Knowledge

Bridgman–Stockbarger method

Source 📝

338: 613: 25: 343:
The difference between the Bridgman technique and Stockbarger technique is subtle: While both methods utilize a temperature gradient and a moving crucible, the Bridgman technique utilizes the relatively uncontrolled gradient produced at the exit of the furnace; the Stockbarger technique introduces a
317:
is located. A single crystal of the same crystallographic orientation as the seed material is grown on the seed and is progressively formed along the length of the container. The process can be carried out in a horizontal or vertical orientation, and usually involves a rotating crucible/ampoule to
344:
baffle, or shelf, separating two coupled furnaces with temperatures above and below the freezing point. Stockbarger's modification of the Bridgman technique allows for better control over the temperature gradient at the melt/crystal interface.
347:
When seed crystals are not employed as described above, polycrystalline ingots can be produced from a feedstock consisting of rods, chunks, or any irregularly shaped pieces once they are melted and allowed to re-solidify. The resultant
86: 294: 333:
is more difficult. The process can reliably produce single-crystal ingots, but does not necessarily result in uniform properties through the crystal.
43: 568:
Montgomery, Matthew; Blockburger, Clark (2017). Zelinski, Brian J. (ed.). "18 x 36 x 1.5 inch sapphire panels for visible and infrared windows".
654: 455:
Bridgman, Percy W. (1925). "Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin".
313:
The methods involve heating polycrystalline material above its melting point and slowly cooling it from one end of its container, where a
268: 197: 439: 572:. Window and Dome Technologies and Materials XV. 10179 101790N-1 (Window and Dome Technologies and Materials XV): 101790N. 227: 688: 647: 352:
of the ingots so obtained are characteristic of directionally solidified metals and alloys with their aligned grains.
337: 61: 693: 392:
crystals 45 cm wide and over 1 meter long. However, the quality of the crystals grown by HDSM differ from the
678: 673: 640: 628: 261: 177: 136: 39: 217: 531: 385: 254: 297:(1895–1952). The method includes two similar but distinct techniques primarily used for growing 290: 207: 490:
Stockbarger, Donald C. (1936). "The Production of Large Single Crystals of Lithium Fluoride".
429: 573: 540: 499: 376:) starting in the 1960s in the Soviet Union. It uses a flat-bottomed crucible made out of 8: 202: 577: 544: 503: 589: 472: 405: 393: 330: 222: 182: 683: 593: 435: 212: 105: 581: 548: 507: 464: 369: 326: 146: 85: 620: 349: 302: 298: 237: 167: 126: 77: 624: 232: 151: 131: 527:"Growth of large 90 mm diameter Yb:YAG single crystals with Bagdasarov method" 667: 322: 314: 242: 141: 612: 553: 526: 192: 525:
Arzakantsyan, M.; Ananyan, N.; Gevorgyan, V.; Chanteloup, J.-C. (2012).
476: 585: 427: 377: 110: 524: 511: 468: 389: 384:, and has been used to grow various large oxide crystals including 381: 187: 100: 428:
Hans J. Scheel; Peter Capper; Peter Rudolph (25 October 2010).
301:(single-crystal ingots), but which can be used for solidifying 396:, due to the problem of the problematic presence of bubbles. 321:
The Bridgman method is a popular way of producing certain
431:
Crystal Growth Technology: Semiconductors and Dielectrics
457:
Proceedings of the American Academy of Arts and Sciences
567: 34:
may be too technical for most readers to understand
423: 421: 665: 418: 648: 380:with short sidewalls rather than an enclosed 262: 362:horizontal directional solidification method 489: 434:. John Wiley & Sons. pp. 177–178. 655: 641: 269: 255: 552: 62:Learn how and when to remove this message 46:, without removing the technical details. 454: 360:A variant of the technique known as the 666: 44:make it understandable to non-experts 607: 355: 18: 368:) developed by Khachik Bagdasarov ( 228:Shaping processes in crystal growth 13: 14: 705: 611: 492:Review of Scientific Instruments 336: 84: 23: 198:Fractional crystallization 561: 518: 483: 448: 287:Bridgman–Stockbarger technique 1: 411: 627:. You can help Knowledge by 388:(a laser host crystal), and 218:Laser-heated pedestal growth 7: 399: 308: 289:, is named after physicist 283:Bridgman–Stockbarger method 208:Hydrothermal synthesis 173:Bridgman–Stockbarger method 10: 710: 606: 293:(1882–1961) and physicist 689:Methods of crystal growth 532:Optical Materials Express 373: 250: 178:Van Arkel–de Boer process 164: 159: 123: 118: 97: 92: 83: 76: 16:Method of crystallization 203:Fractional freezing 694:Materials science stubs 291:Percy Williams Bridgman 183:Czochralski method 623:-related article is a 160:Methods and technology 295:Donald C. Stockbarger 679:Semiconductor growth 674:Industrial processes 554:10.1364/OME.2.001219 578:2017SPIE10179E..0NM 545:2012OMExp...2.1219A 504:1936RScI....7..133S 152:Single crystal 132:Crystal growth 586:10.1117/12.2269465 406:Float-zone silicon 394:Czochralski method 331:Czochralski method 223:Micro-pulling-down 636: 635: 512:10.1063/1.1752094 441:978-3-527-32593-1 356:Bagdasarov method 325:crystals such as 279: 278: 213:Kyropoulos method 142:Seed crystal 137:Recrystallization 106:Crystal structure 72: 71: 64: 701: 657: 650: 643: 615: 608: 598: 597: 565: 559: 558: 556: 539:(9): 1219–1225. 522: 516: 515: 487: 481: 480: 469:10.2307/25130058 452: 446: 445: 425: 375: 374:Хачик Багдасаров 340: 329:, for which the 327:gallium arsenide 305:ingots as well. 271: 264: 257: 147:Protocrystalline 88: 74: 73: 67: 60: 56: 53: 47: 27: 26: 19: 709: 708: 704: 703: 702: 700: 699: 698: 664: 663: 662: 661: 621:crystallography 604: 602: 601: 566: 562: 523: 519: 488: 484: 453: 449: 442: 426: 419: 414: 402: 358: 318:stir the melt. 311: 303:polycrystalline 275: 238:Verneuil method 127:Crystallization 78:Crystallization 68: 57: 51: 48: 40:help improve it 37: 28: 24: 17: 12: 11: 5: 707: 697: 696: 691: 686: 681: 676: 660: 659: 652: 645: 637: 634: 633: 616: 600: 599: 560: 517: 498:(3): 133–136. 482: 463:(6): 305–383. 447: 440: 416: 415: 413: 410: 409: 408: 401: 398: 357: 354: 350:microstructure 310: 307: 277: 276: 274: 273: 266: 259: 251: 248: 247: 246: 245: 240: 235: 233:Skull crucible 230: 225: 220: 215: 210: 205: 200: 195: 190: 185: 180: 175: 170: 162: 161: 157: 156: 155: 154: 149: 144: 139: 134: 129: 121: 120: 116: 115: 114: 113: 108: 103: 95: 94: 90: 89: 81: 80: 70: 69: 31: 29: 22: 15: 9: 6: 4: 3: 2: 706: 695: 692: 690: 687: 685: 682: 680: 677: 675: 672: 671: 669: 658: 653: 651: 646: 644: 639: 638: 632: 630: 626: 622: 617: 614: 610: 609: 605: 595: 591: 587: 583: 579: 575: 571: 564: 555: 550: 546: 542: 538: 534: 533: 528: 521: 513: 509: 505: 501: 497: 493: 486: 478: 474: 470: 466: 462: 458: 451: 443: 437: 433: 432: 424: 422: 417: 407: 404: 403: 397: 395: 391: 387: 383: 379: 371: 367: 363: 353: 351: 345: 341: 339: 334: 332: 328: 324: 323:semiconductor 319: 316: 306: 304: 300: 296: 292: 288: 284: 272: 267: 265: 260: 258: 253: 252: 249: 244: 241: 239: 236: 234: 231: 229: 226: 224: 221: 219: 216: 214: 211: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 171: 169: 166: 165: 163: 158: 153: 150: 148: 145: 143: 140: 138: 135: 133: 130: 128: 125: 124: 122: 117: 112: 109: 107: 104: 102: 99: 98: 96: 91: 87: 82: 79: 75: 66: 63: 55: 45: 41: 35: 32:This article 30: 21: 20: 629:expanding it 618: 603: 569: 563: 536: 530: 520: 495: 491: 485: 460: 456: 450: 430: 365: 361: 359: 346: 342: 335: 320: 315:seed crystal 312: 286: 282: 280: 243:Zone melting 172: 93:Fundamentals 58: 49: 33: 193:Flux method 668:Categories 570:Proc. SPIE 412:References 378:molybdenum 111:Nucleation 52:March 2021 594:125444288 684:Crystals 477:25130058 400:See also 390:sapphire 309:Overview 119:Concepts 574:Bibcode 541:Bibcode 500:Bibcode 382:ampoule 370:Russian 188:Epitaxy 101:Crystal 38:Please 592:  475:  438:  386:Yb:YAG 299:boules 168:Boules 619:This 590:S2CID 473:JSTOR 285:, or 625:stub 436:ISBN 366:HDSM 281:The 582:doi 549:doi 508:doi 465:doi 42:to 670:: 588:. 580:. 547:. 535:. 529:. 506:. 494:. 471:. 461:60 459:. 420:^ 372:: 656:e 649:t 642:v 631:. 596:. 584:: 576:: 557:. 551:: 543:: 537:2 514:. 510:: 502:: 496:7 479:. 467:: 444:. 364:( 270:e 263:t 256:v 65:) 59:( 54:) 50:( 36:.

Index

help improve it
make it understandable to non-experts
Learn how and when to remove this message
Crystallization

Crystal
Crystal structure
Nucleation
Crystallization
Crystal growth
Recrystallization
Seed crystal
Protocrystalline
Single crystal
Boules
Bridgman–Stockbarger method
Van Arkel–de Boer process
Czochralski method
Epitaxy
Flux method
Fractional crystallization
Fractional freezing
Hydrothermal synthesis
Kyropoulos method
Laser-heated pedestal growth
Micro-pulling-down
Shaping processes in crystal growth
Skull crucible
Verneuil method
Zone melting

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.