Knowledge

Gaussian elimination

Source 📝

6537: 460: 4655: 100: 6801: 4340: 973: 455:{\displaystyle {\begin{bmatrix}1&3&1&9\\1&1&-1&1\\3&11&5&35\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&2&2&8\end{bmatrix}}\to {\begin{bmatrix}1&3&1&9\\0&-2&-2&-8\\0&0&0&0\end{bmatrix}}\to {\begin{bmatrix}1&0&-2&-3\\0&1&1&4\\0&0&0&0\end{bmatrix}}} 1553: 1968: 97:. This final form is unique; in other words, it is independent of the sequence of row operations used. For example, in the following sequence of row operations (where two elementary operations on different rows are done at the first and third steps), the third and fourth matrices are the ones in row echelon form, and the final matrix is the unique reduced row echelon form. 1243: 5497:, caused by the possibility of dividing by very small numbers. If, for example, the leading coefficient of one of the rows is very close to zero, then to row-reduce the matrix, one would need to divide by that number. This means that any error which existed for the number that was close to zero would be amplified. Gaussian elimination is numerically stable for 2980: 702: 4650:{\displaystyle T={\begin{bmatrix}a&*&*&*&*&*&*&*&*\\0&0&b&*&*&*&*&*&*\\0&0&0&c&*&*&*&*&*\\0&0&0&0&0&0&d&*&*\\0&0&0&0&0&0&0&0&e\\0&0&0&0&0&0&0&0&0\end{bmatrix}},} 2668: 2299: 20: 1367: 1796: 682: 690:
A matrix is said to be in reduced row echelon form if furthermore all of the leading coefficients are equal to 1 (which can be achieved by using the elementary row operation of type 2), and in every column containing a leading coefficient, all of the other entries in that column are zero (which can
568:
echelon form. So the lower left part of the matrix contains only zeros, and all of the zero rows are below the non-zero rows. The word "echelon" is used here because one can roughly think of the rows being ranked by their size, with the largest being at the top and the smallest being at the bottom.
1032: 567:
could be used to make one of those coefficients zero. Then by using the row swapping operation, one can always order the rows so that for every non-zero row, the leading coefficient is to the right of the leading coefficient of the row above. If this is the case, then matrix is said to be in row
3407:
is also eliminated from the third row, the result is a system of linear equations in triangular form, and so the first part of the algorithm is complete. From a computational point of view, it is faster to solve the variables in reverse order, a process known as back-substitution. One sees the
2865: 2542: 2157: 489:, and can be divided into two parts. The first part (sometimes called forward elimination) reduces a given system to row echelon form, from which one can tell whether there are no solutions, a unique solution, or infinitely many solutions. The second part (sometimes called 968:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&{}-{}&z&{}={}&8&\qquad (L_{1})\\-3x&{}-{}&y&{}+{}&2z&{}={}&-11&\qquad (L_{2})\\-2x&{}+{}&y&{}+{}&2z&{}={}&-3&\qquad (L_{3})\end{alignedat}}} 3399: 476:
refers to the process until it has reached its upper triangular, or (unreduced) row echelon form. For computational reasons, when solving systems of linear equations, it is sometimes preferable to stop row operations before the matrix is completely reduced.
2421: 1675: 3489:
to refer only to the procedure until the matrix is in echelon form, and use the term Gauss–Jordan elimination to refer to the procedure which ends in reduced echelon form. The name is used because it is a variation of Gaussian elimination as described by
3089: 981:. In practice, one does not usually deal with the systems in terms of equations, but instead makes use of the augmented matrix, which is more suitable for computer manipulations. The row reduction procedure may be summarized as follows: eliminate 574: 538:
If the matrix is associated to a system of linear equations, then these operations do not change the solution set. Therefore, if one's goal is to solve a system of linear equations, then using these row operations could make the problem easier.
4882:
Gaussian elimination and its variants can be used on computers for systems with thousands of equations and unknowns. However, the cost becomes prohibitive for systems with millions of equations. These large systems are generally solved using
3903: 1548:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&{}-{}&z&{}={}&8&\\&&{\tfrac {1}{2}}y&{}+{}&{\tfrac {1}{2}}z&{}={}&1&\\&&2y&{}+{}&z&{}={}&5&\end{alignedat}}} 3458:. Its use is illustrated in eighteen problems, with two to five equations. The first reference to the book by this title is dated to 179 AD, but parts of it were written as early as approximately 150 BC. It was commented on by 1963:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&{}-{}&z&{}={}&8&\\&&{\tfrac {1}{2}}y&{}+{}&{\tfrac {1}{2}}z&{}={}&1&\\&&&&-z&{}={}&1&\end{alignedat}}} 2758: 1238:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&{}-{}&z&{}={}&8&\\-3x&{}-{}&y&{}+{}&2z&{}={}&-11&\\-2x&{}+{}&y&{}+{}&2z&{}={}&-3&\end{alignedat}}} 2975:{\displaystyle {\begin{alignedat}{4}x&\quad &&\quad &&{}={}&2&\\&\quad &y&\quad &&{}={}&3&\\&\quad &&\quad &z&{}={}&-1&\end{alignedat}}} 3436:
row echelon form, as it is done in the table. The process of row reducing until the matrix is reduced is sometimes referred to as Gauss–Jordan elimination, to distinguish it from stopping after reaching echelon form.
686:
It is in echelon form because the zero row is at the bottom, and the leading coefficient of the second row (in the third column), is to the right of the leading coefficient of the first row (in the second column).
3608: 2663:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&\quad &&{}={}&7&\\&&y&\quad &&{}={}&3&\\&&&\quad &z&{}={}&-1&\end{alignedat}}} 2294:{\displaystyle {\begin{alignedat}{4}2x&{}+{}&y&&&{}={}7&\\&&{\tfrac {1}{2}}y&&&{}={}{\tfrac {3}{2}}&\\&&&{}-{}&z&{}={}1&\end{alignedat}}} 4834:
This complexity is a good measure of the time needed for the whole computation when the time for each arithmetic operation is approximately constant. This is the case when the coefficients are represented by
5322:
In particular, if one starts with integer entries, the divisions occurring in the algorithm are exact divisions resulting in integers. So, all intermediate entries and final entries are integers. Moreover,
3473:
in 1707 long after Newton had left academic life. The notes were widely imitated, which made (what is now called) Gaussian elimination a standard lesson in algebra textbooks by the end of the 18th century.
5314: 3277: 3482:
to solve the normal equations of least-squares problems. The algorithm that is taught in high school was named for Gauss only in the 1950s as a result of confusion over the history of the subject.
3469:. In 1670, he wrote that all the algebra books known to him lacked a lesson for solving simultaneous equations, which Newton then supplied. Cambridge University eventually published the notes as 3282: 2991: 2679: 2310: 1564: 4913:
in 1967. Independently, and almost simultaneously, Erwin Bareiss discovered another algorithm, based on the following remark, which applies to a division-free variant of Gaussian elimination.
93:. Once all of the leading coefficients (the leftmost nonzero entry in each row) are 1, and every column containing a leading coefficient has zeros elsewhere, the matrix is said to be in 2305: 1559: 3807: 2028: 5373: 5425: 2986: 5535:. The choice of an ordering on the variables is already implicit in Gaussian elimination, manifesting as the choice to work from left to right when selecting pivot positions. 5052: 3510:
To explain how Gaussian elimination allows the computation of the determinant of a square matrix, we have to recall how the elementary row operations change the determinant:
3494:
in 1888. However, the method also appears in an article by Clasen published in the same year. Jordan and Clasen probably discovered Gauss–Jordan elimination independently.
3502:
Historically, the first application of the row reduction method is for solving systems of linear equations. Below are some other important applications of the algorithm.
5118: 5085: 4271: 4065: 3667: 5175: 5205: 5145: 4995: 4968: 4941: 3188: 2857: 2534: 2144: 1788: 1359: 512:, while the second part writes the original matrix as the product of a uniquely determined invertible matrix and a uniquely determined reduced row echelon matrix. 71:
to modify the matrix until the lower left-hand corner of the matrix is filled with zeros, as much as possible. There are three types of elementary row operations:
2870: 2547: 2162: 1801: 1372: 1037: 707: 677:{\displaystyle {\begin{bmatrix}0&\color {red}{\mathbf {2} }&1&-1\\0&0&\color {red}{\mathbf {3} }&1\\0&0&0&0\end{bmatrix}}.} 2674: 5686:
may be required if, at the pivot place, the entry of the matrix is zero. In any case, choosing the largest possible absolute value of the pivot improves the
3551: 3939: 6295: 4101: 6246: 4764:
unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires
4859:
is a variant of Gaussian elimination that avoids this exponential growth of the intermediate entries; with the same arithmetic complexity of
3907:
To find the inverse of this matrix, one takes the following matrix augmented by the identity and row-reduces it as a 3 × 6 matrix:
5693:
Upon completion of this procedure the matrix will be in row echelon form and the corresponding system may be solved by back substitution.
4752:
required to perform row reduction is one way of measuring the algorithm's computational efficiency. For example, to solve a system of
3687:(number of operations in a linear combination times the number of sub-determinants to compute, which are determined by their columns) 3454: 3709:
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If
6395: 5319:
Bareiss' main remark is that each matrix entry generated by this variant is the determinant of a submatrix of the original matrix.
5210: 493:) continues to use row operations until the solution is found; in other words, it puts the matrix into reduced row echelon form. 6728: 500:
of the original matrix. The elementary row operations may be viewed as the multiplication on the left of the original matrix by
6786: 6341: 6329: 6319: 6277: 6254: 6170: 6135: 6116: 6093: 5965: 5775: 3536:
be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of
4337:. In this way, for example, some 6 × 9 matrices can be transformed to a matrix that has a row echelon form like 3104: 2773: 2436: 2043: 1690: 1260: 6070: 4315:, which we know is the inverse desired. This procedure for finding the inverse works for square matrices of any size. 6825: 5916: 504:. Alternatively, a sequence of elementary operations that reduces a single row may be viewed as multiplication by a 496:
Another point of view, which turns out to be very useful to analyze the algorithm, is that row reduction produces a
6776: 5327:
provides an upper bound on the absolute values of the intermediate and final entries, and thus a bit complexity of
3633: 3394:{\displaystyle {\begin{aligned}L_{2}+{\tfrac {3}{2}}L_{1}&\to L_{2},\\L_{3}+L_{1}&\to L_{3}.\end{aligned}}} 553:
For each row in a matrix, if the row does not consist of only zeros, then the leftmost nonzero entry is called the
490: 977:
The table below is the row reduction process applied simultaneously to the system of equations and its associated
6738: 6674: 5528: 2416:{\displaystyle {\begin{aligned}L_{1}-L_{3}&\to L_{1}\\L_{2}+{\tfrac {1}{2}}L_{3}&\to L_{2}\end{aligned}}} 1670:{\displaystyle {\begin{aligned}L_{2}+{\tfrac {3}{2}}L_{1}&\to L_{2}\\L_{3}+L_{1}&\to L_{3}\end{aligned}}} 5442:
As a corollary, the following problems can be solved in strongly polynomial time with the same bit complexity:
5841: 4072: 3910: 1974: 6830: 6516: 6388: 6082:
Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications
5506: 5316:
This produces a row echelon form that has the same zero entries as with the standard Gaussian elimination.
3084:{\displaystyle {\begin{aligned}L_{1}-L_{2}&\to L_{1}\\{\tfrac {1}{2}}L_{1}&\to L_{1}\end{aligned}}} 699:
Suppose the goal is to find and describe the set of solutions to the following system of linear equations:
6288: 5330: 4069:
By performing row operations, one can check that the reduced row echelon form of this augmented matrix is
3478:
in 1810 devised a notation for symmetric elimination that was adopted in the 19th century by professional
6621: 6471: 5385: 571:
For example, the following matrix is in row echelon form, and its leading coefficients are shown in red:
23:
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order.
6526: 6420: 4888: 3491: 40: 5000: 3446: 3197:
The second column describes which row operations have just been performed. So for the first step, the
6766: 6415: 5728: 5524: 5432: 4836: 3445:
The method of Gaussian elimination appears – albeit without proof – in the Chinese mathematical text
486: 68: 5505:
matrices. For general matrices, Gaussian elimination is usually considered to be stable, when using
4740:
All of this applies also to the reduced row echelon form, which is a particular row echelon format.
6758: 6641: 5707: 5502: 4906: 4876: 4823:, where each arithmetic operation take a unit of time, independently of the size of the inputs) of 520:
There are three types of elementary row operations which may be performed on the rows of a matrix:
94: 5609:, meaning that the original matrix is lost for being eventually replaced by its row-echelon form. 3432:
Instead of stopping once the matrix is in echelon form, one could continue until the matrix is in
6804: 6733: 6511: 6381: 5702: 5678:
This algorithm differs slightly from the one discussed earlier, by choosing a pivot with largest
6368: 3898:{\displaystyle A={\begin{bmatrix}2&-1&0\\-1&2&-1\\0&-1&2\end{bmatrix}}.} 6568: 6501: 6491: 3689:. Even on the fastest computers, these two methods are impractical or almost impracticable for 5947: 5896: 3761:. Now through application of elementary row operations, find the reduced echelon form of this 563:) of that row. So if two leading coefficients are in the same column, then a row operation of 6583: 6578: 6573: 6506: 6451: 5481: 5090: 5057: 4749: 3639: 48: 5939: 5150: 6558: 6545: 6436: 6062: 5975: 5553: 5451: 5183: 5123: 4973: 4946: 4919: 3475: 3095: 2764: 2427: 2034: 1681: 1251: 528: 497: 464:
Using row operations to convert a matrix into reduced row echelon form is sometimes called
64: 44: 5839:
Althoen, Steven C.; McLaughlin, Renate (1987), "Gauss–Jordan reduction: a brief history",
8: 6771: 6651: 6626: 6476: 6158: 5943: 5687: 5518: 5498: 5494: 5324: 555: 5935: 2753:{\displaystyle {\begin{aligned}2L_{2}&\to L_{2}\\-L_{3}&\to L_{3}\end{aligned}}} 6481: 6219: 6207: 6189: 6085: 6005: 5866: 5428: 3671:(number of summands in the formula times the number of multiplications in each summand) 5765: 4887:. Specific methods exist for systems whose coefficients follow a regular pattern (see 6679: 6636: 6563: 6456: 6337: 6315: 6273: 6250: 6166: 6131: 6112: 6089: 6066: 5961: 5952:, Algorithms and Combinatorics, vol. 2 (2nd ed.), Springer-Verlag, Berlin, 5912: 5901:
Proceedings of the 1997 international symposium on Symbolic and algebraic computation
5858: 5771: 4900: 4856: 4276: 3726: 3704: 3674: 501: 86: 60: 6211: 5548:, there cannot be a polynomial time analog of Gaussian elimination for higher-order 6684: 6588: 6441: 6199: 6034: 5953: 5904: 5850: 5579: 4884: 4851:
exactly represented, the intermediate entries can grow exponentially large, so the
4688: 3517:
Multiplying a row by a nonzero scalar multiplies the determinant by the same scalar
978: 548: 509: 505: 90: 6347: 6180:
Grcar, Joseph F. (2011a), "How ordinary elimination became Gaussian elimination",
3777:
is invertible if and only if the left block can be reduced to the identity matrix
43:. It consists of a sequence of row-wise operations performed on the corresponding 6743: 6536: 6496: 6486: 6238: 5971: 5376: 4848: 4820: 3739: 1008: 5382:
Moreover, as an upper bound on the size of final entries is known, a complexity
19: 6748: 6669: 6404: 6269: 5679: 5532: 5474: 5436: 4852: 3520:
Adding to one row a scalar multiple of another does not change the determinant.
3479: 6038: 5957: 5509:, even though there are examples of stable matrices for which it is unstable. 3685:
operations if the sub-determinants are memorized for being computed only once
6819: 6781: 6704: 6664: 6631: 6611: 6203: 6154: 6108: 6080:
Bolch, Gunter; Greiner, Stefan; de Meer, Hermann; Trivedi, Kishor S. (2006),
5862: 5729:"DOCUMENTA MATHEMATICA, Vol. Extra Volume: Optimization Stories (2012), 9-14" 56: 6026: 6714: 6603: 6553: 6446: 6001: 4910: 4840: 4700: 3758: 3466: 5908: 5763: 67:(1777–1855). To perform row reduction on a matrix, one uses a sequence of 6694: 6659: 6616: 6461: 6311: 6289:"Numerical Methods with Applications: Chapter 04.06 Gaussian Elimination" 5457: 4707:
has a basis consisting of its columns 1, 3, 4, 7 and 9 (the columns with
52: 5690:
of the algorithm, when floating point is used for representing numbers.
6723: 6466: 5870: 5605:
with the indices starting from 1. The transformation is performed
5586: 4285:
the product of these elementary matrices, we showed, on the left, that
3624: 5903:. ISSAC '97. Kihei, Maui, Hawaii, United States: ACM. pp. 28–31. 6521: 3429:. So there is a unique solution to the original system of equations. 36: 6147:
Undergraduate Convexity: From Fourier and Motzkin to Kuhn and Tucker
5854: 3603:{\displaystyle \det(A)={\frac {\prod \operatorname {diag} (B)}{d}}.} 6689: 5764:
Timothy Gowers; June Barrow-Green; Imre Leader (8 September 2008).
85:
Using these operations, a matrix can always be transformed into an
6194: 6010: 6373: 5710:- another process for bringing a matrix into some canonical form. 5549: 5539: 4844: 3459: 1011:. Then, using back-substitution, each unknown can be solved for. 6327: 5671:
j = k + 1 ... n: A := A - A * f /*
2150:
The matrix is now in echelon form (also called triangular form)
6699: 6328:
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007),
5633: 5897:"On the worst-case complexity of integer Gaussian elimination" 5309:{\textstyle {\frac {r_{k,k}R_{i}-r_{i,k}R_{k}}{r_{k-1,k-1}}}.} 4916:
In standard Gaussian elimination, one subtracts from each row
4275:
One can think of each row operation as the left product by an
5544: 3725:
square matrix, then one can use row reduction to compute its
47:
of coefficients. This method can also be used to compute the
5659:
i = h + 1 ... m: f := A / A /*
5564:
As explained above, Gaussian elimination transforms a given
4737:
can be written as linear combinations of the basis columns.
691:
be achieved by using elementary row operations of type 3).
6079: 5538:
Computing the rank of a tensor of order greater than 2 is
6308:
Schaum's outline of theory and problems of linear algebra
5531:. This generalization depends heavily on the notion of a 4323:
The Gaussian elimination algorithm can be applied to any
3789:. If the algorithm is unable to reduce the left block to 5934: 6130:, STATISTICS: Textbooks and Monographs, Marcel Dekker, 480: 6336:(3rd ed.), New York: Cambridge University Press, 5213: 4355: 3822: 3783:; in this case the right block of the final matrix is 3299: 3039: 2371: 2239: 2211: 1894: 1866: 1581: 1465: 1437: 583: 373: 283: 193: 109: 5388: 5333: 5186: 5153: 5126: 5093: 5060: 5003: 4976: 4949: 4922: 4343: 4075: 3913: 3810: 3642: 3554: 3280: 3098: 2989: 2868: 2767: 2677: 2545: 2430: 2308: 2160: 2037: 1977: 1799: 1684: 1562: 1370: 1254: 1035: 705: 577: 103: 4909:
algorithm for Gaussian elimination was published by
3274:. These row operations are labelled in the table as 5949:
Geometric algorithms and combinatorial optimization
5849:(2), Mathematical Association of America: 130–142, 5675:*/ h := h + 1 k := k + 1 5463:Computing a solution of a rational equation system 3524:If Gaussian elimination applied to a square matrix 508:. Then the first part of the algorithm computes an 6334:Numerical Recipes: The Art of Scientific Computing 6004:(2009-11-07). "Most tensor problems are NP-hard". 5419: 5367: 5308: 5199: 5169: 5139: 5112: 5079: 5046: 4989: 4962: 4935: 4649: 4265: 4059: 3897: 3698: 3661: 3602: 3544:of the product of the elements of the diagonal of 3514:Swapping two rows multiplies the determinant by −1 3393: 3182: 3083: 2974: 2851: 2752: 2662: 2528: 2415: 2293: 2138: 2022: 1962: 1782: 1669: 1547: 1353: 1237: 967: 676: 454: 5838: 16:Algorithm for solving systems of linear equations 6817: 6024: 5180:Bareiss variant consists, instead, of replacing 3555: 6305: 5661:Fill with zeros the lower part of pivot column: 5527:is a generalization of Gaussian elimination to 5517:Gaussian elimination can be performed over any 4733:), and the stars show how the other columns of 534:Adding a scalar multiple of one row to another. 6243:Accuracy and Stability of Numerical Algorithms 6389: 6294:(1st ed.). University of South Florida. 6153: 5987: 5665:Do for all remaining elements in current row: 3465:The method in Europe stems from the notes of 6227:Notices of the American Mathematical Society 5642:No pivot in this column, pass to next column 4318: 3804:For example, consider the following matrix: 81:Adding a multiple of one row to another row. 6125: 6025:Kurgalin, Sergei; Borzunov, Sergei (2021). 5882: 5770:. Princeton University Press. p. 607. 4807:subtractions, for a total of approximately 4743: 4657:where the stars are arbitrary entries, and 694: 6396: 6382: 5663:*/ A := 0 /* 485:The process of row reduction makes use of 6306:Lipson, Marc; Lipschutz, Seymour (2001), 6193: 6009: 5999: 5894: 4679:are nonzero entries. This echelon matrix 3649: 3505: 3455:The Nine Chapters on the Mathematical Art 6220:"Mathematicians of Gaussian elimination" 6102: 6056: 5757: 5751: 4695:is 5, since there are 5 nonzero rows in 2149: 18: 6286: 6266:A History of Mathematics, Brief Version 5120:are the entries in the pivot column of 4683:contains a wealth of information about 6818: 6787:Comparison of linear algebra libraries 6237: 6217: 6179: 5826: 5802: 5790: 5767:The Princeton Companion to Mathematics 5488: 2023:{\displaystyle L_{3}+-4L_{2}\to L_{3}} 78:Multiplying a row by a nonzero number, 6377: 6144: 6059:An Introduction to Numerical Analysis 5930: 5928: 5895:Fang, Xin Gui; Havas, George (1997). 5814: 5556:representations of order-2 tensors). 6263: 5368:{\displaystyle {\tilde {O}}(n^{5}),} 4894: 4305:. On the right, we kept a record of 481:Definitions and example of algorithm 6105:A Contextual History of Mathematics 5420:{\displaystyle {\tilde {O}}(n^{4})} 3632:arithmetic operations, while using 564: 13: 6403: 6027:"Algebra and Geometry with Python" 5925: 5618:Initialization of the pivot column 5512: 14: 6842: 6362: 6128:Linear Least Squares Computations 5842:The American Mathematical Monthly 627: 591: 515: 6800: 6799: 6777:Basic Linear Algebra Subprograms 6535: 6301:from the original on 2012-09-07. 5593:denotes the entry of the matrix 5477:of a nonsingular rational matrix 5047:{\displaystyle r_{i,k}/r_{k,k},} 3634:Leibniz formula for determinants 1007:. This will put the system into 630: 594: 527:Multiplying a row by a non-zero 6675:Seven-dimensional cross product 6287:Kaw, Autar; Kalu, Egwu (2010). 6165:(3rd ed.), Johns Hopkins, 6018: 5993: 5981: 5888: 5644:*/ k := k + 1 5614:Initialization of the pivot row 5529:systems of polynomial equations 3699:Finding the inverse of a matrix 3622:matrix, this method needs only 3497: 2942: 2938: 2914: 2906: 2882: 2878: 2630: 2604: 2574: 944: 856: 768: 542: 6049: 5876: 5832: 5820: 5808: 5796: 5784: 5745: 5721: 5414: 5401: 5395: 5359: 5346: 5340: 4090: 4083: 4076: 3928: 3921: 3914: 3656: 3643: 3588: 3582: 3564: 3558: 3528:produces a row echelon matrix 3371: 3324: 3064: 3021: 2733: 2699: 2396: 2340: 2007: 1650: 1606: 958: 945: 870: 857: 782: 769: 365: 275: 185: 1: 6057:Atkinson, Kendall A. (1989), 5714: 5673:Increase pivot row and column 5559: 5521:, not just the real numbers. 4867:, it has a bit complexity of 3742:is augmented to the right of 89:, and in fact one that is in 6517:Eigenvalues and eigenvectors 5653:Do for all rows below pivot: 2861: 2538: 2153: 1792: 1363: 1028: 63:. The method is named after 7: 5696: 5450:given rational vectors are 3729:, if it exists. First, the 41:systems of linear equations 10: 6847: 6218:Grcar, Joseph F. (2011b), 6126:Farebrother, R.W. (1988), 6061:(2nd ed.), New York: 5636:(i = h ... m, abs(A)) 4898: 4889:system of linear equations 4843:. If the coefficients are 4815:operations. Thus it has a 4703:spanned by the columns of 3702: 3485:Some authors use the term 3440: 546: 6795: 6757: 6713: 6650: 6602: 6544: 6533: 6429: 6411: 6369:Interactive didactic tool 6103:Calinger, Ronald (1999), 6039:10.1007/978-3-030-61541-3 5988:Golub & Van Loan 1996 5958:10.1007/978-3-642-78240-4 4855:is exponential. However, 4839:or when they belong to a 4319:Computing ranks and bases 998:from all equations below 985:from all equations below 487:elementary row operations 472:. In this case, the term 69:elementary row operations 6826:Numerical linear algebra 6264:Katz, Victor J. (2004), 6204:10.1016/j.hm.2010.06.003 5493:One possible problem is 4907:strongly-polynomial time 4877:strongly-polynomial time 4744:Computational efficiency 3612:Computationally, for an 695:Example of the algorithm 468:Gauss–Jordan elimination 95:reduced row echelon form 59:, and the inverse of an 5703:Fangcheng (mathematics) 5113:{\displaystyle r_{k,k}} 5080:{\displaystyle r_{i,k}} 4266:{\displaystyle =\left.} 4060:{\displaystyle =\left.} 3662:{\displaystyle (n\,n!)} 3471:Arithmetica Universalis 524:Interchanging two rows. 87:upper triangular matrix 6502:Row and column vectors 5651:(h, i_max) /* 5525:Buchberger's algorithm 5421: 5369: 5310: 5201: 5171: 5170:{\displaystyle R_{k},} 5141: 5114: 5081: 5048: 4991: 4964: 4937: 4875:, and has therefore a 4837:floating-point numbers 4651: 4267: 4061: 3899: 3663: 3604: 3506:Computing determinants 3395: 3184: 3085: 2976: 2853: 2754: 2664: 2530: 2417: 2295: 2140: 2024: 1964: 1784: 1671: 1549: 1355: 1239: 969: 678: 456: 24: 6507:Row and column spaces 6452:Scalar multiplication 6063:John Wiley & Sons 6000:Hillar, Christopher; 5909:10.1145/258726.258740 5632:*/ i_max := 5495:numerical instability 5427:can be obtained with 5422: 5370: 5311: 5202: 5200:{\displaystyle R_{i}} 5172: 5142: 5140:{\displaystyle R_{i}} 5115: 5082: 5049: 4992: 4990:{\displaystyle R_{k}} 4965: 4963:{\displaystyle R_{k}} 4938: 4936:{\displaystyle R_{i}} 4817:arithmetic complexity 4791:multiplications, and 4750:arithmetic operations 4652: 4268: 4062: 3900: 3664: 3605: 3396: 3185: 3183:{\displaystyle \left} 3086: 2977: 2854: 2852:{\displaystyle \left} 2755: 2665: 2531: 2529:{\displaystyle \left} 2418: 2296: 2141: 2139:{\displaystyle \left} 2025: 1965: 1785: 1783:{\displaystyle \left} 1672: 1550: 1356: 1354:{\displaystyle \left} 1240: 994:, and then eliminate 970: 679: 457: 22: 6642:Gram–Schmidt process 6594:Gaussian elimination 6182:Historia Mathematica 6159:Van Loan, Charles F. 5944:Schrijver, Alexander 5708:Gram–Schmidt process 5630:Find the k-th pivot: 5484:of a rational matrix 5460:of a rational matrix 5452:linearly independent 5433:Chinese remaindering 5386: 5331: 5211: 5184: 5151: 5124: 5091: 5058: 5001: 4974: 4947: 4943:below the pivot row 4920: 4341: 4073: 3911: 3808: 3640: 3552: 3487:Gaussian elimination 3476:Carl Friedrich Gauss 3462:in the 3rd century. 3278: 3096: 2987: 2866: 2765: 2675: 2543: 2428: 2306: 2158: 2035: 1975: 1797: 1682: 1560: 1368: 1252: 1033: 703: 575: 498:matrix decomposition 474:Gaussian elimination 101: 65:Carl Friedrich Gauss 29:Gaussian elimination 6831:Exchange algorithms 6772:Numerical stability 6652:Multilinear algebra 6627:Inner product space 6477:Linear independence 6163:Matrix Computations 5688:numerical stability 5499:diagonally dominant 5489:Numeric instability 5431:followed either by 5429:modular computation 5325:Hadamard inequality 3801:is not invertible. 3771:matrix. The matrix 3540:is the quotient by 3247:is eliminated from 3201:is eliminated from 1019:System of equations 556:leading coefficient 502:elementary matrices 6482:Linear combination 6314:, pp. 69–80, 6145:Lauritzen, Niels, 6086:Wiley-Interscience 5805:, pp. 783–785 5793:, pp. 169–172 5754:, pp. 234–236 5616:*/ k := 1 /* 5417: 5365: 5306: 5197: 5167: 5137: 5110: 5077: 5044: 4987: 4960: 4933: 4857:Bareiss' algorithm 4647: 4638: 4263: 4254: 4057: 4048: 3895: 3886: 3659: 3600: 3449:Rectangular Arrays 3391: 3389: 3308: 3180: 3174: 3081: 3079: 3048: 2972: 2970: 2849: 2843: 2750: 2748: 2660: 2658: 2526: 2520: 2413: 2411: 2380: 2291: 2289: 2248: 2220: 2136: 2130: 2020: 1960: 1958: 1903: 1875: 1780: 1774: 1667: 1665: 1590: 1545: 1543: 1474: 1446: 1351: 1345: 1235: 1233: 965: 963: 674: 665: 635: 599: 452: 446: 359: 269: 179: 75:Swapping two rows, 25: 6813: 6812: 6680:Geometric algebra 6637:Kronecker product 6472:Linear projection 6457:Vector projection 6343:978-0-521-88068-8 6321:978-0-07-136200-9 6279:978-0-321-16193-2 6256:978-0-89871-521-7 6172:978-0-8018-5414-9 6137:978-0-8247-7661-9 6118:978-0-02-318285-3 6095:978-0-471-79156-0 5967:978-3-642-78242-8 5936:Grötschel, Martin 5777:978-0-691-11880-2 5640:A = 0 /* 5585:In the following 5578:into a matrix in 5503:positive-definite 5398: 5343: 5301: 4901:Bareiss algorithm 4895:Bareiss algorithm 4885:iterative methods 4295:, and therefore, 4277:elementary matrix 4250: 4238: 4226: 4197: 4180: 4151: 4139: 4127: 3705:Invertible matrix 3688: 3675:Laplace expansion 3672: 3595: 3307: 3193: 3192: 3047: 2491: 2474: 2379: 2247: 2219: 2096: 2084: 1902: 1874: 1743: 1731: 1589: 1473: 1445: 1025:Augmented matrix 491:back substitution 61:invertible matrix 51:of a matrix, the 6838: 6803: 6802: 6685:Exterior algebra 6622:Hadamard product 6539: 6527:Linear equations 6398: 6391: 6384: 6375: 6374: 6357: 6356: 6355: 6346:, archived from 6324: 6302: 6300: 6293: 6282: 6259: 6245:(2nd ed.), 6239:Higham, Nicholas 6234: 6224: 6214: 6197: 6175: 6149: 6140: 6121: 6098: 6084:(2nd ed.), 6075: 6043: 6042: 6022: 6016: 6015: 6013: 5997: 5991: 5985: 5979: 5978: 5932: 5923: 5922: 5892: 5886: 5883:Farebrother 1988 5880: 5874: 5873: 5836: 5830: 5824: 5818: 5812: 5806: 5800: 5794: 5788: 5782: 5781: 5761: 5755: 5749: 5743: 5742: 5740: 5739: 5725: 5684:partial pivoting 5604: 5600: 5596: 5592: 5580:row-echelon form 5577: 5573: 5547: 5542:. Therefore, if 5507:partial pivoting 5446:Testing whether 5426: 5424: 5423: 5418: 5413: 5412: 5400: 5399: 5391: 5374: 5372: 5371: 5366: 5358: 5357: 5345: 5344: 5336: 5315: 5313: 5312: 5307: 5302: 5300: 5299: 5272: 5271: 5270: 5261: 5260: 5242: 5241: 5232: 5231: 5215: 5206: 5204: 5203: 5198: 5196: 5195: 5176: 5174: 5173: 5168: 5163: 5162: 5146: 5144: 5143: 5138: 5136: 5135: 5119: 5117: 5116: 5111: 5109: 5108: 5086: 5084: 5083: 5078: 5076: 5075: 5053: 5051: 5050: 5045: 5040: 5039: 5024: 5019: 5018: 4996: 4994: 4993: 4988: 4986: 4985: 4969: 4967: 4966: 4961: 4959: 4958: 4942: 4940: 4939: 4934: 4932: 4931: 4874: 4866: 4849:rational numbers 4830: 4814: 4806: 4790: 4774: 4763: 4757: 4736: 4732: 4728: 4706: 4698: 4694: 4686: 4682: 4678: 4656: 4654: 4653: 4648: 4643: 4642: 4336: 4332: 4314: 4304: 4294: 4284: 4272: 4270: 4269: 4264: 4259: 4255: 4251: 4243: 4239: 4231: 4227: 4219: 4198: 4190: 4181: 4173: 4152: 4144: 4140: 4132: 4128: 4120: 4086: 4066: 4064: 4063: 4058: 4053: 4049: 3924: 3904: 3902: 3901: 3896: 3891: 3890: 3800: 3794: 3788: 3782: 3776: 3770: 3757: 3747: 3738: 3724: 3714: 3694: 3686: 3684: 3673:, and recursive 3670: 3668: 3666: 3665: 3660: 3631: 3621: 3609: 3607: 3606: 3601: 3596: 3591: 3571: 3547: 3543: 3539: 3535: 3531: 3527: 3428: 3421: 3414: 3406: 3400: 3398: 3397: 3392: 3390: 3383: 3382: 3366: 3365: 3353: 3352: 3336: 3335: 3319: 3318: 3309: 3300: 3294: 3293: 3273: 3264: 3255: 3246: 3242: 3233: 3226: 3224: 3223: 3220: 3217: 3209: 3200: 3189: 3187: 3186: 3181: 3179: 3175: 3090: 3088: 3087: 3082: 3080: 3076: 3075: 3059: 3058: 3049: 3040: 3033: 3032: 3016: 3015: 3003: 3002: 2981: 2979: 2978: 2973: 2971: 2968: 2958: 2953: 2940: 2936: 2933: 2926: 2921: 2916: 2904: 2901: 2894: 2889: 2884: 2880: 2858: 2856: 2855: 2850: 2848: 2844: 2759: 2757: 2756: 2751: 2749: 2745: 2744: 2728: 2727: 2711: 2710: 2694: 2693: 2669: 2667: 2666: 2661: 2659: 2656: 2646: 2641: 2628: 2627: 2626: 2623: 2616: 2611: 2606: 2597: 2596: 2593: 2586: 2581: 2576: 2566: 2561: 2535: 2533: 2532: 2527: 2525: 2521: 2492: 2484: 2475: 2467: 2422: 2420: 2419: 2414: 2412: 2408: 2407: 2391: 2390: 2381: 2372: 2366: 2365: 2352: 2351: 2335: 2334: 2322: 2321: 2300: 2298: 2297: 2292: 2290: 2287: 2282: 2277: 2266: 2261: 2256: 2255: 2254: 2251: 2249: 2240: 2237: 2232: 2227: 2226: 2221: 2212: 2208: 2207: 2204: 2199: 2194: 2189: 2188: 2181: 2176: 2145: 2143: 2142: 2137: 2135: 2131: 2097: 2089: 2085: 2077: 2029: 2027: 2026: 2021: 2019: 2018: 2006: 2005: 1987: 1986: 1969: 1967: 1966: 1961: 1959: 1956: 1949: 1944: 1931: 1930: 1929: 1928: 1925: 1918: 1913: 1904: 1895: 1890: 1885: 1876: 1867: 1863: 1862: 1859: 1852: 1847: 1836: 1831: 1820: 1815: 1789: 1787: 1786: 1781: 1779: 1775: 1744: 1736: 1732: 1724: 1676: 1674: 1673: 1668: 1666: 1662: 1661: 1645: 1644: 1632: 1631: 1618: 1617: 1601: 1600: 1591: 1582: 1576: 1575: 1554: 1552: 1551: 1546: 1544: 1541: 1534: 1529: 1518: 1513: 1500: 1499: 1496: 1489: 1484: 1475: 1466: 1461: 1456: 1447: 1438: 1434: 1433: 1430: 1423: 1418: 1407: 1402: 1391: 1386: 1360: 1358: 1357: 1352: 1350: 1346: 1244: 1242: 1241: 1236: 1234: 1231: 1221: 1216: 1202: 1197: 1186: 1181: 1163: 1153: 1148: 1134: 1129: 1118: 1113: 1095: 1088: 1083: 1072: 1067: 1056: 1051: 1016: 1015: 1006: 997: 993: 984: 979:augmented matrix 974: 972: 971: 966: 964: 957: 956: 931: 926: 912: 907: 896: 891: 869: 868: 843: 838: 824: 819: 808: 803: 781: 780: 758: 753: 742: 737: 726: 721: 683: 681: 680: 675: 670: 669: 634: 633: 598: 597: 549:Row echelon form 510:LU decomposition 506:Frobenius matrix 470: 469: 461: 459: 458: 453: 451: 450: 364: 363: 274: 273: 184: 183: 91:row echelon form 31:, also known as 27:In mathematics, 6846: 6845: 6841: 6840: 6839: 6837: 6836: 6835: 6816: 6815: 6814: 6809: 6791: 6753: 6709: 6646: 6598: 6540: 6531: 6497:Change of basis 6487:Multilinear map 6425: 6407: 6402: 6365: 6360: 6353: 6351: 6344: 6322: 6298: 6291: 6280: 6257: 6222: 6173: 6138: 6119: 6096: 6073: 6052: 6047: 6046: 6023: 6019: 5998: 5994: 5986: 5982: 5968: 5933: 5926: 5919: 5893: 5889: 5881: 5877: 5855:10.2307/2322413 5837: 5833: 5825: 5821: 5813: 5809: 5801: 5797: 5789: 5785: 5778: 5762: 5758: 5750: 5746: 5737: 5735: 5727: 5726: 5722: 5717: 5699: 5676: 5667:*/ 5612:h := 1 /* 5602: 5598: 5594: 5590: 5575: 5565: 5562: 5543: 5515: 5513:Generalizations 5491: 5408: 5404: 5390: 5389: 5387: 5384: 5383: 5377:soft O notation 5353: 5349: 5335: 5334: 5332: 5329: 5328: 5277: 5273: 5266: 5262: 5250: 5246: 5237: 5233: 5221: 5217: 5216: 5214: 5212: 5209: 5208: 5191: 5187: 5185: 5182: 5181: 5158: 5154: 5152: 5149: 5148: 5131: 5127: 5125: 5122: 5121: 5098: 5094: 5092: 5089: 5088: 5065: 5061: 5059: 5056: 5055: 5029: 5025: 5020: 5008: 5004: 5002: 4999: 4998: 4981: 4977: 4975: 4972: 4971: 4954: 4950: 4948: 4945: 4944: 4927: 4923: 4921: 4918: 4917: 4903: 4897: 4868: 4860: 4824: 4821:time complexity 4808: 4792: 4776: 4765: 4759: 4753: 4746: 4734: 4730: 4708: 4704: 4696: 4692: 4684: 4680: 4658: 4637: 4636: 4631: 4626: 4621: 4616: 4611: 4606: 4601: 4596: 4590: 4589: 4584: 4579: 4574: 4569: 4564: 4559: 4554: 4549: 4543: 4542: 4537: 4532: 4527: 4522: 4517: 4512: 4507: 4502: 4496: 4495: 4490: 4485: 4480: 4475: 4470: 4465: 4460: 4455: 4449: 4448: 4443: 4438: 4433: 4428: 4423: 4418: 4413: 4408: 4402: 4401: 4396: 4391: 4386: 4381: 4376: 4371: 4366: 4361: 4351: 4350: 4342: 4339: 4338: 4334: 4324: 4321: 4306: 4296: 4286: 4280: 4253: 4252: 4242: 4240: 4230: 4228: 4218: 4216: 4211: 4206: 4200: 4199: 4189: 4187: 4182: 4172: 4170: 4165: 4160: 4154: 4153: 4143: 4141: 4131: 4129: 4119: 4117: 4112: 4107: 4100: 4096: 4082: 4074: 4071: 4070: 4047: 4046: 4041: 4036: 4031: 4026: 4018: 4012: 4011: 4006: 4001: 3996: 3988: 3983: 3974: 3973: 3968: 3963: 3958: 3953: 3945: 3938: 3934: 3920: 3912: 3909: 3908: 3885: 3884: 3879: 3871: 3865: 3864: 3856: 3851: 3842: 3841: 3836: 3828: 3818: 3817: 3809: 3806: 3805: 3796: 3790: 3784: 3778: 3772: 3762: 3749: 3743: 3740:identity matrix 3730: 3716: 3710: 3707: 3701: 3690: 3678: 3641: 3638: 3637: 3623: 3613: 3572: 3570: 3553: 3550: 3549: 3545: 3541: 3537: 3533: 3529: 3525: 3508: 3500: 3447:Chapter Eight: 3443: 3423: 3416: 3409: 3404: 3388: 3387: 3378: 3374: 3367: 3361: 3357: 3348: 3344: 3341: 3340: 3331: 3327: 3320: 3314: 3310: 3298: 3289: 3285: 3281: 3279: 3276: 3275: 3272: 3266: 3263: 3257: 3254: 3248: 3244: 3241: 3235: 3232: 3221: 3218: 3215: 3214: 3212: 3211: 3208: 3202: 3198: 3173: 3172: 3164: 3159: 3154: 3148: 3147: 3142: 3137: 3132: 3126: 3125: 3120: 3115: 3110: 3103: 3099: 3097: 3094: 3093: 3078: 3077: 3071: 3067: 3060: 3054: 3050: 3038: 3035: 3034: 3028: 3024: 3017: 3011: 3007: 2998: 2994: 2990: 2988: 2985: 2984: 2969: 2967: 2959: 2957: 2952: 2948: 2943: 2939: 2934: 2932: 2927: 2925: 2920: 2915: 2912: 2907: 2902: 2900: 2895: 2893: 2888: 2883: 2879: 2876: 2869: 2867: 2864: 2863: 2842: 2841: 2833: 2828: 2823: 2817: 2816: 2811: 2806: 2801: 2795: 2794: 2789: 2784: 2779: 2772: 2768: 2766: 2763: 2762: 2747: 2746: 2740: 2736: 2729: 2723: 2719: 2713: 2712: 2706: 2702: 2695: 2689: 2685: 2678: 2676: 2673: 2672: 2657: 2655: 2647: 2645: 2640: 2636: 2631: 2624: 2622: 2617: 2615: 2610: 2605: 2602: 2594: 2592: 2587: 2585: 2580: 2575: 2572: 2567: 2565: 2560: 2556: 2546: 2544: 2541: 2540: 2519: 2518: 2513: 2505: 2500: 2494: 2493: 2483: 2481: 2476: 2466: 2464: 2458: 2457: 2452: 2447: 2442: 2435: 2431: 2429: 2426: 2425: 2410: 2409: 2403: 2399: 2392: 2386: 2382: 2370: 2361: 2357: 2354: 2353: 2347: 2343: 2336: 2330: 2326: 2317: 2313: 2309: 2307: 2304: 2303: 2288: 2286: 2281: 2276: 2272: 2267: 2265: 2260: 2252: 2250: 2238: 2236: 2231: 2225: 2210: 2205: 2203: 2198: 2193: 2187: 2182: 2180: 2175: 2171: 2161: 2159: 2156: 2155: 2129: 2128: 2123: 2115: 2110: 2104: 2103: 2098: 2088: 2086: 2076: 2074: 2068: 2067: 2062: 2054: 2049: 2042: 2038: 2036: 2033: 2032: 2014: 2010: 2001: 1997: 1982: 1978: 1976: 1973: 1972: 1957: 1955: 1950: 1948: 1943: 1939: 1926: 1924: 1919: 1917: 1912: 1908: 1893: 1891: 1889: 1884: 1880: 1865: 1860: 1858: 1853: 1851: 1846: 1842: 1837: 1835: 1830: 1826: 1821: 1819: 1814: 1810: 1800: 1798: 1795: 1794: 1773: 1772: 1767: 1762: 1757: 1751: 1750: 1745: 1735: 1733: 1723: 1721: 1715: 1714: 1709: 1701: 1696: 1689: 1685: 1683: 1680: 1679: 1664: 1663: 1657: 1653: 1646: 1640: 1636: 1627: 1623: 1620: 1619: 1613: 1609: 1602: 1596: 1592: 1580: 1571: 1567: 1563: 1561: 1558: 1557: 1542: 1540: 1535: 1533: 1528: 1524: 1519: 1517: 1512: 1508: 1497: 1495: 1490: 1488: 1483: 1479: 1464: 1462: 1460: 1455: 1451: 1436: 1431: 1429: 1424: 1422: 1417: 1413: 1408: 1406: 1401: 1397: 1392: 1390: 1385: 1381: 1371: 1369: 1366: 1365: 1344: 1343: 1335: 1330: 1325: 1316: 1315: 1307: 1302: 1294: 1285: 1284: 1279: 1271: 1266: 1259: 1255: 1253: 1250: 1249: 1232: 1230: 1222: 1220: 1215: 1211: 1203: 1201: 1196: 1192: 1187: 1185: 1180: 1176: 1164: 1162: 1154: 1152: 1147: 1143: 1135: 1133: 1128: 1124: 1119: 1117: 1112: 1108: 1096: 1094: 1089: 1087: 1082: 1078: 1073: 1071: 1066: 1062: 1057: 1055: 1050: 1046: 1036: 1034: 1031: 1030: 1009:triangular form 1005: 999: 995: 992: 986: 982: 962: 961: 952: 948: 940: 932: 930: 925: 921: 913: 911: 906: 902: 897: 895: 890: 886: 874: 873: 864: 860: 852: 844: 842: 837: 833: 825: 823: 818: 814: 809: 807: 802: 798: 786: 785: 776: 772: 764: 759: 757: 752: 748: 743: 741: 736: 732: 727: 725: 720: 716: 706: 704: 701: 700: 697: 664: 663: 658: 653: 648: 642: 641: 636: 629: 628: 625: 620: 614: 613: 605: 600: 593: 592: 589: 579: 578: 576: 573: 572: 551: 545: 518: 483: 467: 466: 445: 444: 439: 434: 429: 423: 422: 417: 412: 407: 401: 400: 392: 384: 379: 369: 368: 358: 357: 352: 347: 342: 336: 335: 327: 319: 311: 305: 304: 299: 294: 289: 279: 278: 268: 267: 262: 257: 252: 246: 245: 237: 229: 221: 215: 214: 209: 204: 199: 189: 188: 178: 177: 172: 167: 162: 156: 155: 150: 142: 137: 131: 130: 125: 120: 115: 105: 104: 102: 99: 98: 17: 12: 11: 5: 6844: 6834: 6833: 6828: 6811: 6810: 6808: 6807: 6796: 6793: 6792: 6790: 6789: 6784: 6779: 6774: 6769: 6767:Floating-point 6763: 6761: 6755: 6754: 6752: 6751: 6749:Tensor product 6746: 6741: 6736: 6734:Function space 6731: 6726: 6720: 6718: 6711: 6710: 6708: 6707: 6702: 6697: 6692: 6687: 6682: 6677: 6672: 6670:Triple product 6667: 6662: 6656: 6654: 6648: 6647: 6645: 6644: 6639: 6634: 6629: 6624: 6619: 6614: 6608: 6606: 6600: 6599: 6597: 6596: 6591: 6586: 6584:Transformation 6581: 6576: 6574:Multiplication 6571: 6566: 6561: 6556: 6550: 6548: 6542: 6541: 6534: 6532: 6530: 6529: 6524: 6519: 6514: 6509: 6504: 6499: 6494: 6489: 6484: 6479: 6474: 6469: 6464: 6459: 6454: 6449: 6444: 6439: 6433: 6431: 6430:Basic concepts 6427: 6426: 6424: 6423: 6418: 6412: 6409: 6408: 6405:Linear algebra 6401: 6400: 6393: 6386: 6378: 6372: 6371: 6364: 6363:External links 6361: 6359: 6358: 6342: 6325: 6320: 6303: 6284: 6278: 6270:Addison-Wesley 6261: 6255: 6235: 6215: 6188:(2): 163–218, 6177: 6171: 6155:Golub, Gene H. 6151: 6142: 6136: 6123: 6117: 6100: 6094: 6077: 6072:978-0471624899 6071: 6053: 6051: 6048: 6045: 6044: 6017: 5992: 5980: 5966: 5940:Lovász, László 5924: 5917: 5887: 5875: 5831: 5819: 5807: 5795: 5783: 5776: 5756: 5744: 5719: 5718: 5716: 5713: 5712: 5711: 5705: 5698: 5695: 5680:absolute value 5611: 5561: 5558: 5552:(matrices are 5533:monomial order 5514: 5511: 5490: 5487: 5486: 5485: 5480:Computing the 5478: 5475:inverse matrix 5473:Computing the 5471: 5461: 5456:Computing the 5454: 5437:Hensel lifting 5416: 5411: 5407: 5403: 5397: 5394: 5364: 5361: 5356: 5352: 5348: 5342: 5339: 5305: 5298: 5295: 5292: 5289: 5286: 5283: 5280: 5276: 5269: 5265: 5259: 5256: 5253: 5249: 5245: 5240: 5236: 5230: 5227: 5224: 5220: 5194: 5190: 5177:respectively. 5166: 5161: 5157: 5134: 5130: 5107: 5104: 5101: 5097: 5074: 5071: 5068: 5064: 5043: 5038: 5035: 5032: 5028: 5023: 5017: 5014: 5011: 5007: 4984: 4980: 4970:a multiple of 4957: 4953: 4930: 4926: 4899:Main article: 4896: 4893: 4853:bit complexity 4758:equations for 4748:The number of 4745: 4742: 4646: 4641: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4595: 4592: 4591: 4588: 4585: 4583: 4580: 4578: 4575: 4573: 4570: 4568: 4565: 4563: 4560: 4558: 4555: 4553: 4550: 4548: 4545: 4544: 4541: 4538: 4536: 4533: 4531: 4528: 4526: 4523: 4521: 4518: 4516: 4513: 4511: 4508: 4506: 4503: 4501: 4498: 4497: 4494: 4491: 4489: 4486: 4484: 4481: 4479: 4476: 4474: 4471: 4469: 4466: 4464: 4461: 4459: 4456: 4454: 4451: 4450: 4447: 4444: 4442: 4439: 4437: 4434: 4432: 4429: 4427: 4424: 4422: 4419: 4417: 4414: 4412: 4409: 4407: 4404: 4403: 4400: 4397: 4395: 4392: 4390: 4387: 4385: 4382: 4380: 4377: 4375: 4372: 4370: 4367: 4365: 4362: 4360: 4357: 4356: 4354: 4349: 4346: 4320: 4317: 4279:. Denoting by 4262: 4258: 4249: 4246: 4241: 4237: 4234: 4229: 4225: 4222: 4217: 4215: 4212: 4210: 4207: 4205: 4202: 4201: 4196: 4193: 4188: 4186: 4183: 4179: 4176: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4155: 4150: 4147: 4142: 4138: 4135: 4130: 4126: 4123: 4118: 4116: 4113: 4111: 4108: 4106: 4103: 4102: 4099: 4095: 4092: 4089: 4085: 4081: 4078: 4056: 4052: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4022: 4019: 4017: 4014: 4013: 4010: 4007: 4005: 4002: 4000: 3997: 3995: 3992: 3989: 3987: 3984: 3982: 3979: 3976: 3975: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3946: 3944: 3941: 3940: 3937: 3933: 3930: 3927: 3923: 3919: 3916: 3894: 3889: 3883: 3880: 3878: 3875: 3872: 3870: 3867: 3866: 3863: 3860: 3857: 3855: 3852: 3850: 3847: 3844: 3843: 3840: 3837: 3835: 3832: 3829: 3827: 3824: 3823: 3821: 3816: 3813: 3727:inverse matrix 3700: 3697: 3658: 3655: 3652: 3648: 3645: 3599: 3594: 3590: 3587: 3584: 3581: 3578: 3575: 3569: 3566: 3563: 3560: 3557: 3522: 3521: 3518: 3515: 3507: 3504: 3499: 3496: 3492:Wilhelm Jordan 3480:hand computers 3442: 3439: 3386: 3381: 3377: 3373: 3370: 3368: 3364: 3360: 3356: 3351: 3347: 3343: 3342: 3339: 3334: 3330: 3326: 3323: 3321: 3317: 3313: 3306: 3303: 3297: 3292: 3288: 3284: 3283: 3270: 3261: 3252: 3239: 3230: 3206: 3195: 3194: 3191: 3190: 3178: 3171: 3168: 3165: 3163: 3160: 3158: 3155: 3153: 3150: 3149: 3146: 3143: 3141: 3138: 3136: 3133: 3131: 3128: 3127: 3124: 3121: 3119: 3116: 3114: 3111: 3109: 3106: 3105: 3102: 3091: 3074: 3070: 3066: 3063: 3061: 3057: 3053: 3046: 3043: 3037: 3036: 3031: 3027: 3023: 3020: 3018: 3014: 3010: 3006: 3001: 2997: 2993: 2992: 2982: 2966: 2963: 2960: 2956: 2951: 2949: 2947: 2944: 2941: 2937: 2935: 2931: 2928: 2924: 2919: 2917: 2913: 2911: 2908: 2905: 2903: 2899: 2896: 2892: 2887: 2885: 2881: 2877: 2875: 2872: 2871: 2860: 2859: 2847: 2840: 2837: 2834: 2832: 2829: 2827: 2824: 2822: 2819: 2818: 2815: 2812: 2810: 2807: 2805: 2802: 2800: 2797: 2796: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2774: 2771: 2760: 2743: 2739: 2735: 2732: 2730: 2726: 2722: 2718: 2715: 2714: 2709: 2705: 2701: 2698: 2696: 2692: 2688: 2684: 2681: 2680: 2670: 2654: 2651: 2648: 2644: 2639: 2637: 2635: 2632: 2629: 2625: 2621: 2618: 2614: 2609: 2607: 2603: 2601: 2598: 2595: 2591: 2588: 2584: 2579: 2577: 2573: 2571: 2568: 2564: 2559: 2557: 2555: 2552: 2549: 2548: 2537: 2536: 2524: 2517: 2514: 2512: 2509: 2506: 2504: 2501: 2499: 2496: 2495: 2490: 2487: 2482: 2480: 2477: 2473: 2470: 2465: 2463: 2460: 2459: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2437: 2434: 2423: 2406: 2402: 2398: 2395: 2393: 2389: 2385: 2378: 2375: 2369: 2364: 2360: 2356: 2355: 2350: 2346: 2342: 2339: 2337: 2333: 2329: 2325: 2320: 2316: 2312: 2311: 2301: 2285: 2280: 2275: 2273: 2271: 2268: 2264: 2259: 2257: 2253: 2246: 2243: 2235: 2230: 2228: 2224: 2218: 2215: 2209: 2206: 2202: 2197: 2192: 2190: 2186: 2183: 2179: 2174: 2172: 2170: 2167: 2164: 2163: 2152: 2151: 2147: 2146: 2134: 2127: 2124: 2122: 2119: 2116: 2114: 2111: 2109: 2106: 2105: 2102: 2099: 2095: 2092: 2087: 2083: 2080: 2075: 2073: 2070: 2069: 2066: 2063: 2061: 2058: 2055: 2053: 2050: 2048: 2045: 2044: 2041: 2030: 2017: 2013: 2009: 2004: 2000: 1996: 1993: 1990: 1985: 1981: 1970: 1954: 1951: 1947: 1942: 1940: 1938: 1935: 1932: 1927: 1923: 1920: 1916: 1911: 1909: 1907: 1901: 1898: 1892: 1888: 1883: 1881: 1879: 1873: 1870: 1864: 1861: 1857: 1854: 1850: 1845: 1843: 1841: 1838: 1834: 1829: 1827: 1825: 1822: 1818: 1813: 1811: 1809: 1806: 1803: 1802: 1791: 1790: 1778: 1771: 1768: 1766: 1763: 1761: 1758: 1756: 1753: 1752: 1749: 1746: 1742: 1739: 1734: 1730: 1727: 1722: 1720: 1717: 1716: 1713: 1710: 1708: 1705: 1702: 1700: 1697: 1695: 1692: 1691: 1688: 1677: 1660: 1656: 1652: 1649: 1647: 1643: 1639: 1635: 1630: 1626: 1622: 1621: 1616: 1612: 1608: 1605: 1603: 1599: 1595: 1588: 1585: 1579: 1574: 1570: 1566: 1565: 1555: 1539: 1536: 1532: 1527: 1525: 1523: 1520: 1516: 1511: 1509: 1507: 1504: 1501: 1498: 1494: 1491: 1487: 1482: 1480: 1478: 1472: 1469: 1463: 1459: 1454: 1452: 1450: 1444: 1441: 1435: 1432: 1428: 1425: 1421: 1416: 1414: 1412: 1409: 1405: 1400: 1398: 1396: 1393: 1389: 1384: 1382: 1380: 1377: 1374: 1373: 1362: 1361: 1349: 1342: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1318: 1317: 1314: 1311: 1308: 1306: 1303: 1301: 1298: 1295: 1293: 1290: 1287: 1286: 1283: 1280: 1278: 1275: 1272: 1270: 1267: 1265: 1262: 1261: 1258: 1247: 1245: 1229: 1226: 1223: 1219: 1214: 1212: 1210: 1207: 1204: 1200: 1195: 1193: 1191: 1188: 1184: 1179: 1177: 1175: 1172: 1169: 1166: 1165: 1161: 1158: 1155: 1151: 1146: 1144: 1142: 1139: 1136: 1132: 1127: 1125: 1123: 1120: 1116: 1111: 1109: 1107: 1104: 1101: 1098: 1097: 1093: 1090: 1086: 1081: 1079: 1077: 1074: 1070: 1065: 1063: 1061: 1058: 1054: 1049: 1047: 1045: 1042: 1039: 1038: 1027: 1026: 1023: 1022:Row operations 1020: 1003: 990: 960: 955: 951: 947: 943: 941: 939: 936: 933: 929: 924: 922: 920: 917: 914: 910: 905: 903: 901: 898: 894: 889: 887: 885: 882: 879: 876: 875: 872: 867: 863: 859: 855: 853: 851: 848: 845: 841: 836: 834: 832: 829: 826: 822: 817: 815: 813: 810: 806: 801: 799: 797: 794: 791: 788: 787: 784: 779: 775: 771: 767: 765: 763: 760: 756: 751: 749: 747: 744: 740: 735: 733: 731: 728: 724: 719: 717: 715: 712: 709: 708: 696: 693: 673: 668: 662: 659: 657: 654: 652: 649: 647: 644: 643: 640: 637: 632: 626: 624: 621: 619: 616: 615: 612: 609: 606: 604: 601: 596: 590: 588: 585: 584: 582: 547:Main article: 544: 541: 536: 535: 532: 525: 517: 516:Row operations 514: 482: 479: 449: 443: 440: 438: 435: 433: 430: 428: 425: 424: 421: 418: 416: 413: 411: 408: 406: 403: 402: 399: 396: 393: 391: 388: 385: 383: 380: 378: 375: 374: 372: 367: 362: 356: 353: 351: 348: 346: 343: 341: 338: 337: 334: 331: 328: 326: 323: 320: 318: 315: 312: 310: 307: 306: 303: 300: 298: 295: 293: 290: 288: 285: 284: 282: 277: 272: 266: 263: 261: 258: 256: 253: 251: 248: 247: 244: 241: 238: 236: 233: 230: 228: 225: 222: 220: 217: 216: 213: 210: 208: 205: 203: 200: 198: 195: 194: 192: 187: 182: 176: 173: 171: 168: 166: 163: 161: 158: 157: 154: 151: 149: 146: 143: 141: 138: 136: 133: 132: 129: 126: 124: 121: 119: 116: 114: 111: 110: 108: 83: 82: 79: 76: 15: 9: 6: 4: 3: 2: 6843: 6832: 6829: 6827: 6824: 6823: 6821: 6806: 6798: 6797: 6794: 6788: 6785: 6783: 6782:Sparse matrix 6780: 6778: 6775: 6773: 6770: 6768: 6765: 6764: 6762: 6760: 6756: 6750: 6747: 6745: 6742: 6740: 6737: 6735: 6732: 6730: 6727: 6725: 6722: 6721: 6719: 6717:constructions 6716: 6712: 6706: 6705:Outermorphism 6703: 6701: 6698: 6696: 6693: 6691: 6688: 6686: 6683: 6681: 6678: 6676: 6673: 6671: 6668: 6666: 6665:Cross product 6663: 6661: 6658: 6657: 6655: 6653: 6649: 6643: 6640: 6638: 6635: 6633: 6632:Outer product 6630: 6628: 6625: 6623: 6620: 6618: 6615: 6613: 6612:Orthogonality 6610: 6609: 6607: 6605: 6601: 6595: 6592: 6590: 6589:Cramer's rule 6587: 6585: 6582: 6580: 6577: 6575: 6572: 6570: 6567: 6565: 6562: 6560: 6559:Decomposition 6557: 6555: 6552: 6551: 6549: 6547: 6543: 6538: 6528: 6525: 6523: 6520: 6518: 6515: 6513: 6510: 6508: 6505: 6503: 6500: 6498: 6495: 6493: 6490: 6488: 6485: 6483: 6480: 6478: 6475: 6473: 6470: 6468: 6465: 6463: 6460: 6458: 6455: 6453: 6450: 6448: 6445: 6443: 6440: 6438: 6435: 6434: 6432: 6428: 6422: 6419: 6417: 6414: 6413: 6410: 6406: 6399: 6394: 6392: 6387: 6385: 6380: 6379: 6376: 6370: 6367: 6366: 6350:on 2012-03-19 6349: 6345: 6339: 6335: 6331: 6330:"Section 2.2" 6326: 6323: 6317: 6313: 6309: 6304: 6297: 6290: 6285: 6281: 6275: 6271: 6267: 6262: 6258: 6252: 6248: 6244: 6240: 6236: 6232: 6228: 6221: 6216: 6213: 6209: 6205: 6201: 6196: 6191: 6187: 6183: 6178: 6174: 6168: 6164: 6160: 6156: 6152: 6148: 6143: 6139: 6133: 6129: 6124: 6120: 6114: 6110: 6109:Prentice Hall 6106: 6101: 6097: 6091: 6087: 6083: 6078: 6074: 6068: 6064: 6060: 6055: 6054: 6040: 6036: 6032: 6028: 6021: 6012: 6007: 6003: 6002:Lim, Lek-Heng 5996: 5989: 5984: 5977: 5973: 5969: 5963: 5959: 5955: 5951: 5950: 5945: 5941: 5937: 5931: 5929: 5920: 5918:0-89791-875-4 5914: 5910: 5906: 5902: 5898: 5891: 5884: 5879: 5872: 5868: 5864: 5860: 5856: 5852: 5848: 5844: 5843: 5835: 5829:, p. 789 5828: 5823: 5816: 5811: 5804: 5799: 5792: 5787: 5779: 5773: 5769: 5768: 5760: 5753: 5752:Calinger 1999 5748: 5734: 5730: 5724: 5720: 5709: 5706: 5704: 5701: 5700: 5694: 5691: 5689: 5685: 5681: 5674: 5670: 5666: 5662: 5658: 5654: 5650: 5647: 5643: 5639: 5635: 5631: 5628:k ≤ n /* 5627: 5623: 5619: 5615: 5610: 5608: 5588: 5583: 5581: 5572: 5568: 5557: 5555: 5551: 5546: 5541: 5536: 5534: 5530: 5526: 5522: 5520: 5510: 5508: 5504: 5500: 5496: 5483: 5479: 5476: 5472: 5470: 5466: 5462: 5459: 5455: 5453: 5449: 5445: 5444: 5443: 5440: 5438: 5434: 5430: 5409: 5405: 5392: 5380: 5378: 5362: 5354: 5350: 5337: 5326: 5320: 5317: 5303: 5296: 5293: 5290: 5287: 5284: 5281: 5278: 5274: 5267: 5263: 5257: 5254: 5251: 5247: 5243: 5238: 5234: 5228: 5225: 5222: 5218: 5192: 5188: 5178: 5164: 5159: 5155: 5132: 5128: 5105: 5102: 5099: 5095: 5072: 5069: 5066: 5062: 5041: 5036: 5033: 5030: 5026: 5021: 5015: 5012: 5009: 5005: 4982: 4978: 4955: 4951: 4928: 4924: 4914: 4912: 4908: 4902: 4892: 4890: 4886: 4880: 4878: 4872: 4864: 4858: 4854: 4850: 4846: 4842: 4838: 4832: 4828: 4822: 4818: 4812: 4804: 4800: 4796: 4788: 4784: 4780: 4772: 4768: 4762: 4756: 4751: 4741: 4738: 4727: 4723: 4719: 4715: 4711: 4702: 4690: 4677: 4673: 4669: 4665: 4661: 4644: 4639: 4633: 4628: 4623: 4618: 4613: 4608: 4603: 4598: 4593: 4586: 4581: 4576: 4571: 4566: 4561: 4556: 4551: 4546: 4539: 4534: 4529: 4524: 4519: 4514: 4509: 4504: 4499: 4492: 4487: 4482: 4477: 4472: 4467: 4462: 4457: 4452: 4445: 4440: 4435: 4430: 4425: 4420: 4415: 4410: 4405: 4398: 4393: 4388: 4383: 4378: 4373: 4368: 4363: 4358: 4352: 4347: 4344: 4331: 4327: 4316: 4313: 4309: 4303: 4299: 4293: 4289: 4283: 4278: 4273: 4260: 4256: 4247: 4244: 4235: 4232: 4223: 4220: 4213: 4208: 4203: 4194: 4191: 4184: 4177: 4174: 4167: 4162: 4157: 4148: 4145: 4136: 4133: 4124: 4121: 4114: 4109: 4104: 4097: 4093: 4087: 4079: 4067: 4054: 4050: 4043: 4038: 4033: 4028: 4023: 4020: 4015: 4008: 4003: 3998: 3993: 3990: 3985: 3980: 3977: 3970: 3965: 3960: 3955: 3950: 3947: 3942: 3935: 3931: 3925: 3917: 3905: 3892: 3887: 3881: 3876: 3873: 3868: 3861: 3858: 3853: 3848: 3845: 3838: 3833: 3830: 3825: 3819: 3814: 3811: 3802: 3799: 3793: 3787: 3781: 3775: 3769: 3765: 3760: 3756: 3752: 3748:, forming an 3746: 3741: 3737: 3733: 3728: 3723: 3719: 3713: 3706: 3696: 3693: 3682: 3676: 3653: 3650: 3646: 3635: 3630: 3628: 3620: 3616: 3610: 3597: 3592: 3585: 3579: 3576: 3573: 3567: 3561: 3519: 3516: 3513: 3512: 3511: 3503: 3495: 3493: 3488: 3483: 3481: 3477: 3472: 3468: 3463: 3461: 3457: 3456: 3451: 3450: 3438: 3435: 3430: 3426: 3419: 3412: 3401: 3384: 3379: 3375: 3369: 3362: 3358: 3354: 3349: 3345: 3337: 3332: 3328: 3322: 3315: 3311: 3304: 3301: 3295: 3290: 3286: 3269: 3260: 3251: 3238: 3229: 3205: 3176: 3169: 3166: 3161: 3156: 3151: 3144: 3139: 3134: 3129: 3122: 3117: 3112: 3107: 3100: 3092: 3072: 3068: 3062: 3055: 3051: 3044: 3041: 3029: 3025: 3019: 3012: 3008: 3004: 2999: 2995: 2983: 2964: 2961: 2954: 2950: 2945: 2929: 2922: 2918: 2909: 2897: 2890: 2886: 2873: 2862: 2845: 2838: 2835: 2830: 2825: 2820: 2813: 2808: 2803: 2798: 2791: 2786: 2781: 2776: 2769: 2761: 2741: 2737: 2731: 2724: 2720: 2716: 2707: 2703: 2697: 2690: 2686: 2682: 2671: 2652: 2649: 2642: 2638: 2633: 2619: 2612: 2608: 2599: 2589: 2582: 2578: 2569: 2562: 2558: 2553: 2550: 2539: 2522: 2515: 2510: 2507: 2502: 2497: 2488: 2485: 2478: 2471: 2468: 2461: 2454: 2449: 2444: 2439: 2432: 2424: 2404: 2400: 2394: 2387: 2383: 2376: 2373: 2367: 2362: 2358: 2348: 2344: 2338: 2331: 2327: 2323: 2318: 2314: 2302: 2283: 2278: 2274: 2269: 2262: 2258: 2244: 2241: 2233: 2229: 2222: 2216: 2213: 2200: 2195: 2191: 2184: 2177: 2173: 2168: 2165: 2154: 2148: 2132: 2125: 2120: 2117: 2112: 2107: 2100: 2093: 2090: 2081: 2078: 2071: 2064: 2059: 2056: 2051: 2046: 2039: 2031: 2015: 2011: 2002: 1998: 1994: 1991: 1988: 1983: 1979: 1971: 1952: 1945: 1941: 1936: 1933: 1921: 1914: 1910: 1905: 1899: 1896: 1886: 1882: 1877: 1871: 1868: 1855: 1848: 1844: 1839: 1832: 1828: 1823: 1816: 1812: 1807: 1804: 1793: 1776: 1769: 1764: 1759: 1754: 1747: 1740: 1737: 1728: 1725: 1718: 1711: 1706: 1703: 1698: 1693: 1686: 1678: 1658: 1654: 1648: 1641: 1637: 1633: 1628: 1624: 1614: 1610: 1604: 1597: 1593: 1586: 1583: 1577: 1572: 1568: 1556: 1537: 1530: 1526: 1521: 1514: 1510: 1505: 1502: 1492: 1485: 1481: 1476: 1470: 1467: 1457: 1453: 1448: 1442: 1439: 1426: 1419: 1415: 1410: 1403: 1399: 1394: 1387: 1383: 1378: 1375: 1364: 1347: 1340: 1337: 1332: 1327: 1322: 1319: 1312: 1309: 1304: 1299: 1296: 1291: 1288: 1281: 1276: 1273: 1268: 1263: 1256: 1248: 1246: 1227: 1224: 1217: 1213: 1208: 1205: 1198: 1194: 1189: 1182: 1178: 1173: 1170: 1167: 1159: 1156: 1149: 1145: 1140: 1137: 1130: 1126: 1121: 1114: 1110: 1105: 1102: 1099: 1091: 1084: 1080: 1075: 1068: 1064: 1059: 1052: 1048: 1043: 1040: 1029: 1024: 1021: 1018: 1017: 1014: 1013: 1012: 1010: 1002: 989: 980: 975: 953: 949: 942: 937: 934: 927: 923: 918: 915: 908: 904: 899: 892: 888: 883: 880: 877: 865: 861: 854: 849: 846: 839: 835: 830: 827: 820: 816: 811: 804: 800: 795: 792: 789: 777: 773: 766: 761: 754: 750: 745: 738: 734: 729: 722: 718: 713: 710: 692: 688: 684: 671: 666: 660: 655: 650: 645: 638: 622: 617: 610: 607: 602: 586: 580: 569: 566: 562: 558: 557: 550: 540: 533: 530: 526: 523: 522: 521: 513: 511: 507: 503: 499: 494: 492: 488: 478: 475: 471: 462: 447: 441: 436: 431: 426: 419: 414: 409: 404: 397: 394: 389: 386: 381: 376: 370: 360: 354: 349: 344: 339: 332: 329: 324: 321: 316: 313: 308: 301: 296: 291: 286: 280: 270: 264: 259: 254: 249: 242: 239: 234: 231: 226: 223: 218: 211: 206: 201: 196: 190: 180: 174: 169: 164: 159: 152: 147: 144: 139: 134: 127: 122: 117: 112: 106: 96: 92: 88: 80: 77: 74: 73: 72: 70: 66: 62: 58: 57:square matrix 54: 50: 46: 42: 38: 34: 33:row reduction 30: 21: 6715:Vector space 6593: 6447:Vector space 6352:, retrieved 6348:the original 6333: 6310:, New York: 6307: 6265: 6242: 6233:(6): 782–792 6230: 6226: 6185: 6181: 6162: 6146: 6127: 6104: 6081: 6058: 6031:SpringerLink 6030: 6020: 5995: 5983: 5948: 5900: 5890: 5885:, p. 12 5878: 5846: 5840: 5834: 5822: 5810: 5798: 5786: 5766: 5759: 5747: 5736:. Retrieved 5732: 5723: 5692: 5683: 5677: 5672: 5668: 5664: 5660: 5656: 5652: 5648: 5645: 5641: 5637: 5629: 5625: 5621: 5617: 5613: 5606: 5584: 5570: 5566: 5563: 5537: 5523: 5516: 5492: 5468: 5464: 5447: 5441: 5381: 5321: 5318: 5179: 4915: 4911:Jack Edmonds 4904: 4881: 4879:complexity. 4870: 4862: 4841:finite field 4833: 4826: 4816: 4810: 4802: 4798: 4794: 4786: 4782: 4778: 4770: 4766: 4760: 4754: 4747: 4739: 4725: 4721: 4717: 4713: 4709: 4701:vector space 4675: 4671: 4667: 4663: 4659: 4329: 4325: 4322: 4311: 4307: 4301: 4297: 4291: 4287: 4281: 4274: 4068: 3906: 3803: 3797: 3791: 3785: 3779: 3773: 3767: 3763: 3759:block matrix 3754: 3750: 3744: 3735: 3731: 3721: 3717: 3711: 3708: 3691: 3680: 3626: 3618: 3614: 3611: 3523: 3509: 3501: 3498:Applications 3486: 3484: 3470: 3467:Isaac Newton 3464: 3453: 3448: 3444: 3433: 3431: 3424: 3417: 3410: 3408:solution is 3402: 3267: 3258: 3249: 3236: 3227: 3203: 3196: 1000: 987: 976: 698: 689: 685: 570: 560: 554: 552: 543:Echelon form 537: 519: 495: 484: 473: 465: 463: 84: 39:for solving 32: 28: 26: 6695:Multivector 6660:Determinant 6617:Dot product 6462:Linear span 6312:McGraw-Hill 6050:Works cited 5827:Grcar 2011b 5817:, p. 3 5803:Grcar 2011b 5791:Grcar 2011a 5733:www.emis.de 5655:*/ 5601:and column 5458:determinant 4775:divisions, 3669:operations 53:determinant 6820:Categories 6729:Direct sum 6564:Invertible 6467:Linear map 6354:2011-08-08 5738:2022-12-02 5715:References 5587:pseudocode 5560:Pseudocode 4905:The first 3703:See also: 3695:above 20. 3256:by adding 3210:by adding 6759:Numerical 6522:Transpose 6195:0907.2397 6011:0911.1393 5863:0002-9890 5815:Lauritzen 5682:. Such a 5649:swap rows 5396:~ 5341:~ 5294:− 5282:− 5244:− 4540:∗ 4535:∗ 4493:∗ 4488:∗ 4483:∗ 4478:∗ 4473:∗ 4446:∗ 4441:∗ 4436:∗ 4431:∗ 4426:∗ 4421:∗ 4399:∗ 4394:∗ 4389:∗ 4384:∗ 4379:∗ 4374:∗ 4369:∗ 4364:∗ 4021:− 3991:− 3978:− 3948:− 3874:− 3859:− 3846:− 3831:− 3677:requires 3636:requires 3580:⁡ 3574:∏ 3372:→ 3325:→ 3167:− 3065:→ 3022:→ 3005:− 2962:− 2836:− 2734:→ 2717:− 2700:→ 2650:− 2508:− 2397:→ 2341:→ 2324:− 2263:− 2118:− 2057:− 2008:→ 1992:− 1934:− 1833:− 1704:− 1651:→ 1607:→ 1404:− 1338:− 1320:− 1310:− 1297:− 1289:− 1274:− 1225:− 1168:− 1157:− 1115:− 1100:− 1069:− 935:− 878:− 847:− 805:− 790:− 739:− 608:− 395:− 387:− 366:→ 330:− 322:− 314:− 276:→ 240:− 232:− 224:− 186:→ 145:− 37:algorithm 6805:Category 6744:Subspace 6739:Quotient 6690:Bivector 6604:Bilinear 6546:Matrices 6421:Glossary 6296:Archived 6241:(2002), 6212:14259511 6161:(1996), 5990:, §3.4.6 5946:(1993), 5697:See also 5607:in place 4845:integers 3243:. Next, 35:, is an 6416:Outline 5976:1261419 5871:2322413 5597:in row 5574:matrix 5550:tensors 5540:NP-hard 4333:matrix 3795:, then 3460:Liu Hui 3441:History 3434:reduced 3225:⁠ 3213:⁠ 6700:Tensor 6512:Kernel 6442:Vector 6437:Scalar 6340:  6318:  6276:  6253:  6210:  6169:  6134:  6115:  6092:  6069:  5974:  5964:  5915:  5869:  5861:  5774:  5634:argmax 5624:h ≤ m 5545:P ≠ NP 5375:using 5054:where 4773:+ 1)/2 4699:; the 4687:: the 3715:is an 3532:, let 3422:, and 565:type 3 529:scalar 45:matrix 6569:Minor 6554:Block 6492:Basis 6299:(PDF) 6292:(PDF) 6223:(PDF) 6208:S2CID 6190:arXiv 6006:arXiv 5867:JSTOR 5622:while 5554:array 5519:field 5207:with 3403:Once 561:pivot 55:of a 6724:Dual 6579:Rank 6338:ISBN 6316:ISBN 6274:ISBN 6251:ISBN 6247:SIAM 6167:ISBN 6132:ISBN 6113:ISBN 6090:ISBN 6067:ISBN 5962:ISBN 5913:ISBN 5859:ISSN 5772:ISBN 5646:else 5482:rank 5147:and 5087:and 4689:rank 3577:diag 3413:= −1 559:(or 49:rank 6200:doi 6035:doi 5954:doi 5905:doi 5851:doi 5669:for 5657:for 5626:and 5620:*/ 5501:or 5435:or 4997:by 4891:). 4847:or 4805:)/6 4801:− 5 4797:+ 3 4789:)/6 4785:− 5 4781:+ 3 4729:in 4691:of 3766:× 2 3753:× 2 3556:det 3452:of 3427:= 2 3420:= 3 3265:to 3234:to 6822:: 6332:, 6272:, 6268:, 6249:, 6231:58 6229:, 6225:, 6206:, 6198:, 6186:38 6184:, 6157:; 6111:, 6107:, 6088:, 6065:, 6033:. 6029:. 5972:MR 5970:, 5960:, 5942:; 5938:; 5927:^ 5911:. 5899:. 5865:, 5857:, 5847:94 5845:, 5731:. 5638:if 5589:, 5582:. 5569:× 5467:= 5465:Ax 5439:. 5379:. 4869:O( 4861:O( 4831:. 4825:O( 4813:/3 4793:(2 4777:(2 4724:, 4720:, 4716:, 4712:, 4674:, 4670:, 4666:, 4662:, 4328:× 4310:= 4308:BI 4300:= 4290:= 4288:BA 3734:× 3720:× 3683:2) 3679:O( 3625:O( 3617:× 3548:: 3415:, 1313:11 1160:11 850:11 175:35 165:11 6397:e 6390:t 6383:v 6283:. 6260:. 6202:: 6192:: 6176:. 6150:. 6141:. 6122:. 6099:. 6076:. 6041:. 6037:: 6014:. 6008:: 5956:: 5921:. 5907:: 5853:: 5780:. 5741:. 5603:j 5599:i 5595:A 5591:A 5576:A 5571:n 5567:m 5469:b 5448:m 5415:) 5410:4 5406:n 5402:( 5393:O 5363:, 5360:) 5355:5 5351:n 5347:( 5338:O 5304:. 5297:1 5291:k 5288:, 5285:1 5279:k 5275:r 5268:k 5264:R 5258:k 5255:, 5252:i 5248:r 5239:i 5235:R 5229:k 5226:, 5223:k 5219:r 5193:i 5189:R 5165:, 5160:k 5156:R 5133:i 5129:R 5106:k 5103:, 5100:k 5096:r 5073:k 5070:, 5067:i 5063:r 5042:, 5037:k 5034:, 5031:k 5027:r 5022:/ 5016:k 5013:, 5010:i 5006:r 4983:k 4979:R 4956:k 4952:R 4929:i 4925:R 4873:) 4871:n 4865:) 4863:n 4829:) 4827:n 4819:( 4811:n 4809:2 4803:n 4799:n 4795:n 4787:n 4783:n 4779:n 4771:n 4769:( 4767:n 4761:n 4755:n 4735:A 4731:T 4726:e 4722:d 4718:c 4714:b 4710:a 4705:A 4697:T 4693:A 4685:A 4681:T 4676:e 4672:d 4668:c 4664:b 4660:a 4645:, 4640:] 4634:0 4629:0 4624:0 4619:0 4614:0 4609:0 4604:0 4599:0 4594:0 4587:e 4582:0 4577:0 4572:0 4567:0 4562:0 4557:0 4552:0 4547:0 4530:d 4525:0 4520:0 4515:0 4510:0 4505:0 4500:0 4468:c 4463:0 4458:0 4453:0 4416:b 4411:0 4406:0 4359:a 4353:[ 4348:= 4345:T 4335:A 4330:n 4326:m 4312:B 4302:A 4298:B 4292:I 4282:B 4261:. 4257:] 4248:4 4245:3 4236:2 4233:1 4224:4 4221:1 4214:1 4209:0 4204:0 4195:2 4192:1 4185:1 4178:2 4175:1 4168:0 4163:1 4158:0 4149:4 4146:1 4137:2 4134:1 4125:4 4122:3 4115:0 4110:0 4105:1 4098:[ 4094:= 4091:] 4088:B 4084:| 4080:I 4077:[ 4055:. 4051:] 4044:1 4039:0 4034:0 4029:2 4024:1 4016:0 4009:0 4004:1 3999:0 3994:1 3986:2 3981:1 3971:0 3966:0 3961:1 3956:0 3951:1 3943:2 3936:[ 3932:= 3929:] 3926:I 3922:| 3918:A 3915:[ 3893:. 3888:] 3882:2 3877:1 3869:0 3862:1 3854:2 3849:1 3839:0 3834:1 3826:2 3820:[ 3815:= 3812:A 3798:A 3792:I 3786:A 3780:I 3774:A 3768:n 3764:n 3755:n 3751:n 3745:A 3736:n 3732:n 3722:n 3718:n 3712:A 3692:n 3681:n 3657:) 3654:! 3651:n 3647:n 3644:( 3629:) 3627:n 3619:n 3615:n 3598:. 3593:d 3589:) 3586:B 3583:( 3568:= 3565:) 3562:A 3559:( 3546:B 3542:d 3538:A 3534:d 3530:B 3526:A 3425:x 3418:y 3411:z 3405:y 3385:. 3380:3 3376:L 3363:1 3359:L 3355:+ 3350:3 3346:L 3338:, 3333:2 3329:L 3316:1 3312:L 3305:2 3302:3 3296:+ 3291:2 3287:L 3271:3 3268:L 3262:1 3259:L 3253:3 3250:L 3245:x 3240:2 3237:L 3231:1 3228:L 3222:2 3219:/ 3216:3 3207:2 3204:L 3199:x 3177:] 3170:1 3162:1 3157:0 3152:0 3145:3 3140:0 3135:1 3130:0 3123:2 3118:0 3113:0 3108:1 3101:[ 3073:1 3069:L 3056:1 3052:L 3045:2 3042:1 3030:1 3026:L 3013:2 3009:L 3000:1 2996:L 2965:1 2955:= 2946:z 2930:3 2923:= 2910:y 2898:2 2891:= 2874:x 2846:] 2839:1 2831:1 2826:0 2821:0 2814:3 2809:0 2804:1 2799:0 2792:7 2787:0 2782:1 2777:2 2770:[ 2742:3 2738:L 2725:3 2721:L 2708:2 2704:L 2691:2 2687:L 2683:2 2653:1 2643:= 2634:z 2620:3 2613:= 2600:y 2590:7 2583:= 2570:y 2563:+ 2554:x 2551:2 2523:] 2516:1 2511:1 2503:0 2498:0 2489:2 2486:3 2479:0 2472:2 2469:1 2462:0 2455:7 2450:0 2445:1 2440:2 2433:[ 2405:2 2401:L 2388:3 2384:L 2377:2 2374:1 2368:+ 2363:2 2359:L 2349:1 2345:L 2332:3 2328:L 2319:1 2315:L 2284:1 2279:= 2270:z 2245:2 2242:3 2234:= 2223:y 2217:2 2214:1 2201:7 2196:= 2185:y 2178:+ 2169:x 2166:2 2133:] 2126:1 2121:1 2113:0 2108:0 2101:1 2094:2 2091:1 2082:2 2079:1 2072:0 2065:8 2060:1 2052:1 2047:2 2040:[ 2016:3 2012:L 2003:2 1999:L 1995:4 1989:+ 1984:3 1980:L 1953:1 1946:= 1937:z 1922:1 1915:= 1906:z 1900:2 1897:1 1887:+ 1878:y 1872:2 1869:1 1856:8 1849:= 1840:z 1824:y 1817:+ 1808:x 1805:2 1777:] 1770:5 1765:1 1760:2 1755:0 1748:1 1741:2 1738:1 1729:2 1726:1 1719:0 1712:8 1707:1 1699:1 1694:2 1687:[ 1659:3 1655:L 1642:1 1638:L 1634:+ 1629:3 1625:L 1615:2 1611:L 1598:1 1594:L 1587:2 1584:3 1578:+ 1573:2 1569:L 1538:5 1531:= 1522:z 1515:+ 1506:y 1503:2 1493:1 1486:= 1477:z 1471:2 1468:1 1458:+ 1449:y 1443:2 1440:1 1427:8 1420:= 1411:z 1395:y 1388:+ 1379:x 1376:2 1348:] 1341:3 1333:2 1328:1 1323:2 1305:2 1300:1 1292:3 1282:8 1277:1 1269:1 1264:2 1257:[ 1228:3 1218:= 1209:z 1206:2 1199:+ 1190:y 1183:+ 1174:x 1171:2 1150:= 1141:z 1138:2 1131:+ 1122:y 1106:x 1103:3 1092:8 1085:= 1076:z 1060:y 1053:+ 1044:x 1041:2 1004:2 1001:L 996:y 991:1 988:L 983:x 959:) 954:3 950:L 946:( 938:3 928:= 919:z 916:2 909:+ 900:y 893:+ 884:x 881:2 871:) 866:2 862:L 858:( 840:= 831:z 828:2 821:+ 812:y 796:x 793:3 783:) 778:1 774:L 770:( 762:8 755:= 746:z 730:y 723:+ 714:x 711:2 672:. 667:] 661:0 656:0 651:0 646:0 639:1 631:3 623:0 618:0 611:1 603:1 595:2 587:0 581:[ 531:. 448:] 442:0 437:0 432:0 427:0 420:4 415:1 410:1 405:0 398:3 390:2 382:0 377:1 371:[ 361:] 355:0 350:0 345:0 340:0 333:8 325:2 317:2 309:0 302:9 297:1 292:3 287:1 281:[ 271:] 265:8 260:2 255:2 250:0 243:8 235:2 227:2 219:0 212:9 207:1 202:3 197:1 191:[ 181:] 170:5 160:3 153:1 148:1 140:1 135:1 128:9 123:1 118:3 113:1 107:[

Index


algorithm
systems of linear equations
matrix
rank
determinant
square matrix
invertible matrix
Carl Friedrich Gauss
elementary row operations
upper triangular matrix
row echelon form
reduced row echelon form
elementary row operations
back substitution
matrix decomposition
elementary matrices
Frobenius matrix
LU decomposition
scalar
Row echelon form
leading coefficient
type 3
augmented matrix
triangular form
Chapter Eight: Rectangular Arrays
The Nine Chapters on the Mathematical Art
Liu Hui
Isaac Newton
Carl Friedrich Gauss

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.