Knowledge

Zone melting

Source đź“ť

354: 346: 36: 338: 45: 330: 293:) is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molten region melts impure solid at its forward edge and leaves a wake of purer material solidified behind it as it moves through the ingot. The impurities concentrate in the melt, and are moved to one end of the ingot. Zone refining was invented by 382:
through a thin section of furnace very slowly, such that only a small region of the boule is molten at any time, the impurities will be segregated at the end of the crystal. Because of the lack of impurities in the leftover regions which solidify, the boule can grow as a perfect
455:
are used extensively in research facilities particularly for the production of insulators, but their use in industry is limited by the relatively low power of the lamps, which limits the size of crystals produced by this method. Zone melting can be done as a
460:, or it can be done continuously, with fresh impure material being continually added at one end and purer material being removed from the other, with impure zone melt being removed at whatever rate is dictated by the impurity of the feed stock. 414:
is placed in the molten zone, which is passed through the pure germanium. With the proper choice of rate of heating and other variables, the antimony can be spread evenly through the germanium. This technique is also used for the preparation of
378:(the ratio at equilibrium of an impurity in the solid phase to that in the liquid phase) is usually less than one. Therefore, at the solid/liquid boundary, the impurity atoms will diffuse to the liquid region. Thus, by passing a crystal 944: 1230:, in which two solutes are distributed through a pure metal. This is important in the manufacture of semiconductors, where two solutes of opposite conductivity type are used. For example, in germanium, pentavalent elements of 1162: 325:
system having an appreciable concentration difference between solid and liquid phases at equilibrium. This process is also known as the float zone process, particularly in semiconductor materials processing.
391:
is placed at the base to initiate a chosen direction of crystal growth. When high purity is required, such as in semiconductor industry, the impure end of the boule is cut off, and the refining is repeated.
466:
methods use an induction-heated tungsten ring to heat the ingot radiatively, and are useful when the ingot is of a high-resistivity semiconductor on which classical induction heating is ineffective.
333:
A diagram of the vertical zone refining process used to grow single-crystal ice from an initially polycrystalline material. The convection in the melt is a result of water's density maximum at 4 °C.
83: 1254:
produce positive (p-type) conduction. By melting a portion of such an ingot and slowly refreezing it, solutes in the molten region become distributed to form the desired n-p and p-n junctions.
431:
A variety of heaters can be used for zone melting, with their most important characteristic being the ability to form short molten zones that move slowly and uniformly through the ingot.
788: 1042: 989: 831: 685: 656: 605: 576: 525: 712: 495: 627: 547: 837: 1189:
is the highest among various manufacturing processes. Float-zone carrier lifetimes are around 1000 microseconds compared to 20–200 microseconds with
1048: 395:
In zone refining, solutes are segregated at one end of the ingot in order to purify the remainder, or to concentrate the impurities. In
265: 65:
coil melts a section of the metal bar in the tube. The coil moves slowly down the tube, moving the molten zone to the end of the bar.
1181:, float zone processing is particularly useful because the single-crystal silicon grown has desirable properties. The bulk charge 194: 439:, or gas flames are common methods. Another method is to pass an electric current directly through the ingot while it is in a 1436: 1309: 399:, the objective is to distribute solute evenly throughout the purified material, which may be sought in the form of a single 1340: 224: 497:, the number of impurities in the liquid change. Impurities are incorporated in the melting liquid and freezing solid. 1481: 447:
carefully set to be just equal to the weight in order to hold the liquid suspended. Optical heaters using high-powered
1350: 1476: 720: 169: 1486: 1471: 1397: 258: 174: 133: 17: 691:
The number of impurities in the liquid changes in accordance with the expression below during the movement
214: 995: 950: 317:, refined to one atom of impurity per ten billion, but the process can be extended to virtually any 251: 1269: 1194: 794: 204: 1373: 663: 634: 583: 554: 503: 8: 1274: 1263: 444: 294: 199: 939:{\displaystyle \int _{0}^{x}dx=\int _{I_{O}}^{I}{\frac {dI}{C_{O}-{\frac {k_{O}I}{L}}}}} 694: 477: 353: 1288: 1210: 1190: 1186: 612: 532: 420: 219: 179: 1466: 1442: 1432: 1346: 1305: 1299: 436: 209: 102: 62: 365:
single crystal, made by the floating-zone process (cylindrical object in the center)
1408: 1365: 1182: 457: 410:, an ingot of germanium is first purified by zone refining. Then a small amount of 358: 298: 143: 82: 345: 379: 234: 164: 123: 74: 452: 440: 432: 384: 229: 148: 128: 35: 1157:{\displaystyle C_{S}(x)=C_{O}\left(1-(1-k_{O})e^{-{\frac {k_{O}x}{L}}}\right)} 1460: 1446: 407: 306: 1426: 448: 388: 138: 1304:. Crystals. Vol. 12. Berlin, Heidelberg: Springer Berlin Heidelberg. 337: 1243: 189: 1198: 1178: 310: 107: 1247: 314: 302: 56:
Pfann, at left, showing the first zone refining tube, Bell Labs, 1953
44: 469: 1242:
produce negative (n-type) conduction and the trivalent elements of
1235: 411: 362: 1239: 1231: 416: 400: 322: 184: 97: 329: 318: 578:: initial uniform impurity concentration of the solidified rod 27:
Purification process by moving a molten zone along a metal bar
1251: 404: 607:: concentration of impurities in the liquid melt per length 658:: number of impurities in zone when first formed at bottom 341:
Silicon crystal in the beginning of the growth process
1197:. A longer bulk lifetime increases the efficiency of 1051: 998: 953: 840: 797: 723: 697: 666: 637: 615: 586: 557: 535: 506: 480: 403:. For example, in the preparation of a transistor or 305:
as a method to prepare high-purity materials, mainly
1286: 1156: 1036: 983: 938: 825: 782: 706: 679: 650: 621: 599: 570: 541: 519: 489: 374:The principle is that the segregation coefficient 470:Mathematical expression of impurity concentration 1458: 1431:. M. K. Lee (3 ed.). New York, NY: Wiley. 1411:, Michael D. Deal, and Peter B. Griffin (2000) 687:: concentration of impurities in the solid rod 1428:Semiconductor devices: physics and technology 259: 1204: 783:{\displaystyle dI=(C_{O}-k_{O}C_{L})\,dx\;} 1033: 980: 822: 779: 266: 252: 1213:-based high-power semiconductor devices. 772: 474:When the liquid zone moves by a distance 352: 344: 336: 328: 14: 1459: 1297: 1388:, Volume 21, W-X-Y-Z, 1973, page 501. 1378: 1338: 1359: 1216: 629:: number of impurities in the liquid 1424: 225:Shaping processes in crystal growth 24: 1280: 1193:, and 1–30 microseconds with cast 369: 313:. Its first commercial use was in 61:Vertical zone refining, 1961. The 25: 1498: 1418: 1342:J. D. Bernal: The Sage of Science 1221: 1037:{\displaystyle C_{S}=k_{O}I/L\;} 81: 43: 34: 1167: 195:Fractional crystallization 1402: 1391: 1332: 1172: 1114: 1095: 1068: 1062: 984:{\displaystyle I_{O}=C_{O}L\;} 769: 733: 464:Indirect-heating floating zone 13: 1: 1325: 1287:Hermann Schildknecht (1966), 1339:Brown, Andrew (2005-11-24). 1301:Crystal Growth from the Melt 1209:It's used for production of 215:Laser-heated pedestal growth 7: 1386:The World Book Encyclopedia 1257: 1226:Another related process is 826:{\displaystyle C_{L}=I/L\;} 205:Hydrothermal synthesis 170:Bridgman–Stockbarger method 10: 1503: 1266:a.k.a. freeze distillation 426: 1482:Methods of crystal growth 1415:, Prentice Hall, page 129 1398:Float Zone Crystal Growth 1384:”Zone melting”, entry in 1293:, Weinheim: Verlag Chemie 527:: segregation coefficient 297:and further developed by 247: 175:Van Arkel–de Boer process 161: 156: 120: 115: 94: 89: 80: 73: 1205:High-resistivity devices 200:Fractional freezing 1477:Liquid-solid separation 1413:Silicon VLSI Technology 1270:Monocrystalline silicon 1195:polycrystalline silicon 349:Growing silicon crystal 291:floating-zone technique 180:Czochralski method 1158: 1038: 985: 940: 827: 784: 708: 681: 652: 623: 601: 572: 543: 521: 491: 366: 350: 342: 334: 157:Methods and technology 1374:John Wiley & Sons 1159: 1039: 986: 941: 828: 785: 709: 682: 680:{\displaystyle C_{S}} 653: 651:{\displaystyle I_{O}} 624: 602: 600:{\displaystyle C_{L}} 573: 571:{\displaystyle C_{O}} 544: 522: 520:{\displaystyle k_{O}} 492: 443:, with the resulting 356: 348: 340: 332: 1487:Semiconductor growth 1472:Industrial processes 1049: 996: 951: 838: 795: 721: 695: 664: 635: 613: 584: 555: 533: 504: 478: 309:, for manufacturing 287:floating-zone method 1425:Sze, S. M. (2012). 1298:MĂĽller, G. (1988). 1275:Wafer (electronics) 1264:Fractional freezing 886: 855: 714:of the molten zone 445:magnetomotive force 421:integrated circuits 295:John Desmond Bernal 149:Single crystal 129:Crystal growth 1211:float-zone silicon 1191:Czochralski method 1187:float-zone silicon 1154: 1034: 981: 936: 865: 841: 823: 780: 707:{\displaystyle dx} 704: 677: 648: 619: 597: 568: 539: 517: 490:{\displaystyle dx} 487: 437:resistance heaters 367: 351: 343: 335: 220:Micro-pulling-down 1438:978-0-470-53794-7 1311:978-3-642-73210-2 1217:Related processes 1145: 934: 931: 622:{\displaystyle I} 542:{\displaystyle L} 276: 275: 210:Kyropoulos method 139:Seed crystal 134:Recrystallization 103:Crystal structure 63:induction heating 16:(Redirected from 1494: 1451: 1450: 1422: 1416: 1409:James D. Plummer 1406: 1400: 1395: 1389: 1382: 1376: 1366:William G. Pfann 1363: 1357: 1356: 1336: 1321: 1319: 1318: 1294: 1183:carrier lifetime 1163: 1161: 1160: 1155: 1153: 1149: 1148: 1147: 1146: 1141: 1137: 1136: 1126: 1113: 1112: 1083: 1082: 1061: 1060: 1043: 1041: 1040: 1035: 1029: 1021: 1020: 1008: 1007: 990: 988: 987: 982: 976: 975: 963: 962: 945: 943: 942: 937: 935: 933: 932: 927: 923: 922: 912: 907: 906: 896: 888: 885: 880: 879: 878: 854: 849: 832: 830: 829: 824: 818: 807: 806: 789: 787: 786: 781: 768: 767: 758: 757: 745: 744: 713: 711: 710: 705: 686: 684: 683: 678: 676: 675: 657: 655: 654: 649: 647: 646: 628: 626: 625: 620: 606: 604: 603: 598: 596: 595: 577: 575: 574: 569: 567: 566: 548: 546: 545: 540: 526: 524: 523: 518: 516: 515: 496: 494: 493: 488: 299:William G. Pfann 268: 261: 254: 144:Protocrystalline 85: 71: 70: 47: 38: 21: 1502: 1501: 1497: 1496: 1495: 1493: 1492: 1491: 1457: 1456: 1455: 1454: 1439: 1423: 1419: 1407: 1403: 1396: 1392: 1383: 1379: 1372:, 2nd edition, 1364: 1360: 1353: 1337: 1333: 1328: 1316: 1314: 1312: 1283: 1281:Further reading 1260: 1224: 1219: 1207: 1201:significantly. 1175: 1170: 1132: 1128: 1127: 1125: 1121: 1117: 1108: 1104: 1088: 1084: 1078: 1074: 1056: 1052: 1050: 1047: 1046: 1025: 1016: 1012: 1003: 999: 997: 994: 993: 971: 967: 958: 954: 952: 949: 948: 918: 914: 913: 911: 902: 898: 897: 889: 887: 881: 874: 870: 869: 850: 845: 839: 836: 835: 814: 802: 798: 796: 793: 792: 763: 759: 753: 749: 740: 736: 722: 719: 718: 696: 693: 692: 671: 667: 665: 662: 661: 642: 638: 636: 633: 632: 614: 611: 610: 591: 587: 585: 582: 581: 562: 558: 556: 553: 552: 534: 531: 530: 511: 507: 505: 502: 501: 479: 476: 475: 472: 433:Induction coils 429: 372: 370:Process details 357:A high-purity ( 272: 235:Verneuil method 124:Crystallization 75:Crystallization 69: 68: 67: 66: 57: 50: 49: 48: 40: 39: 28: 23: 22: 15: 12: 11: 5: 1500: 1490: 1489: 1484: 1479: 1474: 1469: 1453: 1452: 1437: 1417: 1401: 1390: 1377: 1358: 1351: 1345:. OUP Oxford. 1330: 1329: 1327: 1324: 1323: 1322: 1310: 1295: 1282: 1279: 1278: 1277: 1272: 1267: 1259: 1256: 1228:zone remelting 1223: 1222:Zone remelting 1220: 1218: 1215: 1206: 1203: 1174: 1171: 1169: 1166: 1165: 1164: 1152: 1144: 1140: 1135: 1131: 1124: 1120: 1116: 1111: 1107: 1103: 1100: 1097: 1094: 1091: 1087: 1081: 1077: 1073: 1070: 1067: 1064: 1059: 1055: 1044: 1032: 1028: 1024: 1019: 1015: 1011: 1006: 1002: 991: 979: 974: 970: 966: 961: 957: 946: 930: 926: 921: 917: 910: 905: 901: 895: 892: 884: 877: 873: 868: 864: 861: 858: 853: 848: 844: 833: 821: 817: 813: 810: 805: 801: 790: 778: 775: 771: 766: 762: 756: 752: 748: 743: 739: 735: 732: 729: 726: 703: 700: 689: 688: 674: 670: 659: 645: 641: 630: 618: 608: 594: 590: 579: 565: 561: 550: 538: 528: 514: 510: 486: 483: 471: 468: 441:magnetic field 428: 425: 385:single crystal 371: 368: 307:semiconductors 274: 273: 271: 270: 263: 256: 248: 245: 244: 243: 242: 237: 232: 230:Skull crucible 227: 222: 217: 212: 207: 202: 197: 192: 187: 182: 177: 172: 167: 159: 158: 154: 153: 152: 151: 146: 141: 136: 131: 126: 118: 117: 113: 112: 111: 110: 105: 100: 92: 91: 87: 86: 78: 77: 52: 51: 42: 41: 33: 32: 31: 30: 29: 26: 9: 6: 4: 3: 2: 1499: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1464: 1462: 1448: 1444: 1440: 1434: 1430: 1429: 1421: 1414: 1410: 1405: 1399: 1394: 1387: 1381: 1375: 1371: 1367: 1362: 1354: 1352:9780198515449 1348: 1344: 1343: 1335: 1331: 1313: 1307: 1303: 1302: 1296: 1292: 1291: 1285: 1284: 1276: 1273: 1271: 1268: 1265: 1262: 1261: 1255: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1214: 1212: 1202: 1200: 1196: 1192: 1188: 1184: 1180: 1150: 1142: 1138: 1133: 1129: 1122: 1118: 1109: 1105: 1101: 1098: 1092: 1089: 1085: 1079: 1075: 1071: 1065: 1057: 1053: 1045: 1030: 1026: 1022: 1017: 1013: 1009: 1004: 1000: 992: 977: 972: 968: 964: 959: 955: 947: 928: 924: 919: 915: 908: 903: 899: 893: 890: 882: 875: 871: 866: 862: 859: 856: 851: 846: 842: 834: 819: 815: 811: 808: 803: 799: 791: 776: 773: 764: 760: 754: 750: 746: 741: 737: 730: 727: 724: 717: 716: 715: 701: 698: 672: 668: 660: 643: 639: 631: 616: 609: 592: 588: 580: 563: 559: 551: 549:: zone length 536: 529: 512: 508: 500: 499: 498: 484: 481: 467: 465: 461: 459: 458:batch process 454: 450: 446: 442: 438: 435:, ring-wound 434: 424: 422: 418: 413: 409: 408:semiconductor 406: 402: 398: 397:zone leveling 393: 390: 386: 381: 377: 364: 360: 355: 347: 339: 331: 327: 324: 320: 316: 312: 308: 304: 300: 296: 292: 288: 284: 283:zone refining 280: 269: 264: 262: 257: 255: 250: 249: 246: 241: 238: 236: 233: 231: 228: 226: 223: 221: 218: 216: 213: 211: 208: 206: 203: 201: 198: 196: 193: 191: 188: 186: 183: 181: 178: 176: 173: 171: 168: 166: 163: 162: 160: 155: 150: 147: 145: 142: 140: 137: 135: 132: 130: 127: 125: 122: 121: 119: 114: 109: 106: 104: 101: 99: 96: 95: 93: 88: 84: 79: 76: 72: 64: 60: 55: 46: 37: 19: 18:Zone refining 1427: 1420: 1412: 1404: 1393: 1385: 1380: 1370:Zone Melting 1369: 1361: 1341: 1334: 1315:. Retrieved 1300: 1290:Zone Melting 1289: 1227: 1225: 1208: 1176: 1168:Applications 690: 473: 463: 462: 430: 396: 394: 389:seed crystal 375: 373: 290: 286: 282: 279:Zone melting 278: 277: 240:Zone melting 239: 90:Fundamentals 58: 53: 1199:solar cells 1179:solar cells 1173:Solar cells 453:xenon lamps 423:("chips"). 419:for use in 311:transistors 190:Flux method 1461:Categories 1326:References 1317:2023-11-23 108:Nucleation 1447:869833419 1248:aluminium 1244:group III 1123:− 1102:− 1093:− 909:− 867:∫ 843:∫ 747:− 315:germanium 303:Bell Labs 1467:Crystals 1258:See also 1246:such as 1236:antimony 1234:such as 412:antimony 363:tantalum 116:Concepts 1368:(1966) 1240:arsenic 1232:group V 449:halogen 427:Heaters 417:silicon 401:crystal 323:solvent 185:Epitaxy 98:Crystal 59:(right) 1445:  1435:  1349:  1308:  319:solute 165:Boules 54:(left) 1252:boron 405:diode 387:if a 380:boule 289:, or 285:, or 1443:OCLC 1433:ISBN 1347:ISBN 1306:ISBN 1250:and 1238:and 281:(or 1185:in 1177:In 451:or 301:in 1463:: 1441:. 361:) 359:5N 1449:. 1355:. 1320:. 1151:) 1143:L 1139:x 1134:O 1130:k 1119:e 1115:) 1110:O 1106:k 1099:1 1096:( 1090:1 1086:( 1080:O 1076:C 1072:= 1069:) 1066:x 1063:( 1058:S 1054:C 1031:L 1027:/ 1023:I 1018:O 1014:k 1010:= 1005:S 1001:C 978:L 973:O 969:C 965:= 960:O 956:I 929:L 925:I 920:O 916:k 904:O 900:C 894:I 891:d 883:I 876:O 872:I 863:= 860:x 857:d 852:x 847:0 820:L 816:/ 812:I 809:= 804:L 800:C 777:x 774:d 770:) 765:L 761:C 755:O 751:k 742:O 738:C 734:( 731:= 728:I 725:d 702:x 699:d 673:S 669:C 644:O 640:I 617:I 593:L 589:C 564:O 560:C 537:L 513:O 509:k 485:x 482:d 376:k 321:– 267:e 260:t 253:v 20:)

Index

Zone refining


induction heating
Crystallization

Crystal
Crystal structure
Nucleation
Crystallization
Crystal growth
Recrystallization
Seed crystal
Protocrystalline
Single crystal
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑