Knowledge

Macromolecular assembly

Source đź“ť

509: 258: 36: 533: 212:, a term especially applied in non-biologic contexts. A wide variety of physical/biophysical, chemical/biochemical, and computational methods exist for the study of MA; given the scale (molecular dimensions) of MAs, efforts to elaborate their composition and structure and discern mechanisms underlying their functions are at the forefront of modern structure science. 93: 484:
The images above give an indication of the compositions and scale (dimensions) associated with MAs, though these just begin to touch on the complexity of the structures; in principle, each living cell is composed of MAs, but is itself an MA as well. In the examples and other such complexes and
1163:
bilayers. The hydrophobic hydrocarbon region of the lipid is ~30 Ă… (3.0 nm) as determined by a combination of neutron and X-ray scattering methods; likewise, the polar/interface region (glyceryl, phosphate, and headgroup moieties, with their combined hydration) is ~15 Ă… (1.5 nm)
444:, intra- and inter-cellular exchange of material between compartments, etc.). In each of these roles, complex mixtures of become organized in specific structural and spatial ways. While the individual macromolecules are held together by a combination of covalent bonds and 275:
species. Bottom to top: dark blue, repeating FliM and FliN, motor/switch proteins; red, FliG motor/switch proteins; yellow, FliF transmembrane coupling proteins; light blue, L and P ring proteins; and (at top), dark blue, the cap, hook-filament junction, hook, and rod
243:
and other factors involved in light blue, the growing polypeptide chain as a black thread growing vertically from the curve of the mRNA. At end of the animation, the polypeptide produced is extruded through a light blue SecY pore into the gray interior of the
622:
The study of MA structure and function is challenging, in particular because of their megadalton size, but also because of their complex compositions and varying dynamic natures. Most have had standard chemical and biochemical methods applied (methods of
1328:
Snustad DP (August 1968). "Dominance interactions in Escherichia coli cells mixedly infected with bacteriophage T4D wild-type and amber mutants and their possible implications as to type of gene-product function: catalytic vs. stoichiometric".
675:
molecule and >2000 coat protein molecules). The crystallization and structure solution for the ribosome, MW ~ 2.5 MDa, an example of part of the protein synthetic 'machinery' of living cells, was object of the 2009
614:. Phage T4 encoded proteins that determine virion structure include major structural components, minor structural components and non-structural proteins that catalyze specific steps in the morphogenesis sequence 609:
interact with each other in a characteristic sequence. Maintaining an appropriate balance in the amounts of each of these proteins produced during viral infection appears to be critical for normal phage T4
431:
Complexes of macromolecules occur ubiquitously in nature, where they are involved in the construction of viruses and all living cells. In addition, they play fundamental roles in all basic life processes
161:. They are generally of more than one of these types, and the mixtures are defined spatially (i.e., with regard to their chemical shape), and with regard to their underlying chemical composition and 708:
each have areas that have developed to elaborate and extend the principles first demonstrated in biologic MAs. Of particular interest in these areas has been elaborating the fundamental processes of
200:), and can be in either non-repeating structures (e.g., as in the ribosome (image) and cell membrane architectures), or in repeating linear, circular, spiral, or other patterns (e.g., as in 216: 1905: 493:) at some level of precision. As alluded to in the image legends, when properly prepared, MAs or component subcomplexes of MAs can often be crystallized for study by 1706:
Perino A, Ghigo A, Damilano F, Hirsch E (August 2006). "Identification of the macromolecular complex responsible for PI3Kgamma-dependent regulation of cAMP levels".
1546:"Förster resonance energy transfer - an approach to visualize the spatiotemporal regulation of macromolecular complex formation and compartmentalized cell signaling" 1234:
Hydrocarbon dimensions vary with temperature, mechanical stress, PL structure and coformulants, etc. by single- to low double-digit percentages of these values.
540:, with 30 copies of each of its coat proteins, the small coat protein (S, yellow) and the large coat protein (L, green), which, along with 2 molecules of 405: 1180:"Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure" 1933: 424:
into the much larger structures of biomolecular complexes obtained by lower resolution techniques like electron microscopy, electron tomography, and
1842:
Barhoum S, Palit S, Yethiraj A (May 2016). "Diffusion NMR studies of macromolecular complex formation, crowding and confinement in soft materials".
762:
Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (August 2000). "The complete atomic structure of the large ribosomal subunit at 2.4 A resolution".
1051:
Russell RB, Alber F, Aloy P, Davis FP, Korkin D, Pichaud M, et al. (June 2004). "A structural perspective on protein-protein interactions".
489:
in molecular weight (megadaltons, i.e., millions of times the weight of a single, simple atom), though still having measurable component ratios (
558:
were among the first studied MAs; other biologic examples include ribosomes (partial image above), proteasomes, and translation complexes (with
524:). Bilayer/liposome dimensions (obscured in graphic): hydrophobic and polar regions, each ~30 Å (3.0 nm) "thick"—the polar from ~15 Å (1.5 nm) 816: 109:. Of the 31 component proteins, 27 are shown (blue), along with its 2 RNA strands (orange/yellow). Scale: assembly is approx. 24 nm across. 739:: the broadest definition of "organelle" includes not only membrane bound cellular structures, but also very large biomolecular complexes. 667:
in Chemistry for his work on structural elucidation using electron microscopy, in particular for protein-nucleic acid MAs including the
578:
are also generally considered MAs, though the requirement for structural and spatial definition is modified to accommodate the inherent
177:). Assemblies of these can likewise be biologic or non-biologic, though the MA term is more commonly applied in biology, and the term 1875:
Nobel Prizes in Chemistry (2012), The Nobel Prize in Chemistry 2009, Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonath,
1799:"Putting the pieces together: integrative modeling platform software for structure determination of macromolecular assemblies" 1926: 1688: 1615: 1596: 1429:
Perrakis A, Musacchio A, Cusack S, Petosa C (August 2011). "Investigating a macromolecular complex: the toolkit of methods".
742: 721: 79: 57: 50: 1919: 652: 1168:, for a total thickness about equal to the hydrocarbon region. See S.H. White references, preceding and following. 1086:
van Dijk AD, Boelens R, Bonvin AM (January 2005). "Data-driven docking for the study of biomolecular complexes".
17: 1876: 648: 1883: 1634:
Valle M (May 2011). "Almost lost in translation. Cryo-EM of a dynamic macromolecular complex: the ribosome".
457: 328: 165:. Macromolecules are found in living and nonliving things, and are composed of many hundreds or thousands of 1797:
Russel D, Lasker K, Webb B, Velázquez-Muriel J, Tjioe E, Schneidman-Duhovny D, et al. (January 2012).
644: 425: 332: 1906:
Dynamics of Macromolecular Assembly Section | National Institute of Biomedical Imaging and Bioengineering
420:. The atomic structure models obtained by X-ray crystallography and biomolecular NMR spectroscopy can be 2028: 473: 193: 1897:
Beck Group (2019), Structure and function of large macromolecular assemblies (Beck group home page),
541: 449: 841:
Osborne AR, Rapoport TA, van den Berg B (2005). "Protein translocation by the Sec61/SecY channel".
784: 701: 681: 656: 413: 409: 182: 44: 820: 1942: 494: 209: 178: 1746:"Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach" 231:
molecules into proteins. The animation presents the elongation and membrane targeting stages of
1744:
Lasker K, Förster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, et al. (January 2012).
779: 421: 232: 61: 1671:
Monie TP (2017). "The Canonical Inflammasome: A Macromolecular Complex Driving Inflammation".
2033: 854: 640: 433: 401: 245: 224: 102: 1364: 508: 1757: 1191: 771: 731: 726: 668: 624: 599: 453: 947: 448:
molecular non-covalent forces (i.e., associations between parts within each molecule, via
257: 8: 1160: 537: 465: 441: 417: 320: 1761: 1195: 775: 1825: 1798: 1780: 1745: 1659: 1570: 1545: 1527: 1502: 1484: 1459: 1270: 1245: 1212: 1179: 1121: 911: 886: 579: 240: 162: 1203: 1978: 1855: 1830: 1785: 1723: 1694: 1684: 1651: 1611: 1592: 1575: 1532: 1489: 1446: 1417: 1346: 1342: 1310: 1306: 1275: 1217: 1113: 1099: 1068: 1033: 992: 951: 916: 858: 797: 709: 379: 371: 114: 1663: 1503:"Studying macromolecular complex stoichiometries by peptide-based mass spectrometry" 1125: 1986: 1847: 1820: 1810: 1775: 1765: 1715: 1676: 1643: 1565: 1557: 1522: 1514: 1479: 1471: 1438: 1409: 1338: 1302: 1293:
Floor E (February 1970). "Interaction of morphogenetic genes of bacteriophage T4".
1265: 1257: 1207: 1199: 1103: 1095: 1060: 1023: 982: 943: 906: 898: 850: 789: 685: 1139: 1982: 1882:
Nobel Prizes in Chemistry (2012), The Nobel Prize in Chemistry 1982, Aaron Klug,
1815: 1561: 793: 632: 555: 490: 316: 201: 1851: 1680: 1544:
Sinha C, Arora K, Moon CS, Yarlagadda S, Woodrooffe K, Naren AP (October 2014).
1990: 1750:
Proceedings of the National Academy of Sciences of the United States of America
1261: 987: 970: 705: 628: 186: 154: 150: 1898: 1647: 1475: 1442: 1064: 1028: 1011: 2022: 2002: 1904:
DMA Group (2019), Dynamics of macromolecular assembly (DMA Group home page),
689: 635:
characterization, etc.). In addition, their methods of study include modern
611: 587: 547:(RNA-1 and RNA-2, not visible) constitute the virion. The assembly is highly 486: 461: 437: 348: 197: 170: 158: 138: 106: 1770: 1859: 1834: 1789: 1727: 1698: 1655: 1579: 1536: 1518: 1493: 1450: 1421: 1279: 1117: 1072: 1037: 996: 955: 920: 862: 801: 567: 563: 498: 352: 312:). The interactions between these biomolecules are non-covalent. Examples: 305: 190: 130: 1350: 1314: 1221: 1012:"Large macromolecular complexes in the Protein Data Bank: a status report" 639:
approaches, computational and atomic-resolution structural methods (e.g.,
571: 2006: 1966: 1413: 1400:
Williamson JR (August 2008). "Cooperativity in macromolecular assembly".
927: 902: 677: 664: 575: 517: 513: 393: 367: 261: 146: 92: 1899:
Beck Group - Structure and function of large molecular assemblies - EMBL
878: 1970: 1719: 1108: 887:"POPSCOMP: an automated interaction analysis of biomolecular complexes" 660: 502: 386: 324: 289: 98: 532: 215: 27:
Large chemical complexes composed of polymers and other macromolecules
1994: 1962: 1954: 736: 636: 574:
that allow material passage between cells and cellular compartments.
566:
components), procaryotic and eukaryotic transcription complexes, and
268: 205: 134: 1911: 1974: 548: 363: 356: 265: 239:
subunits in green and yellow, tRNAs in dark blue, proteins such as
236: 220: 174: 142: 962: 712:, and extending known machine designs to new types and processes. 173:; they are often characterized by repeating units (i.e., they are 559: 520:
lipid tails; black and white spheres represent PL polar regions (
497:
and related methods, or studied by other physical methods (e.g.,
464:), by definition MAs themselves are held together solely via the 293: 1796: 105:
model of 29 of the 33 native components, from the laboratory of
700:
Finally, biology is not the sole domain of MAs. The fields of
336: 208:, image). The process by which MAs are formed has been termed 96:
Structure of nucleoprotein MA: The 50S ribosomal subunit from
1958: 1464:
Acta Crystallographica. Section D, Biological Crystallography
1428: 672: 602: 583: 375: 344: 340: 309: 126: 934:
Moore PB (2012). "How should we think about the ribosome?".
400:
The biomacromolecular complexes are studied structurally by
189:). MAs of macromolecules are held in their defined forms by 1743: 840: 606: 536:
A graphical representation of the structure of a viral MA,
228: 166: 1675:. Subcellular Biochemistry. Vol. 83. pp. 43–73. 1705: 544: 301: 297: 181:
is more often applied in non-biologic contexts (e.g., in
1543: 1460:"So how do you know you have a macromolecular complex?" 1550:
Biochimica et Biophysica Acta (BBA) - General Subjects
1085: 1050: 1841: 1500: 761: 1844:
Progress in Nuclear Magnetic Resonance Spectroscopy
884: 551:, and is ~280 Ă… (28 nm) across at its widest point. 1605: 1586: 605:, the morphogenetic proteins encoded by the phage 288:, is any biological complex made of more than one 512:Cross-sections of phospholipid (PLs) relevant to 2020: 125:) refers to massive chemical structures such as 875:Legend, cover art, J. Bacteriol., October 2006. 843:Annual Review of Cell and Developmental Biology 1927: 1501:Wohlgemuth I, Lenz C, Urlaub H (March 2015). 1003: 1626: 695: 378:. Such complexes in cell nucleus are called 1610:(Fourth ed.). New York: W.H. Freeman. 1321: 1286: 1177: 1009: 834: 485:assemblies, MAs are each often millions of 1934: 1920: 1399: 1824: 1814: 1779: 1769: 1569: 1526: 1483: 1269: 1211: 1107: 1027: 986: 910: 783: 479: 80:Learn how and when to remove this message 1591:(5th ed.). New York: W.H. Freeman. 855:10.1146/annurev.cellbio.21.012704.133214 531: 507: 256: 214: 91: 43:This article includes a list of general 1606:Lehninger AL, Cox M, Nelson DL (2005). 1457: 1327: 885:Kleinjung J, Fraternali F (July 2005). 308:) or large non-polymeric biomolecules ( 271:"motor" and partial rod structure of a 252: 235:, showing the mRNA as a black arc, the 14: 2021: 1587:Berg JM, Tymoczko J, Stryer L (2002). 968: 1941: 1915: 1670: 1633: 1292: 1243: 1178:Wiener MC, White SH (February 1992). 1053:Current Opinion in Structural Biology 948:10.1146/annurev-biophys-050511-102314 933: 227:the information content contained in 1608:Lehninger principles of biochemistry 971:"The Complex Macromolecular Complex" 743:Multi-state modeling of biomolecules 722:Multi-state modeling of biomolecules 671:(a structure containing a 6400 base 617: 145:, etc. that are complex mixtures of 29: 1365:"The Nobel Prize in Chemistry 2009" 1142:. Blanco.biomol.uci.edu. 2009-11-10 1140:"Structure of Fluid Lipid Bilayers" 814: 24: 1736: 1392: 1387: 755: 49:it lacks sufficient corresponding 25: 2045: 1891: 1884:The Nobel Prize in Chemistry 1982 1877:The Nobel Prize in Chemistry 2009 1010:Dutta S, Berman HM (March 2005). 593: 1868: 1708:Biochemical Society Transactions 1673:Macromolecular Protein Complexes 1246:"Essay on Biomembrane Structure" 1100:10.1111/j.1742-4658.2004.04473.x 653:transmission electron microscopy 651:(SANS), force spectroscopy, and 34: 1357: 1250:The Journal of Membrane Biology 1237: 1228: 1171: 1153: 1132: 1079: 897:(Web Server issue): W342–W346. 1371:. Nobel Prize Outreach AB 2021 1044: 975:Trends in Biochemical Sciences 869: 808: 649:small-angle neutron scattering 13: 1: 1431:Journal of Structural Biology 1204:10.1016/S0006-3495(92)81849-0 1159:Experimental system, dioleoyl 748: 663:was recognized with the 1982 516:MAs. Yellow-orange indicates 329:DNA polymerase III holoenzyme 1816:10.1371/journal.pbio.1001244 1562:10.1016/j.bbagen.2014.07.015 1343:10.1016/0042-6822(68)90285-7 1307:10.1016/0022-2836(70)90303-7 1295:Journal of Molecular Biology 794:10.1126/science.289.5481.905 645:small-angle X-ray scattering 426:small-angle X-ray scattering 406:NMR spectroscopy of proteins 333:RNA polymerase II holoenzyme 264:model of the structure of a 7: 1852:10.1016/j.pnmrs.2016.01.004 1681:10.1007/978-3-319-46503-6_2 1636:European Biophysics Journal 1458:Dafforn TR (January 2007). 936:Annual Review of Biophysics 715: 474:intermolecular interactions 468:forces, except now exerted 194:intermolecular interactions 10: 2050: 1262:10.1007/s00232-019-00061-w 988:10.1016/j.tibs.2015.11.006 458:dipole–dipole interactions 450:charge-charge interactions 1949: 1648:10.1007/s00249-011-0683-6 1627:Reviews on particular MAs 1476:10.1107/S0907444906047044 1443:10.1016/j.jsb.2011.05.014 1065:10.1016/j.sbi.2004.04.006 1029:10.1016/j.str.2005.01.008 969:Neuman N (January 2016). 696:Non-biologic counterparts 586:, and of proteins within 392:Protein-lipid complexes: 286:biomacromolecular complex 1908:, accessed 13 June 2011. 1901:, accessed 13 June 2011. 1886:, accessed 13 June 2011. 1879:, accessed 13 June 2011. 702:supramolecular chemistry 682:Venkatraman Ramakrishnan 680:in Chemistry awarded to 657:cryo-electron microscopy 600:bacteriophage (phage) T4 414:single particle analysis 410:cryo-electron microscopy 183:supramolecular chemistry 1771:10.1073/pnas.1120559109 1402:Nature Chemical Biology 598:During assembly of the 495:protein crystallography 385:DNA-protein complexes: 362:RNA-protein complexes: 210:molecular self-assembly 179:supramolecular assembly 119:macromolecular assembly 64:more precise citations. 1519:10.1002/pmic.201400466 891:Nucleic Acids Research 817:"50S Ribosome Subunit" 552: 529: 480:MA scales and examples 277: 249: 233:eukaryotic translation 223:, which catalytically 110: 103:X-ray crystallographic 1244:Gerle C (June 2019). 641:X-ray crystallography 570:and other biological 535: 511: 402:X-ray crystallography 339:, chaperonin complex 321:multienzyme complexes 260: 218: 95: 1999:Biomolecular complex 1414:10.1038/nchembio.102 732:Multiprotein complex 727:Quaternary structure 669:tobacco mosaic virus 625:protein purification 454:van der Waals forces 319:, some of which are 282:biomolecular complex 253:Biomolecular complex 1762:2012PNAS..109.1380L 1196:1992BpJ....61..434W 1184:Biophysical Journal 1161:phosphatidylcholine 776:2000Sci...289..905B 538:cowpea mosaic virus 442:vesicle trafficking 434:protein translation 418:electron tomography 157:or other polymeric 1720:10.1042/BST0340502 903:10.1093/nar/gki369 710:molecular machines 580:molecular dynamics 553: 530: 380:ribonucleoproteins 335:, symmetric viral 278: 250: 111: 2029:Molecular biology 2016: 2015: 1943:Hierarchy of life 1690:978-3-319-46501-2 1617:978-0-7167-4339-2 1598:978-0-7167-4955-4 770:(5481): 905–920. 618:Research into MAs 472:molecules (i.e., 317:Protein complexes 169:held together by 129:and non-biologic 115:molecular biology 90: 89: 82: 16:(Redirected from 2041: 2009: 1936: 1929: 1922: 1913: 1912: 1863: 1838: 1828: 1818: 1793: 1783: 1773: 1756:(5): 1380–1387. 1731: 1702: 1667: 1621: 1602: 1583: 1573: 1540: 1530: 1497: 1487: 1454: 1425: 1381: 1380: 1378: 1376: 1361: 1355: 1354: 1325: 1319: 1318: 1290: 1284: 1283: 1273: 1256:(2–3): 115–130. 1241: 1235: 1232: 1226: 1225: 1215: 1175: 1169: 1157: 1151: 1150: 1148: 1147: 1136: 1130: 1129: 1111: 1088:The FEBS Journal 1083: 1077: 1076: 1048: 1042: 1041: 1031: 1007: 1001: 1000: 990: 966: 960: 959: 931: 925: 924: 914: 882: 876: 873: 867: 866: 838: 832: 831: 829: 828: 819:. Archived from 812: 806: 805: 787: 759: 686:Thomas A. Steitz 556:Virus structures 284:, also called a 85: 78: 74: 71: 65: 60:this article by 51:inline citations 38: 37: 30: 21: 2049: 2048: 2044: 2043: 2042: 2040: 2039: 2038: 2019: 2018: 2017: 2012: 1953: 1945: 1940: 1894: 1889: 1871: 1866: 1846:. 94–95: 1–10. 1809:(1): e1001244. 1739: 1737:Primary sources 1734: 1714:(Pt 4): 502–3. 1691: 1629: 1624: 1618: 1599: 1556:(10): 3067–72. 1513:(5–6): 862–79. 1470:(Pt 1): 17–25. 1395: 1393:General reviews 1390: 1388:Further reading 1385: 1384: 1374: 1372: 1369:The Nobel Prize 1363: 1362: 1358: 1326: 1322: 1291: 1287: 1242: 1238: 1233: 1229: 1176: 1172: 1158: 1154: 1145: 1143: 1138: 1137: 1133: 1084: 1080: 1049: 1045: 1008: 1004: 967: 963: 932: 928: 883: 879: 874: 870: 839: 835: 826: 824: 813: 809: 760: 756: 751: 718: 698: 633:electrochemical 631:, chemical and 620: 596: 491:stoichiometries 482: 412:and successive 255: 206:flagellar motor 202:actin filaments 86: 75: 69: 66: 56:Please help to 55: 39: 35: 28: 23: 22: 18:Biological unit 15: 12: 11: 5: 2047: 2037: 2036: 2031: 2014: 2013: 2011: 2010: 1950: 1947: 1946: 1939: 1938: 1931: 1924: 1916: 1910: 1909: 1902: 1893: 1892:External links 1890: 1888: 1887: 1880: 1872: 1870: 1867: 1865: 1864: 1839: 1794: 1740: 1738: 1735: 1733: 1732: 1703: 1689: 1668: 1630: 1628: 1625: 1623: 1622: 1616: 1603: 1597: 1584: 1541: 1498: 1455: 1426: 1408:(8): 458–465. 1396: 1394: 1391: 1389: 1386: 1383: 1382: 1356: 1320: 1301:(3): 293–306. 1285: 1236: 1227: 1190:(2): 434–447. 1170: 1152: 1131: 1094:(2): 293–312. 1078: 1059:(3): 313–324. 1043: 1022:(3): 381–388. 1002: 961: 926: 877: 868: 833: 807: 785:10.1.1.58.2271 753: 752: 750: 747: 746: 745: 740: 734: 729: 724: 717: 714: 706:nanotechnology 697: 694: 629:centrifugation 619: 616: 595: 594:Virus assembly 592: 588:lipid bilayers 542:positive-sense 481: 478: 462:hydrogen bonds 398: 397: 390: 383: 360: 254: 251: 198:covalent bonds 187:nanotechnology 171:covalent bonds 159:macromolecules 155:polysaccharide 151:polynucleotide 99:H. marismortui 88: 87: 42: 40: 33: 26: 9: 6: 4: 3: 2: 2046: 2035: 2032: 2030: 2027: 2026: 2024: 2008: 2004: 2003:Macromolecule 2000: 1996: 1992: 1988: 1984: 1980: 1976: 1972: 1968: 1964: 1960: 1956: 1952: 1951: 1948: 1944: 1937: 1932: 1930: 1925: 1923: 1918: 1917: 1914: 1907: 1903: 1900: 1896: 1895: 1885: 1881: 1878: 1874: 1873: 1869:Other sources 1861: 1857: 1853: 1849: 1845: 1840: 1836: 1832: 1827: 1822: 1817: 1812: 1808: 1804: 1800: 1795: 1791: 1787: 1782: 1777: 1772: 1767: 1763: 1759: 1755: 1751: 1747: 1742: 1741: 1729: 1725: 1721: 1717: 1713: 1709: 1704: 1700: 1696: 1692: 1686: 1682: 1678: 1674: 1669: 1665: 1661: 1657: 1653: 1649: 1645: 1642:(5): 589–97. 1641: 1637: 1632: 1631: 1619: 1613: 1609: 1604: 1600: 1594: 1590: 1585: 1581: 1577: 1572: 1567: 1563: 1559: 1555: 1551: 1547: 1542: 1538: 1534: 1529: 1524: 1520: 1516: 1512: 1508: 1504: 1499: 1495: 1491: 1486: 1481: 1477: 1473: 1469: 1465: 1461: 1456: 1452: 1448: 1444: 1440: 1437:(2): 106–12. 1436: 1432: 1427: 1423: 1419: 1415: 1411: 1407: 1403: 1398: 1397: 1370: 1366: 1360: 1352: 1348: 1344: 1340: 1337:(4): 550–63. 1336: 1332: 1324: 1316: 1312: 1308: 1304: 1300: 1296: 1289: 1281: 1277: 1272: 1267: 1263: 1259: 1255: 1251: 1247: 1240: 1231: 1223: 1219: 1214: 1209: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1174: 1167: 1162: 1156: 1141: 1135: 1127: 1123: 1119: 1115: 1110: 1105: 1101: 1097: 1093: 1089: 1082: 1074: 1070: 1066: 1062: 1058: 1054: 1047: 1039: 1035: 1030: 1025: 1021: 1017: 1013: 1006: 998: 994: 989: 984: 980: 976: 972: 965: 957: 953: 949: 945: 941: 937: 930: 922: 918: 913: 908: 904: 900: 896: 892: 888: 881: 872: 864: 860: 856: 852: 848: 844: 837: 823:on 2005-11-24 822: 818: 811: 803: 799: 795: 791: 786: 781: 777: 773: 769: 765: 758: 754: 744: 741: 738: 735: 733: 730: 728: 725: 723: 720: 719: 713: 711: 707: 703: 693: 691: 690:Ada E. Yonath 687: 683: 679: 674: 670: 666: 662: 658: 654: 650: 646: 642: 638: 634: 630: 626: 615: 613: 612:morphogenesis 608: 604: 601: 591: 589: 585: 581: 577: 573: 569: 565: 561: 557: 550: 546: 543: 539: 534: 527: 523: 519: 515: 510: 506: 504: 500: 496: 492: 488: 477: 475: 471: 467: 463: 459: 455: 451: 447: 443: 439: 438:cell division 435: 429: 427: 423: 419: 415: 411: 407: 403: 395: 391: 388: 384: 381: 377: 373: 369: 365: 361: 358: 354: 350: 349:photosystem I 346: 342: 338: 334: 330: 326: 322: 318: 315: 314: 313: 311: 307: 303: 299: 295: 291: 287: 283: 274: 270: 267: 263: 259: 247: 242: 238: 234: 230: 226: 222: 219:A eukaryotic 217: 213: 211: 207: 203: 199: 196:(rather than 195: 192: 188: 184: 180: 176: 172: 168: 164: 160: 156: 152: 148: 144: 140: 136: 132: 131:nanoparticles 128: 124: 120: 116: 108: 107:Thomas Steitz 104: 101: 100: 94: 84: 81: 73: 63: 59: 53: 52: 46: 41: 32: 31: 19: 2034:Biochemistry 2005: > 2001: > 1998: 1997: > 1993: > 1989: > 1985: > 1981: > 1979:Organ system 1977: > 1973: > 1969: > 1965: > 1961: > 1957: > 1843: 1806: 1803:PLOS Biology 1802: 1753: 1749: 1711: 1707: 1672: 1639: 1635: 1607: 1589:Biochemistry 1588: 1553: 1549: 1510: 1506: 1467: 1463: 1434: 1430: 1405: 1401: 1373:. Retrieved 1368: 1359: 1334: 1330: 1323: 1298: 1294: 1288: 1253: 1249: 1239: 1230: 1187: 1183: 1173: 1166:on each side 1165: 1155: 1144:. Retrieved 1134: 1091: 1087: 1081: 1056: 1052: 1046: 1019: 1015: 1005: 978: 974: 964: 939: 935: 929: 894: 890: 880: 871: 846: 842: 836: 825:. Retrieved 821:the original 810: 767: 763: 757: 699: 621: 597: 582:of membrane 576:Biomembranes 564:nucleic acid 554: 526:on each side 525: 521: 499:spectroscopy 483: 469: 445: 430: 399: 353:ATP synthase 306:carbohydrate 285: 281: 279: 272: 191:non-covalent 122: 118: 112: 97: 76: 70:October 2019 67: 48: 2007:Biomolecule 1967:Biocoenosis 1109:1874/336958 942:(1): 1–19. 849:: 529–550. 815:McClure W. 678:Nobel Prize 665:Nobel Prize 647:(SAXS) and 518:hydrophobic 514:biomembrane 466:noncovalent 394:lipoprotein 368:spliceosome 147:polypeptide 133:, cellular 117:, the term 62:introducing 2023:Categories 1971:Population 1507:Proteomics 1146:2019-10-09 981:(1): 1–3. 827:2019-10-09 749:References 661:Aaron Klug 503:microscopy 387:nucleosome 325:proteasome 290:biopolymer 273:Salmonella 262:3D printed 241:elongation 135:organelles 45:references 1995:Organelle 1963:Ecosystem 1955:Biosphere 1016:Structure 780:CiteSeerX 737:Organelle 637:proteomic 549:symmetric 276:proteins. 269:flagellum 266:bacterial 225:translate 163:structure 143:ribosomes 139:membranes 1975:Organism 1860:27247282 1835:22272186 1790:22307589 1728:16856844 1699:28271472 1664:26027815 1656:21336521 1580:25086255 1537:25546807 1494:17164522 1451:21620973 1422:18641626 1331:Virology 1280:30877332 1126:20148856 1118:15654870 1073:15193311 1038:15766539 997:26699226 956:22577819 921:15980485 863:16212506 802:10937989 716:See also 460:such as 364:ribosome 357:ferritin 237:ribosome 221:ribosome 204:and the 175:polymers 1826:3260315 1781:3277140 1758:Bibcode 1571:4151567 1528:5024058 1485:2483502 1351:4878023 1315:4907266 1271:6556169 1222:1547331 1213:1260259 1192:Bibcode 912:1160130 772:Bibcode 764:Science 568:nuclear 560:protein 487:daltons 470:between 382:(RNPs). 337:capsids 294:protein 127:viruses 58:improve 1987:Tissue 1858:  1833:  1823:  1788:  1778:  1726:  1697:  1687:  1662:  1654:  1614:  1595:  1578:  1568:  1535:  1525:  1492:  1482:  1449:  1420:  1375:10 May 1349:  1313:  1278:  1268:  1220:  1210:  1124:  1116:  1071:  1036:  995:  954:  919:  909:  861:  800:  782:  688:, and 603:virion 584:lipids 456:, and 422:docked 416:, and 47:, but 1983:Organ 1959:Biome 1660:S2CID 1122:S2CID 673:ssRNA 607:genes 572:pores 446:intra 376:SnRNP 372:vault 345:GroES 341:GroEL 310:lipid 167:atoms 1991:Cell 1856:PMID 1831:PMID 1786:PMID 1724:PMID 1695:PMID 1685:ISBN 1652:PMID 1612:ISBN 1593:ISBN 1576:PMID 1554:1840 1533:PMID 1490:PMID 1447:PMID 1418:PMID 1377:2021 1347:PMID 1311:PMID 1276:PMID 1218:PMID 1114:PMID 1069:PMID 1034:PMID 993:PMID 952:PMID 917:PMID 859:PMID 798:PMID 704:and 655:and 627:and 562:and 522:v.i. 229:mRNA 185:and 141:and 137:and 1848:doi 1821:PMC 1811:doi 1776:PMC 1766:doi 1754:109 1716:doi 1677:doi 1644:doi 1566:PMC 1558:doi 1523:PMC 1515:doi 1480:PMC 1472:doi 1439:doi 1435:175 1410:doi 1339:doi 1303:doi 1266:PMC 1258:doi 1254:252 1208:PMC 1200:doi 1104:hdl 1096:doi 1092:272 1061:doi 1024:doi 983:doi 944:doi 907:PMC 899:doi 851:doi 790:doi 768:289 643:), 545:RNA 505:). 476:). 302:DNA 298:RNA 113:In 2025:: 1854:. 1829:. 1819:. 1807:10 1805:. 1801:. 1784:. 1774:. 1764:. 1752:. 1748:. 1722:. 1712:34 1710:. 1693:. 1683:. 1658:. 1650:. 1640:40 1638:. 1574:. 1564:. 1552:. 1548:. 1531:. 1521:. 1511:15 1509:. 1505:. 1488:. 1478:. 1468:63 1466:. 1462:. 1445:. 1433:. 1416:. 1404:. 1367:. 1345:. 1335:35 1333:. 1309:. 1299:47 1297:. 1274:. 1264:. 1252:. 1248:. 1216:. 1206:. 1198:. 1188:61 1186:. 1182:. 1120:. 1112:. 1102:. 1090:. 1067:. 1057:14 1055:. 1032:. 1020:13 1018:. 1014:. 991:. 979:41 977:. 973:. 950:. 940:41 938:. 915:. 905:. 895:33 893:. 889:. 857:. 847:21 845:. 796:. 788:. 778:. 766:. 692:. 684:, 659:. 590:. 501:, 452:, 440:, 436:, 428:. 408:, 404:, 374:, 370:, 366:, 355:, 351:, 347:, 331:, 327:, 323:: 304:, 300:, 296:, 280:A 246:ER 153:, 149:, 123:MA 1935:e 1928:t 1921:v 1862:. 1850:: 1837:. 1813:: 1792:. 1768:: 1760:: 1730:. 1718:: 1701:. 1679:: 1666:. 1646:: 1620:. 1601:. 1582:. 1560:: 1539:. 1517:: 1496:. 1474:: 1453:. 1441:: 1424:. 1412:: 1406:4 1379:. 1353:. 1341:: 1317:. 1305:: 1282:. 1260:: 1224:. 1202:: 1194:: 1149:. 1128:. 1106:: 1098:: 1075:. 1063:: 1040:. 1026:: 999:. 985:: 958:. 946:: 923:. 901:: 865:. 853:: 830:. 804:. 792:: 774:: 528:. 432:( 396:. 389:. 359:. 343:- 292:( 248:. 121:( 83:) 77:( 72:) 68:( 54:. 20:)

Index

Biological unit
references
inline citations
improve
introducing
Learn how and when to remove this message

H. marismortui
X-ray crystallographic
Thomas Steitz
molecular biology
viruses
nanoparticles
organelles
membranes
ribosomes
polypeptide
polynucleotide
polysaccharide
macromolecules
structure
atoms
covalent bonds
polymers
supramolecular assembly
supramolecular chemistry
nanotechnology
non-covalent
intermolecular interactions
covalent bonds

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑