC 2532 ( 733:NGC 2575 ( 680:NGC 4195 ( 627:NGC 2649 ( 574:NGC 4977 ( 352:Morphology 267:radio band 113:galaxy M51 109:Lord Rosse 82:luminosity 4857:Astronomy 4586:Satellite 4581:Jellyfish 4569:collision 4506:Dead disk 4423:Starburst 4338:Markarian 4210:Structure 4177:Irregular 4148:irregular 4001:1102.0550 3968:994877317 3919:Princeton 3820:Галактики 3790:2075-4434 3711:0004-637X 3642:0004-637X 3585:0004-637X 3528:0004-6361 3437:0004-637X 3412:0812.3647 3374:1538-4357 3305:2397-3366 3240:0066-4146 3138:0004-6361 3124:: 55–67. 3038:0004-6256 2985:1538-3881 2924:1674-4527 2825:0035-8711 2760:0035-8711 2683:0004-637X 2614:0004-637X 2551:0035-8711 2470:0935-4956 2409:1941-6016 2304:0035-8711 2230:0004-640X 2169:0035-8711 2101:2075-4434 2038:0035-8711 2011:1309.4308 1911:1225-4614 1841:0066-4146 1729:1225-4614 1541:0004-6361 1283:starburst 1271:Frank Shu 1163:of their 1106:shockwave 1094:starburst 1041:Orion arm 950:correlate 928:Stronger 813:∘ 794:μ 760:∘ 741:μ 707:∘ 688:μ 654:∘ 635:μ 601:∘ 582:μ 551:μ 529:correlate 500:μ 477:μ 241:) and z ( 229:in three 176:≈ 163:redshifts 74:starburst 72:, active 4818:Category 4707:See also 4631:Galaxies 4358:X-shaped 4189:Peculiar 4131:unbarred 4089:unbarred 4058:Galaxies 3892:Springer 3824:Galaxies 3746:Galaxies 2436:Springer 2434:. N.Y.: 2196:Springer 2057:Galaxies 1758:. N.Y.: 1655:Астронет 1626:Астронет 1464:Астронет 1362:Астронет 1227:manifold 1111:infrared 1059:and the 876:NGC 4921 850:NGC 4622 838:NGC 4622 422:defined. 414:NGC 2841 344:NGC 3367 314:NGC 4314 290:Hubble's 243:infrared 128:NGC 1300 100:and the 4862:Spirals 4678:Quasars 4646:Nearest 4641:Largest 4542:cluster 4375:Seyfert 3768:Bibcode 3756:: 100. 3691:Bibcode 3622:Bibcode 3565:Bibcode 3563:: 646. 3508:Bibcode 3496:: A44. 3417:Bibcode 3352:Bibcode 3340:: 182. 3285:Bibcode 3220:Bibcode 3163:Caltech 3126:Bibcode 3018:Bibcode 2904:Bibcode 2892:: 146. 2803:Bibcode 2738:Bibcode 2661:Bibcode 2649:: 194. 2594:Bibcode 2529:Bibcode 2450:Bibcode 2387:Bibcode 2282:Bibcode 2210:Bibcode 2147:Bibcode 2079:Bibcode 2067:: 100. 2016:Bibcode 1959:Caltech 1891:Bibcode 1821:Bibcode 1774:Bibcode 1709:Bibcode 1521:Bibcode 1509:: A94. 1037:parsecs 1025:Perseus 239:visible 147:spirals 111:in the 4830:Portal 4661:Spiral 4564:merger 4343:Quasar 4328:Blazar 4266:corona 4182:barred 4158:spiral 4106:barred 4101:anemic 4096:Spiral 4084:barred 4016:  3966:  3956:  3929:  3898:  3880:Berlin 3859:  3834:  3828:Moscow 3788:  3709:  3640:  3583:  3526:  3435:  3372:  3303:  3238:  3136:  3036:  2983:  2959:: 55. 2922:  2823:  2758:  2681:  2612:  2549:  2468:  2407:  2302:  2228:  2167:  2099:  2036:  1909:  1839:  1727:  1539:  1275:theory 841:pitch? 533:bulges 237:), r ( 165:up to 40:spiral 4698:Voids 4623:Lists 4601:Walls 4537:group 4522:Field 4416:ELIRG 4411:HLIRG 4406:ULIRG 4363:DRAGN 4353:Radio 4333:LINER 4227:Bulge 4199:Polar 3996:arXiv 3851:[ 3822:[ 3758:arXiv 3689:: 3. 3498:arXiv 3407:arXiv 3342:arXiv 3275:arXiv 3016:: 5. 2961:arXiv 2894:arXiv 2793:arXiv 2728:arXiv 2651:arXiv 2584:arXiv 2519:arXiv 2440:arXiv 2438:: 4. 2272:arXiv 2200:arXiv 2137:arXiv 2069:arXiv 2006:arXiv 1887:Seoul 1885:(3). 1764:arXiv 1705:Seoul 1703:(3). 1511:arXiv 1302:Debra 1029:Norma 958:bulge 878:- an 346:(SBc) 331:(SBb) 316:(SBa) 143:discs 91:bulge 4656:Ring 4261:Halo 4249:Disc 4194:Ring 4074:Disc 4014:ISBN 3964:OCLC 3954:ISBN 3927:ISBN 3896:ISBN 3888:N.Y. 3857:ISBN 3832:ISBN 3786:ISSN 3754:MDPI 3707:ISSN 3638:ISSN 3581:ISSN 3524:ISSN 3433:ISSN 3370:ISSN 3301:ISSN 3236:ISSN 3134:ISSN 3034:ISSN 2981:ISSN 2920:ISSN 2821:ISSN 2756:ISSN 2679:ISSN 2610:ISSN 2547:ISSN 2466:ISSN 2405:ISSN 2300:ISSN 2226:ISSN 2165:ISSN 2097:ISSN 2065:MDPI 2034:ISSN 1907:ISSN 1837:ISSN 1725:ISSN 1537:ISSN 1304:and 1269:and 1157:bars 1031:and 1023:and 541:SDSS 438:M101 399:M101 301:SDSS 227:SDSS 204:dust 202:and 20:The 4433:pea 4222:Bar 4006:doi 3776:doi 3699:doi 3683:314 3630:doi 3614:223 3573:doi 3557:140 3516:doi 3490:636 3425:doi 3399:694 3360:doi 3334:854 3293:doi 3228:doi 3118:287 3026:doi 3010:148 2971:doi 2953:151 2912:doi 2811:doi 2785:518 2746:doi 2720:471 2669:doi 2643:871 2602:doi 2576:645 2537:doi 2511:471 2458:doi 2395:doi 2290:doi 2264:493 2218:doi 2192:301 2155:doi 2129:509 2087:doi 2024:doi 1998:436 1899:doi 1829:doi 1782:doi 1756:353 1717:doi 1529:doi 1503:631 1229:in 1012:or 902:gas 523:or 453:M33 384:M81 329:M95 200:gas 4848:: 4170:cD 4012:. 4004:. 3990:. 3986:. 3962:. 3952:. 3925:. 3921:: 3917:. 3894:. 3890:: 3886:; 3882:; 3784:. 3774:. 3766:. 3750:10 3748:. 3744:. 3705:. 3697:. 3681:. 3675:. 3636:. 3628:. 3612:. 3606:. 3579:. 3571:. 3555:. 3549:. 3522:. 3514:. 3506:. 3488:. 3482:. 3431:. 3423:. 3415:. 3397:. 3391:. 3368:. 3358:. 3350:. 3332:. 3326:. 3299:. 3291:. 3283:. 3265:. 3261:. 3234:. 3226:. 3212:54 3210:. 3206:. 3194:^ 3161:. 3155:. 3132:. 3116:. 3110:. 3074:^ 3032:. 3024:. 3008:. 3002:. 2979:. 2969:. 2951:. 2945:. 2918:. 2910:. 2902:. 2886:18 2884:. 2880:. 2868:^ 2845:. 2833:^ 2819:. 2809:. 2801:. 2783:. 2777:. 2754:. 2744:. 2736:. 2718:. 2712:. 2677:. 2667:. 2659:. 2641:. 2635:. 2608:. 2600:. 2592:. 2574:. 2568:. 2545:. 2535:. 2527:. 2509:. 2503:. 2464:. 2456:. 2448:. 2432:24 2430:. 2426:. 2403:. 2393:. 2381:. 2375:. 2345:. 2298:. 2288:. 2280:. 2262:. 2256:. 2238:^ 2224:. 2216:. 2208:. 2190:. 2186:. 2163:. 2153:. 2145:. 2127:. 2121:. 2109:^ 2095:. 2085:. 2077:. 2061:10 2059:. 2055:. 2032:. 2022:. 2014:. 1996:. 1990:. 1978:^ 1957:. 1951:. 1905:. 1897:. 1883:46 1881:. 1877:. 1853:^ 1835:. 1827:. 1813:54 1811:. 1807:. 1780:. 1772:. 1754:. 1750:. 1723:. 1715:. 1701:46 1699:. 1695:. 1653:. 1624:. 1613:^ 1535:. 1527:. 1519:. 1501:. 1495:. 1483:^ 1462:. 1448:^ 1427:. 1423:. 1412:^ 1393:^ 1360:. 1348:^ 1334:. 1322:^ 1167:. 1113:. 1016:. 852:. 800:45 747:29 694:25 641:12 214:, 206:, 61:. 4050:e 4043:t 4036:v 4022:. 4008:: 3998:: 3992:6 3970:. 3935:. 3904:. 3865:. 3840:. 3792:. 3778:: 3770:: 3760:: 3701:: 3693:: 3632:: 3624:: 3575:: 3567:: 3518:: 3510:: 3500:: 3427:: 3419:: 3409:: 3376:. 3362:: 3354:: 3344:: 3295:: 3287:: 3277:: 3267:3 3230:: 3222:: 3176:. 3140:. 3128:: 3028:: 3020:: 2987:. 2973:: 2963:: 2914:: 2906:: 2896:: 2862:. 2827:. 2813:: 2805:: 2795:: 2762:. 2748:: 2740:: 2730:: 2685:. 2671:: 2663:: 2653:: 2604:: 2596:: 2586:: 2553:. 2539:: 2531:: 2521:: 2460:: 2452:: 2442:: 2411:. 2397:: 2389:: 2383:2 2360:. 2306:. 2292:: 2284:: 2274:: 2232:. 2220:: 2212:: 2202:: 2171:. 2157:: 2149:: 2139:: 2103:. 2089:: 2081:: 2071:: 2040:. 2026:: 2018:: 2008:: 1972:. 1913:. 1901:: 1893:: 1831:: 1823:: 1784:: 1776:: 1766:: 1719:: 1711:: 1668:. 1639:. 1531:: 1523:: 1513:: 1477:. 1442:. 1375:. 827:) 809:1 804:, 797:= 774:) 756:7 751:, 744:= 721:) 703:7 698:, 691:= 668:) 650:6 645:, 638:= 615:) 597:3 592:, 588:7 585:= 245:) 179:1 173:z

Index


Whirlpool Galaxy
spiral galaxies
spiral
galactic disc
Grand design spiral galaxies
flocculent galaxies
electromagnetic spectrum
interstellar gas and dust
star clusters
starburst
magnetic field
luminosity
supermassive black hole
bulge
stochastic self-propagating star formation model
density wave theory
Lord Rosse
galaxy M51

NGC 1300
pronounced bar
spiral galaxies
discs
spirals
unbarred galaxies
barred galaxies
redshifts
age of the Universe
gas

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.