Knowledge

Light curve

Source ๐Ÿ“

205: 355: 27: 143: 279:, since the apparent angular size of the object is smaller than one pixel in the detector. Thus, astronomers measure the amount of light produced by an object as a function of time (the light curve). The time separation of peaks in the light curve gives an estimate of the rotational period of the object. The difference between the maximum and minimum brightnesses (the 165:
of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their spectral properties, the amplitudes, periods, and regularity of their brightness changes are still important factors. Some types
426:
passing in front of the star that it is orbiting. When an exoplanet passes in front of its star, light from that star is temporarily blocked, resulting in a dip in the star's light curve. These dips are periodic, as planets periodically orbit a star. Many exoplanets have been discovered via this
283:
of the light curve) can be due to the shape of the object, or to bright and dark areas on its surface. For example, an asymmetrical asteroid's light curve generally has more pronounced peaks, while a more spherical object's light curve will be flatter. This allows astronomers to infer information
232:
have less sharp maxima. Light curves are helpful for classification of faint supernovae and for the determination of sub-types. For example, the type II-P (for plateau) have similar spectra to the type II-L (linear) but are distinguished by a light curve where the decline flattens out for several
181:
The shapes of variable star light curves give valuable information about the underlying physical processes producing the brightness changes. For eclipsing variables, the shape of the light curve indicates the degree of totality, the relative sizes of the stars, and their relative surface
301:(LCDB) of the Collaborative Asteroid Lightcurve Link (CALL) uses a numeric code to assess the quality of a period solution for minor planet light curves (it does not necessarily assess the actual underlying data). Its quality code parameter 366:
light curve is often characterised as binary, where the light from the star is terminated instantaneously, remains constant for the duration, and is reinstated instantaneously. The duration is equivalent to the length of a
767:
Dave, Herald; Derek, Breit; David, Dunham; Eric, Frappa; Dave, Gault; Tony, George; Tsutomu, Hayamizu; Brian, Loader; Jan, Manek (2016). "VizieR Online Data Catalog: Occultation lights curves (Herald+ 2016)".
469:, but allows the detection and analysis of otherwise-invisible stellar and planetary mass objects. The properties of these objects can be inferred from the shape of the lensing light curve. For example, 190:
of the two stars. For pulsating stars, the amplitude or period of the pulsations can be related to the luminosity of the star, and the light curve shape can be an indicator of the pulsation mode.
128:
events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it.
836:
Roettenbacher, Rachael M.; Monnier, John D.; Harmon, Robert O.; Barclay, Thomas; Still, Martin (2013). "Imaging Starspot Evolution on Kepler Target KIC 5110407 Using Light-Curve Inversion".
716:
Sicardy, B.; Brahic, A.; Ferrari, C.; Gautiert, D.; Lecacheux, J.; Lellouch, E.; Reques, F.; Arlot, J. E.; Colas, F. (1990-01-25). "Probing Titan's atmosphere by stellar occultation".
461:
Microlensing is a process where relatively small and low-mass astronomical objects cause a brief small increase in the brightness of a more distant object. This is caused by the small
439:
Light curve inversion is a mathematical technique used to model the surfaces of rotating objects from their brightness variations. This can be used to effectively image
889:
Haugan, S. V. H. (1996). "Separating Intrinsic and Microlensing Variability Using Parallax Measurements". In Kochanek, C.S.; Hewitt, Jacqueline (eds.).
220:
can be indicative of the type of supernova. Although supernova types are defined on the basis of their spectra, each has typical light curve shapes.
98: 358:
Light curve of the asteroid 1247 Dysona occulting 4UCAC 174-171272, showing instantaneous disappearance and reappearance. Duration is 6.48 seconds.
498:
Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007โ€“2013)".
893:. Symposium of the International Astronomical Union. Vol. 173. Melbourne; Australia: Kluwer Academic Publishers. p. 277. 690: 340:
A trailing plus sign (+) or minus sign (โˆ’) is also used to indicate a slightly better or worse quality than the unsigned value.
971: 170:
have extremely regular light curves with exactly the same period, amplitude, and shape in each cycle. Others such as
35: 19:
This article is about astronomical graphs of brightness variations. For photosynthetic response graphs, see
55: 976: 456: 349: 121: 938: 928: 404: 113: 183: 966: 566:
Kron, Gerald E. (1952). "A Photoelectric Study of the Dwarf M Eclipsing Variable YY Geminorum".
642: 174:
have somewhat less regular light curves with large amplitudes of several magnitudes, while the
950: 324:= 2 โ†’ Result based on less than full coverage. Period may be wrong by 30 percent or ambiguous. 944: 67: 389:
when the occulted body is large, e.g. a star like Antares, then the transitions are gradual.
904: 855: 808: 777: 725: 669: 660:
Harris, A. W.; Warner, B. D.; Pravec, P. (2016). "Asteroid Lightcurve Derived Data V16.0".
614: 575: 538: 507: 428: 363: 187: 175: 20: 204: 8: 908: 859: 812: 781: 729: 673: 618: 579: 542: 511: 894: 871: 845: 749: 694: 466: 462: 162: 151: 101: 875: 867: 741: 368: 260: 248: 242: 229: 225: 863: 816: 753: 733: 622: 603:"On the pulsation mode of Mira variables: Evidence from the Large Magellanic Cloud" 583: 546: 474: 221: 167: 94: 90: 63: 932: 500:
VizieR On-line Data Catalog: B/GCVS. Originally Published in: 2009yCat....102025S
383: 354: 252: 39: 83: 16:
Graph of light intensity of a celestial object or region, as a function of time
627: 602: 960: 745: 527:"On the Determination of the Orbital Elements of Eclipsing Variable Stars. I" 171: 155: 137: 393: 272: 256: 31: 26: 318:= 1 โ†’ Result based on fragmentary light curve(s), may be completely wrong. 142: 899: 693:. Collaborative Asteroid Lightcurve Link. 30 October 2011. Archived from 379: 125: 147: 737: 478: 423: 280: 276: 217: 209: 199: 117: 105: 47: 941:
have light curves for several transient types, including supernovae
821: 796: 587: 551: 526: 470: 440: 59: 850: 82:-axis. The light is usually in a particular frequency interval or 835: 473:
is a microlensing event that may have been due to a star in the
691:"Asteroid Lightcurve Data Base (LCDB) โ€“ 4.1.2 U (QUALITY) CODE" 444: 422:
Periodic dips in a star's light curve graph could be due to an
411: 403:
equipment and the disappearance and reappearance timed using a
374:
Circumstances where the transitions are not instantaneous are;
378:
when either the occulting or occulted body are double, e.g. a
400: 330:= 3 โ†’ Secure result within the precision given. No ambiguity. 268: 264: 71: 925: 715: 797:"Imaging Stellar Surfaces via Matrix Light-Curve Inversion" 109: 336:= n.a. โ†’ Not available. Incomplete or inconclusive result. 392:
when the occulting body has an atmosphere, e.g. the moon
647:
Georgia State University โ€“ Hyperphysics โ€“ Carl Rod Nave
271:
there is often no way to resolve a small object in the
284:
about the shape and spin (but not size) of asteroids.
953:
Database of Asteroid Models from Inversion Techniques
935:
can plot light curves for thousands of variable stars
178:
are less regular still and have smaller amplitudes.
66:
or region as a function of time, typically with the
891:
Astrophysical Applications of Gravitational Lensing
766: 659: 607:Monthly Notices of the Royal Astronomical Society 958: 350:Occultation ยง Occultations by minor planets 89:Light curves can be periodic, as in the case of 305:ranges from 0 (incorrect) to 3 (well-defined): 287: 497: 399:The observations are typically recorded using 829: 410:Occultation light curves are archived at the 795:Harmon, Robert O.; Crews, Lionel J. (2000). 794: 635: 343: 292: 34:based on images taken on 6 October 2006 at 709: 251:, a light curve can be used to derive the 233:weeks or months before resuming its fade. 898: 849: 820: 626: 550: 668:: EAR-A-5-DDR-DERIVED-LIGHTCURVE-V16.0. 600: 434: 353: 203: 141: 25: 760: 524: 407:disciplined Video Time Inserter (VTI). 959: 926:The AAVSO online light curve generator 888: 882: 788: 685: 683: 518: 417: 386:, then a step light curve is observed. 236: 565: 680: 594: 559: 491: 312:= 0 โ†’ Result later proven incorrect 182:brightnesses. It may also show the 13: 14: 988: 919: 653: 601:Wood, P. R.; Sebo, K. M. (1996). 131: 36:Mount John University Observatory 97:, other periodic variables, and 450: 275:, even in the most powerful of 224:have light curves with a sharp 124:, or binary as observed during 947:by NASA's Imagine the Universe 525:Russell, Henry Norris (1912). 427:method, which is known as the 1: 972:Stellar astrophysics concepts 484: 228:and gradually decline, while 193: 945:Lightcurves: An Introduction 299:Asteroid Lightcurve Database 288:Asteroid lightcurve database 108:, like the light curve of a 30:Light curve of the asteroid 7: 939:The Open Astronomy Catalogs 770:VizieR On-line Data Catalog 371:across the occulting body. 78:-axis and with time on the 42:, which lasts 3.7474 hours. 38:. Shows just over one full 10: 993: 868:10.1088/0004-637X/767/1/60 662:NASA Planetary Data System 457:Gravitational microlensing 454: 347: 240: 197: 135: 18: 838:The Astrophysical Journal 114:cataclysmic variable star 801:The Astronomical Journal 344:Occultation light curves 293:Light curve quality code 188:distortions in the shape 628:10.1093/mnras/282.3.958 359: 213: 158: 43: 568:Astrophysical Journal 531:Astrophysical Journal 435:Light curve inversion 357: 348:Further information: 207: 176:semiregular variables 145: 29: 467:gravitational lenses 443:or asteroid surface 429:astronomical transit 21:Light curve (botany) 909:1996IAUS..173..277H 860:2013ApJ...767...60R 813:2000AJ....120.3274H 782:2016yCat....102033H 730:1990Natur.343..350S 697:on 16 November 2015 674:2016PDSS..246.....H 619:1996MNRAS.282..958W 580:1952ApJ...115..301K 543:1912ApJ....35..315R 512:2009yCat....102025S 463:relativistic effect 418:Exoplanet discovery 237:Planetary astronomy 931:2020-12-21 at the 360: 267:nucleus. From the 230:Type II supernovae 216:Light curves from 214: 163:apparent magnitude 159: 122:microlensing event 102:extrasolar planets 91:eclipsing binaries 44: 977:Planetary science 724:(6256): 350โ€“353. 249:planetary science 243:Planetary science 222:Type I supernovae 212:type light curves 186:of the orbit and 154:versus pulsation 95:Cepheid variables 984: 913: 912: 902: 900:astro-ph/9508112 886: 880: 879: 853: 833: 827: 826: 824: 792: 786: 785: 764: 758: 757: 738:10.1038/343350a0 713: 707: 706: 704: 702: 687: 678: 677: 657: 651: 650: 639: 633: 632: 630: 598: 592: 591: 563: 557: 556: 554: 522: 516: 515: 495: 475:Andromeda Galaxy 74:received on the 64:celestial object 992: 991: 987: 986: 985: 983: 982: 981: 957: 956: 933:Wayback Machine 922: 917: 916: 887: 883: 834: 830: 793: 789: 765: 761: 714: 710: 700: 698: 689: 688: 681: 658: 654: 641: 640: 636: 599: 595: 564: 560: 523: 519: 496: 492: 487: 459: 453: 437: 420: 384:double asteroid 352: 346: 295: 290: 253:rotation period 245: 239: 202: 196: 146:Light curve of 140: 134: 60:light intensity 24: 17: 12: 11: 5: 990: 980: 979: 974: 969: 967:Variable stars 955: 954: 948: 942: 936: 921: 920:External links 918: 915: 914: 881: 828: 822:10.1086/316882 787: 759: 708: 679: 652: 634: 593: 588:10.1086/145541 558: 552:10.1086/141942 517: 489: 488: 486: 483: 455:Main article: 452: 449: 436: 433: 419: 416: 397: 396: 390: 387: 345: 342: 338: 337: 331: 325: 319: 313: 294: 291: 289: 286: 241:Main article: 238: 235: 198:Main article: 195: 192: 172:Mira variables 161:Graphs of the 136:Main article: 133: 132:Variable stars 130: 15: 9: 6: 4: 3: 2: 989: 978: 975: 973: 970: 968: 965: 964: 962: 952: 949: 946: 943: 940: 937: 934: 930: 927: 924: 923: 910: 906: 901: 896: 892: 885: 877: 873: 869: 865: 861: 857: 852: 847: 843: 839: 832: 823: 818: 814: 810: 806: 802: 798: 791: 783: 779: 775: 771: 763: 755: 751: 747: 743: 739: 735: 731: 727: 723: 719: 712: 696: 692: 686: 684: 675: 671: 667: 663: 656: 648: 644: 638: 629: 624: 620: 616: 612: 608: 604: 597: 589: 585: 581: 577: 573: 569: 562: 553: 548: 544: 540: 536: 532: 528: 521: 513: 509: 505: 501: 494: 490: 482: 480: 476: 472: 468: 464: 458: 448: 446: 442: 432: 430: 425: 415: 413: 408: 406: 402: 395: 391: 388: 385: 381: 377: 376: 375: 372: 370: 365: 356: 351: 341: 335: 332: 329: 326: 323: 320: 317: 314: 311: 308: 307: 306: 304: 300: 285: 282: 278: 274: 270: 266: 262: 258: 254: 250: 244: 234: 231: 227: 223: 219: 211: 206: 201: 191: 189: 185: 179: 177: 173: 169: 164: 157: 153: 149: 144: 139: 138:Variable star 129: 127: 123: 119: 115: 111: 107: 103: 100: 96: 92: 87: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 41: 37: 33: 28: 22: 890: 884: 841: 837: 831: 804: 800: 790: 773: 769: 762: 721: 717: 711: 699:. Retrieved 695:the original 665: 661: 655: 646: 637: 610: 606: 596: 571: 567: 561: 534: 530: 520: 503: 499: 493: 477:that has an 460: 451:Microlensing 438: 421: 409: 398: 373: 361: 339: 333: 327: 321: 315: 309: 302: 298: 296: 273:Solar System 257:minor planet 246: 215: 208:Comparative 184:eccentricity 180: 160: 88: 79: 75: 51: 45: 32:201 Penelope 807:(6): 3274. 643:"Supernova" 380:double star 364:occultation 126:occultation 52:light curve 961:Categories 613:(3): 958. 485:References 465:as larger 277:telescopes 218:supernovae 194:Supernovae 99:transiting 876:119221231 851:1302.6268 844:(1): 60. 746:0028-0836 479:exoplanet 441:starspots 431:method. 424:exoplanet 414:service. 281:amplitude 210:supernova 200:Supernova 152:magnitude 118:supernova 106:aperiodic 68:magnitude 48:astronomy 929:Archived 701:16 March 471:PA-99-N2 168:Cepheids 166:such as 150:showing 148:ฮด Cephei 40:rotation 905:Bibcode 856:Bibcode 809:Bibcode 778:Bibcode 754:4330667 726:Bibcode 670:Bibcode 649:. 1998. 615:Bibcode 576:Bibcode 574:: 301. 539:Bibcode 537:: 315. 508:Bibcode 445:albedos 226:maximum 58:of the 874:  752:  744:  718:Nature 412:VizieR 951:DAMIT 895:arXiv 872:S2CID 846:arXiv 750:S2CID 401:video 394:Titan 369:chord 269:Earth 265:comet 263:, or 255:of a 156:phase 104:; or 72:light 62:of a 56:graph 54:is a 742:ISSN 703:2016 362:The 297:The 261:moon 110:nova 84:band 50:, a 864:doi 842:767 817:doi 805:120 734:doi 722:343 666:246 623:doi 611:282 584:doi 572:115 547:doi 405:GPS 382:or 247:In 70:of 46:In 963:: 903:. 870:. 862:. 854:. 840:. 815:. 803:. 799:. 776:. 772:. 748:. 740:. 732:. 720:. 682:^ 664:. 645:. 621:. 609:. 605:. 582:. 570:. 545:. 535:35 533:. 529:. 506:. 502:. 481:. 447:. 259:, 120:, 116:, 112:, 93:, 86:. 911:. 907:: 897:: 878:. 866:: 858:: 848:: 825:. 819:: 811:: 784:. 780:: 774:1 756:. 736:: 728:: 705:. 676:. 672:: 631:. 625:: 617:: 590:. 586:: 578:: 555:. 549:: 541:: 514:. 510:: 504:1 334:U 328:U 322:U 316:U 310:U 303:U 80:x 76:y 23:.

Index

Light curve (botany)

201 Penelope
Mount John University Observatory
rotation
astronomy
graph
light intensity
celestial object
magnitude
light
band
eclipsing binaries
Cepheid variables
transiting
extrasolar planets
aperiodic
nova
cataclysmic variable star
supernova
microlensing event
occultation
Variable star

ฮด Cephei
magnitude
phase
apparent magnitude
Cepheids
Mira variables

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

โ†‘