Knowledge

Von Neumann regular ring

Source 📝

1281: 644: 1443:. In some sense, this more closely mimics the properties of commutative von Neumann regular rings, which are subdirect products of fields. For commutative rings, von Neumann regular and strongly von Neumann regular are equivalent. In general, the following are equivalent for a ring 467: 423: 1209: 1150: 639:{\displaystyle AXA=U{\begin{pmatrix}I_{r}&0\\0&0\end{pmatrix}}{\begin{pmatrix}I_{r}&0\\0&0\end{pmatrix}}V=U{\begin{pmatrix}I_{r}&0\\0&0\end{pmatrix}}V=A.} 229: 201: 169: 1435:. The condition is left-right symmetric. Strongly von Neumann regular rings are unit regular. Every strongly von Neumann regular ring is a 356: 1158: 1302: 1695: 1570: 1474: 1100: 1797: 1638: 1328: 1310: 813: 1306: 1705: 1611:
Burklund, Robert; Schlank, Tomer M.; Yuan, Allen (2022-07-20). "The Chromatic Nullstellensatz". p. 50.
1685: 1700: 1830: 1860: 819: 210: 182: 150: 1291: 1295: 279: 1255: 1066: 998: 1855: 1807: 1724: 1395: 1056: 901: 336: 81: 1838: 1815: 1772: 1746: 1648: 8: 1492: 1153: 763: 759: 250: 119: 107: 103: 1728: 1755: 1661: 1612: 1500: 1259: 1240: 928: 115: 28: 1792:(2 ed.), Malabar, FL: Robert E. Krieger Publishing Co. Inc., pp. xviii+412, 1793: 1760: 1675: 1656: 1634: 1512: 1436: 854: 734: 679: 340: 1834: 1822: 1811: 1768: 1750: 1742: 1732: 1712: 1680: 1670: 1644: 1626: 1496: 1248: 1095: 924: 315: 95: 1633:, Chicago lectures in mathematics (Second ed.), University of Chicago Press, 1803: 1391: 987: 806: 752: 748: 445: 275: 285:
Another important class of examples of von Neumann regular rings are the rings M
893: 826: 34:(associative, with 1, not necessarily commutative) such that for every element 1849: 1440: 1006: 671: 303: 172: 659:
matrix ring over any von Neumann regular ring is again von Neumann regular.
1764: 1737: 1517: 1461: 1015:
is a subring of a product of fields closed under taking "weak inverses" of
991: 770: 667: 111: 876: 88: 20: 909: 809: 751:
is von Neumann regular. Indeed, the semisimple rings are precisely the
729: 254: 110:. Von Neumann regular rings should not be confused with the unrelated 916:
The corresponding statements for right modules are also equivalent to
418:{\displaystyle A=U{\begin{pmatrix}I_{r}&0\\0&0\end{pmatrix}}V} 1350: 850: 712: 1398:. An ordinary von Neumann regular ring need not be directly finite. 1280: 839:
every finitely generated left ideal is a direct summand of the left
80:, because these rings are characterized by the fact that every left 1617: 102:) under the name of "regular rings", in the course of his study of 969:
The following statements are equivalent for the commutative ring
1204:{\displaystyle \{0\}\sqcup \mathbb {G} _{m}\to \mathbb {A} ^{1}} 1588: 962:, so there is a canonical way to choose the "weak inverse" of 1577: 934:
In a commutative von Neumann regular ring, for each element
278:
is von Neumann regular if and only if it is a field. Every
1215:
Also, the following are equivalent: for a commutative ring
282:
of von Neumann regular rings is again von Neumann regular.
1537: 1535: 1533: 1547: 1530: 1270: 1103: 586: 534: 491: 374: 1559: 1487:
Generalizations of von Neumann regular rings include
1161: 791:
The following statements are equivalent for the ring
470: 359: 213: 185: 153: 1610: 1594: 1341:Special types of von Neumann regular rings include 1145:{\textstyle \mathrm {Spec} (R)\to \mathbb {A} ^{1}} 1203: 1144: 638: 417: 223: 195: 163: 1654: 1583: 1847: 1686:20.500.12110/paper_00218693_v25_n1_p185_Michler 1469:is von Neumann regular and every idempotent in 747:) is von Neumann regular. In particular, every 1655:Michler, G.O.; Villamayor, O.E. (April 1973). 1657:"On rings whose simple modules are injective" 1569:sfn error: no target: CITEREFSkornyakov2001 ( 783:. Every Boolean ring is von Neumann regular. 94:Von Neumann regular rings were introduced by 76:. Von Neumann regular rings are also called 1696:"Regular ring (in the sense of von Neumann)" 1394:is unit regular, and unit regular rings are 1168: 1162: 1821: 1711: 1309:. Unsourced material may be challenged and 773:is a ring in which every element satisfies 99: 1693: 1565: 1754: 1736: 1684: 1674: 1625: 1616: 1553: 1541: 1329:Learn how and when to remove this message 1191: 1176: 1132: 699:Generalizing the above examples, suppose 1787: 822:left ideal is generated by an idempotent 1848: 931:(also called "Jacobson semi-simple"). 1483:is generated by a central idempotent 1307:adding citations to reliable sources 1274: 1271:Generalizations and specializations 923:Every von Neumann regular ring has 216: 188: 156: 64:as a "weak inverse" of the element 13: 1780: 1347:strongly von Neumann regular rings 1114: 1111: 1108: 1105: 692:) is von Neumann regular, even if 14: 1872: 1595:Burklund, Schlank & Yuan 2022 1279: 825:every principal left ideal is a 1454:is strongly von Neumann regular 1094:, or said geometrically, every 224:{\displaystyle {\mathfrak {i}}} 196:{\displaystyle {\mathfrak {i}}} 164:{\displaystyle {\mathfrak {i}}} 1479:Every principal left ideal of 1186: 1127: 1124: 1118: 1069:against the ring homomorphism 257:) is von Neumann regular: for 72:is not uniquely determined by 1: 1603: 1584:Michler & Villamayor 1973 306:with entries from some field 16:Rings admitting weak inverses 1715:(1936), "On Regular Rings", 1676:10.1016/0021-8693(73)90088-4 1407:strongly von Neumann regular 7: 1701:Encyclopedia of Mathematics 1506: 1491:-regular rings, left/right 1460:is von Neumann regular and 920:being von Neumann regular. 755:von Neumann regular rings. 696:is not finite-dimensional. 244: 131:von Neumann regular element 10: 1877: 1831:Princeton University Press 1717:Proc. Natl. Acad. Sci. USA 1694:Skornyakov, L.A. (2001) , 938:there is a unique element 171:is called a (von Neumann) 1790:von Neumann regular rings 1258:and Zariski topology for 849:every finitely generated 1788:Goodearl, K. R. (1991), 1523: 879:: this is also known as 786: 766:is von Neumann regular. 711:-module such that every 203:there exists an element 25:von Neumann regular ring 1236:is von Neumann regular. 980:is von Neumann regular. 865:is a direct summand of 719:is a direct summand of 1738:10.1073/pnas.22.12.707 1256:constructible topology 1205: 1146: 1067:right-lifting property 802:is von Neumann regular 640: 419: 225: 197: 165: 129:of a ring is called a 1827:Continuous geometries 1396:directly finite rings 1247:is Hausdorff (in the 1206: 1147: 641: 420: 226: 198: 175:if for every element 166: 78:absolutely flat rings 1493:semihereditary rings 1303:improve this section 1159: 1152:factors through the 1101: 1025:(the unique element 902:short exact sequence 760:affiliated operators 649:More generally, the 468: 357: 337:Gaussian elimination 211: 183: 151: 104:von Neumann algebras 1729:1936PNAS...22..707V 1501:semiprimitive rings 1154:morphism of schemes 812:is generated by an 764:von Neumann algebra 341:invertible matrices 133:if there exists an 120:commutative algebra 116:regular local rings 108:continuous geometry 60:. One may think of 1662:Journal of Algebra 1372:, there is a unit 1343:unit regular rings 1201: 1142: 820:finitely generated 814:idempotent element 636: 618: 566: 523: 415: 406: 221: 193: 161: 1823:von Neumann, John 1713:von Neumann, John 1627:Kaplansky, Irving 1513:Regular semigroup 1497:nonsingular rings 1437:subdirect product 1339: 1338: 1331: 735:endomorphism ring 703:is some ring and 680:endomorphism ring 670:over a field (or 1868: 1861:John von Neumann 1841: 1818: 1775: 1758: 1740: 1708: 1690: 1688: 1678: 1651: 1631:Fields and rings 1622: 1620: 1597: 1592: 1586: 1581: 1575: 1574: 1563: 1557: 1551: 1545: 1539: 1434: 1417:, there is some 1389: 1334: 1327: 1323: 1320: 1314: 1283: 1275: 1249:Zariski topology 1235: 1210: 1208: 1207: 1202: 1200: 1199: 1194: 1185: 1184: 1179: 1151: 1149: 1148: 1143: 1141: 1140: 1135: 1117: 1096:regular function 1093: 1082: 1048: 1038: 1024: 961: 951: 927:{0} and is thus 925:Jacobson radical 782: 658: 645: 643: 642: 637: 623: 622: 598: 597: 571: 570: 546: 545: 528: 527: 503: 502: 460: 424: 422: 421: 416: 411: 410: 386: 385: 334: 273: 263: 240: 230: 228: 227: 222: 220: 219: 202: 200: 199: 194: 192: 191: 170: 168: 167: 162: 160: 159: 146: 59: 42:there exists an 1876: 1875: 1871: 1870: 1869: 1867: 1866: 1865: 1846: 1845: 1844: 1800: 1783: 1781:Further reading 1778: 1723:(12): 707–713, 1641: 1606: 1601: 1600: 1593: 1589: 1582: 1578: 1568: 1566:Skornyakov 2001 1564: 1560: 1552: 1548: 1540: 1531: 1526: 1509: 1426: 1392:semisimple ring 1381: 1335: 1324: 1318: 1315: 1300: 1284: 1273: 1222: 1195: 1190: 1189: 1180: 1175: 1174: 1160: 1157: 1156: 1136: 1131: 1130: 1104: 1102: 1099: 1098: 1084: 1070: 1040: 1030: 1016: 988:Krull dimension 953: 943: 885:absolutely flat 789: 774: 749:semisimple ring 742: 687: 650: 617: 616: 611: 605: 604: 599: 593: 589: 582: 581: 565: 564: 559: 553: 552: 547: 541: 537: 530: 529: 522: 521: 516: 510: 509: 504: 498: 494: 487: 486: 469: 466: 465: 449: 446:identity matrix 436: 405: 404: 399: 393: 392: 387: 381: 377: 370: 369: 358: 355: 354: 328: 319: 304:square matrices 290: 276:integral domain 265: 258: 247: 232: 215: 214: 212: 209: 208: 187: 186: 184: 181: 180: 155: 154: 152: 149: 148: 138: 51: 17: 12: 11: 5: 1874: 1864: 1863: 1858: 1843: 1842: 1819: 1798: 1784: 1782: 1779: 1777: 1776: 1709: 1691: 1669:(1): 185–201. 1652: 1639: 1623: 1607: 1605: 1602: 1599: 1598: 1587: 1576: 1558: 1554:Kaplansky 1972 1546: 1542:Kaplansky 1972 1528: 1527: 1525: 1522: 1521: 1520: 1515: 1508: 1505: 1485: 1484: 1477: 1464: 1455: 1441:division rings 1337: 1336: 1287: 1285: 1278: 1272: 1269: 1268: 1267: 1252: 1237: 1213: 1212: 1198: 1193: 1188: 1183: 1178: 1173: 1170: 1167: 1164: 1139: 1134: 1129: 1126: 1123: 1120: 1116: 1113: 1110: 1107: 1083:determined by 1060: 1050: 1010: 995: 981: 914: 913: 898: 894:weak dimension 869: 847: 837: 827:direct summand 823: 816: 803: 788: 785: 738: 723:(such modules 683: 647: 646: 635: 632: 629: 626: 621: 615: 612: 610: 607: 606: 603: 600: 596: 592: 588: 587: 585: 580: 577: 574: 569: 563: 560: 558: 555: 554: 551: 548: 544: 540: 536: 535: 533: 526: 520: 517: 515: 512: 511: 508: 505: 501: 497: 493: 492: 490: 485: 482: 479: 476: 473: 432: 426: 425: 414: 409: 403: 400: 398: 395: 394: 391: 388: 384: 380: 376: 375: 373: 368: 365: 362: 324: 286: 280:direct product 246: 243: 218: 190: 158: 15: 9: 6: 4: 3: 2: 1873: 1862: 1859: 1857: 1854: 1853: 1851: 1840: 1836: 1832: 1828: 1824: 1820: 1817: 1813: 1809: 1805: 1801: 1799:0-89464-632-X 1795: 1791: 1786: 1785: 1774: 1770: 1766: 1762: 1757: 1752: 1748: 1744: 1739: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1707: 1703: 1702: 1697: 1692: 1687: 1682: 1677: 1672: 1668: 1664: 1663: 1658: 1653: 1650: 1646: 1642: 1640:0-226-42451-0 1636: 1632: 1628: 1624: 1619: 1614: 1609: 1608: 1596: 1591: 1585: 1580: 1572: 1567: 1562: 1556:, p. 112 1555: 1550: 1544:, p. 110 1543: 1538: 1536: 1534: 1529: 1519: 1516: 1514: 1511: 1510: 1504: 1502: 1498: 1495:, left/right 1494: 1490: 1482: 1478: 1476: 1472: 1468: 1465: 1463: 1459: 1456: 1453: 1450: 1449: 1448: 1446: 1442: 1438: 1433: 1429: 1424: 1420: 1416: 1412: 1409:if for every 1408: 1404: 1399: 1397: 1393: 1388: 1384: 1379: 1375: 1371: 1367: 1364:if for every 1363: 1359: 1354: 1352: 1348: 1344: 1333: 1330: 1322: 1312: 1308: 1304: 1298: 1297: 1293: 1288:This section 1286: 1282: 1277: 1276: 1265: 1263: 1257: 1253: 1250: 1246: 1242: 1238: 1233: 1229: 1225: 1221: 1220: 1219: 1218: 1196: 1181: 1171: 1165: 1155: 1137: 1121: 1097: 1091: 1087: 1081: 1077: 1073: 1068: 1064: 1061: 1058: 1054: 1051: 1047: 1043: 1037: 1033: 1028: 1023: 1019: 1014: 1011: 1008: 1007:maximal ideal 1004: 1000: 996: 993: 989: 985: 982: 979: 976: 975: 974: 972: 967: 965: 960: 956: 950: 946: 941: 937: 932: 930: 929:semiprimitive 926: 921: 919: 911: 907: 903: 899: 896: 895: 890: 886: 882: 878: 874: 870: 868: 864: 860: 856: 852: 848: 846: 842: 838: 836: 832: 828: 824: 821: 817: 815: 811: 808: 804: 801: 798: 797: 796: 794: 784: 781: 777: 772: 767: 765: 761: 756: 754: 750: 746: 741: 736: 732: 731: 726: 722: 718: 714: 710: 706: 702: 697: 695: 691: 686: 681: 677: 673: 669: 665: 660: 657: 653: 633: 630: 627: 624: 619: 613: 608: 601: 594: 590: 583: 578: 575: 572: 567: 561: 556: 549: 542: 538: 531: 524: 518: 513: 506: 499: 495: 488: 483: 480: 477: 474: 471: 464: 463: 462: 459: 456: 452: 448:). If we set 447: 444: 440: 435: 431: 412: 407: 401: 396: 389: 382: 378: 371: 366: 363: 360: 353: 352: 351: 349: 345: 342: 338: 332: 327: 322: 317: 313: 309: 305: 302: 298: 294: 289: 283: 281: 277: 272: 268: 261: 256: 252: 242: 239: 235: 206: 178: 174: 173:regular ideal 145: 141: 136: 132: 128: 123: 121: 117: 113: 112:regular rings 109: 105: 101: 97: 92: 90: 86: 84: 79: 75: 71: 67: 63: 58: 54: 49: 45: 41: 37: 33: 30: 26: 22: 1826: 1789: 1720: 1716: 1699: 1666: 1660: 1630: 1590: 1579: 1561: 1549: 1518:Weak inverse 1488: 1486: 1480: 1470: 1466: 1457: 1451: 1444: 1431: 1427: 1422: 1418: 1414: 1410: 1406: 1402: 1400: 1386: 1382: 1377: 1373: 1369: 1365: 1362:unit regular 1361: 1357: 1355: 1346: 1342: 1340: 1325: 1316: 1301:Please help 1289: 1261: 1244: 1231: 1227: 1223: 1216: 1214: 1089: 1085: 1079: 1075: 1071: 1062: 1052: 1045: 1041: 1035: 1031: 1026: 1021: 1017: 1012: 1002: 999:localization 983: 977: 970: 968: 963: 958: 954: 948: 944: 939: 935: 933: 922: 917: 915: 908:-modules is 905: 892: 888: 884: 880: 872: 866: 862: 858: 844: 840: 834: 830: 829:of the left 799: 792: 790: 779: 775: 771:Boolean ring 768: 762:of a finite 758:The ring of 757: 744: 739: 733:). Then the 728: 724: 720: 716: 708: 704: 700: 698: 693: 689: 684: 675: 668:vector space 663: 661: 655: 651: 648: 457: 454: 450: 442: 438: 433: 429: 427: 347: 343: 330: 325: 320: 311: 307: 300: 296: 292: 287: 284: 270: 266: 264:we can take 259: 248: 237: 233: 204: 176: 147:. An ideal 143: 139: 134: 130: 126: 124: 93: 82: 77: 73: 69: 65: 61: 56: 52: 47: 43: 39: 35: 31: 24: 18: 1856:Ring theory 1319:August 2023 1009:is a field. 875:-module is 871:every left 727:are called 678:, then the 253:(and every 125:An element 96:von Neumann 68:in general 21:mathematics 1850:Categories 1839:0171.28003 1816:0749.16001 1773:0015.38802 1747:62.1103.03 1649:1001.16500 1618:2207.09929 1604:References 1405:is called 1380:such that 1360:is called 1351:rank rings 1029:such that 942:such that 910:pure exact 855:projective 810:left ideal 753:Noetherian 730:semisimple 672:skew field 350:such that 255:skew field 231:such that 137:such that 1706:EMS Press 1390:. Every 1290:does not 1266:coincide. 1187:→ 1172:⊔ 1128:→ 990:0 and is 851:submodule 807:principal 713:submodule 1825:(1960), 1765:16577757 1629:(1972), 1507:See also 1241:spectrum 1065:has the 904:of left 861:-module 843:-module 833:-module 245:Examples 1808:1150975 1756:1076849 1725:Bibcode 1475:central 1462:reduced 1401:A ring 1356:A ring 1311:removed 1296:sources 992:reduced 891:having 461:, then 437:is the 428:(where 314:is the 98: ( 85:-module 1837:  1814:  1806:  1796:  1771:  1763:  1753:  1745:  1647:  1637:  1230:/ nil( 1057:V-ring 997:Every 900:every 883:being 818:every 805:every 707:is an 339:gives 310:. If 274:. An 249:Every 1613:arXiv 1524:Notes 1425:with 1260:Spec( 1055:is a 1005:at a 887:, or 857:left 853:of a 787:Facts 666:is a 295:) of 251:field 50:with 27:is a 1794:ISBN 1761:PMID 1635:ISBN 1571:help 1499:and 1349:and 1345:and 1294:any 1292:cite 1254:The 1239:The 1092:, 0) 1039:and 986:has 952:and 877:flat 441:-by- 346:and 316:rank 299:-by- 114:and 106:and 100:1936 89:flat 29:ring 23:, a 1835:Zbl 1812:Zbl 1769:Zbl 1751:PMC 1743:JFM 1733:doi 1681:hdl 1671:doi 1645:Zbl 1473:is 1439:of 1432:aax 1421:in 1413:in 1387:aua 1376:in 1368:in 1305:by 1243:of 1088:↦ ( 1042:yxy 1032:xyx 1001:of 955:yxy 945:xyx 737:End 715:of 682:End 662:If 323:∈ M 318:of 262:≠ 0 238:axa 207:in 179:in 144:axa 118:of 87:is 57:axa 46:in 38:in 19:In 1852:: 1833:, 1829:, 1810:, 1804:MR 1802:, 1767:, 1759:, 1749:, 1741:, 1731:, 1721:22 1719:, 1704:, 1698:, 1679:. 1667:25 1665:. 1659:. 1643:, 1532:^ 1503:. 1447:: 1430:= 1385:= 1353:. 1251:). 1226:= 1078:× 1074:→ 1049:). 1044:= 1034:= 1020:∈ 973:: 966:. 795:: 778:= 769:A 674:) 654:× 453:= 335:, 269:= 241:. 236:= 142:= 122:. 91:. 66:a; 55:= 1735:: 1727:: 1689:. 1683:: 1673:: 1621:. 1615:: 1573:) 1489:π 1481:R 1471:R 1467:R 1458:R 1452:R 1445:R 1428:a 1423:R 1419:x 1415:R 1411:a 1403:R 1383:a 1378:R 1374:u 1370:R 1366:a 1358:R 1332:) 1326:( 1321:) 1317:( 1313:. 1299:. 1264:) 1262:A 1245:A 1234:) 1232:A 1228:A 1224:R 1217:A 1211:. 1197:1 1192:A 1182:m 1177:G 1169:} 1166:0 1163:{ 1138:1 1133:A 1125:) 1122:R 1119:( 1115:c 1112:e 1109:p 1106:S 1090:t 1086:t 1080:Z 1076:Z 1072:Z 1063:R 1059:. 1053:R 1046:y 1036:x 1027:y 1022:R 1018:x 1013:R 1003:R 994:. 984:R 978:R 971:R 964:x 959:y 957:= 949:x 947:= 940:y 936:x 918:R 912:. 906:R 897:0 889:R 881:R 873:R 867:P 863:P 859:R 845:R 841:R 835:R 831:R 800:R 793:R 780:a 776:a 745:M 743:( 740:S 725:M 721:M 717:M 709:S 705:M 701:S 694:V 690:V 688:( 685:K 676:K 664:V 656:n 652:n 634:. 631:A 628:= 625:V 620:) 614:0 609:0 602:0 595:r 591:I 584:( 579:U 576:= 573:V 568:) 562:0 557:0 550:0 543:r 539:I 532:( 525:) 519:0 514:0 507:0 500:r 496:I 489:( 484:U 481:= 478:A 475:X 472:A 458:U 455:V 451:X 443:r 439:r 434:r 430:I 413:V 408:) 402:0 397:0 390:0 383:r 379:I 372:( 367:U 364:= 361:A 348:V 344:U 333:) 331:K 329:( 326:n 321:A 312:r 308:K 301:n 297:n 293:K 291:( 288:n 271:a 267:x 260:a 234:a 217:i 205:x 189:i 177:a 157:i 140:a 135:x 127:a 83:R 74:a 70:x 62:x 53:a 48:R 44:x 40:R 36:a 32:R

Index

mathematics
ring
R-module
flat
von Neumann
1936
von Neumann algebras
continuous geometry
regular rings
regular local rings
commutative algebra
regular ideal
field
skew field
integral domain
direct product
square matrices
rank
Gaussian elimination
invertible matrices
identity matrix
vector space
skew field
endomorphism ring
submodule
semisimple
endomorphism ring
semisimple ring
Noetherian
affiliated operators

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.