Knowledge

Continuous geometry

Source 📝

1386:, and a basis is called homogeneous if any two elements are perspective. The order of a lattice need not be unique; for example, any lattice has order 1. The condition that the lattice has order at least 4 corresponds to the condition that the dimension is at least 3 in the Veblen–Young theorem, as a projective space has dimension at least 3 if and only if it has a set of at least 4 independent points. 259: 656: 432: 1097: 126:
Menger and Birkhoff gave axioms for projective geometry in terms of the lattice of linear subspaces of projective space. Von Neumann's axioms for continuous geometry are a weakened form of these axioms.
166: 76: 536: 114:
with a dimension function taking a continuous range of dimensions, and the first example of a continuous geometry other than projective space was the projections of the
1256:
to the projective geometry of a vector space over a division ring. This can be restated as saying that the subspaces in the projective geometry correspond to the
358:
Finite-dimensional complex projective space, or rather its set of linear subspaces, is a continuous geometry, with dimensions taking values in the discrete set
696: 466: 108: 551: 1111:
if and only if they are perspective, so it gives an injection from the equivalence classes to a subset of the unit interval. The dimension function
1627: 361: 436:
The projections of a finite type II von Neumann algebra form a continuous geometry with dimensions taking values in the unit interval
1032: 995:
contains a minimal nonzero element, or an infinite sequence of nonzero elements each of which is at most half the preceding one.
1842: 1784: 1448: 718:, Part I). These results are similar to, and were motivated by, von Neumann's work on projections in von Neumann algebras. 1263:
Neumann generalized this to continuous geometries, and more generally to complemented modular lattices, as follows (
254:{\displaystyle {\Big (}\bigwedge _{\alpha \in A}a_{\alpha }{\Big )}\lor b=\bigwedge _{\alpha }(a_{\alpha }\lor b)} 1488: 39: 1899: 1476: 1440: 1894: 1466: 1389:
Conversely, the principal right ideals of a von Neumann regular ring form a complemented modular lattice (
1471: 1439:, American Mathematical Society Colloquium Publications, vol. 25 (3rd ed.), Providence, R.I.: 1776: 115: 508: 1276: 1249: 666:
between 0 and 1. Its completion is a continuous geometry containing elements of every dimension in
1904: 1578: 1878: 1860: 1815: 1794: 1711: 1636: 1615: 1558: 1519: 1458: 1257: 748: 475: 1733: 1692: 8: 486: 111: 21: 1715: 1640: 1529:(1985), "Books in Review: A survey of John von Neumann's books on continuous geometry", 1750: 1737: 1675: 1662: 1603: 1562: 669: 439: 348:
is irreducible: this means that the only elements with unique complements are 0 and 1.
81: 1848: 1838: 1780: 1755: 1680: 1654: 1595: 1566: 1546: 1507: 1444: 1822: 1801: 1766: 1745: 1729: 1719: 1699: 1688: 1670: 1644: 1622: 1587: 1576:(1955), "Any orthocomplemented complete modular lattice is a continuous geometry", 1573: 1538: 1497: 1430: 155: 25: 1874: 1868: 1856: 1826: 1811: 1805: 1790: 1770: 1611: 1554: 1526: 1515: 1483: 1454: 1434: 663: 145: 131: 1628:
Proceedings of the National Academy of Sciences of the United States of America
651:{\displaystyle PG(F)\subset PG(F^{2})\subset PG(F^{4})\subset PG(F^{8})\cdots } 1888: 1852: 1658: 1599: 1550: 1511: 490: 1759: 1684: 1502: 539: 266: 1724: 1649: 1486:(1960), "Introduction to von Neumann algebras and continuous geometry", 36:), where instead of the dimension of a subspace being in a discrete set 1607: 1542: 1267:, Part II). His theorem states that if a complemented modular lattice 308:
has a complement (not necessarily unique). A complement of an element
1741: 1666: 1417: 1591: 1253: 161:
The lattice operations ∧, ∨ satisfy a certain continuity property,
427:{\displaystyle \{0,1/{\textit {n}}\,,2/{\textit {n}}\,,\dots ,1\}} 1807:
Collected works. Vol. IV: Continuous geometry and other topics
1092:{\displaystyle 0,1/{\textit {n}}\,,2/{\textit {n}}\,,\dots ,1} 1252:
states that a projective geometry of dimension at least 3 is
925:
not {0} the integer is defined to be the unique integer
1283:
then the von Neumann regular ring can be taken to be an
991:
runs through a minimal sequence: this means that either
338:, where 0 and 1 are the minimal and maximal elements of 1408:
is a complemented modular lattice. Neumann showed that
1029:
can be the whole unit interval, or the set of numbers
1827:"Continuous geometries with a transition probability" 1035: 672: 554: 511: 442: 364: 169: 84: 42: 1091: 690: 650: 538:that multiplies dimensions by 2. So we can take a 530: 497:, then there is a natural map from the lattice PG( 478:complete modular lattice is a continuous geometry. 460: 426: 253: 102: 70: 1017:} and {1} are the equivalence classes containing 755:; the proof that it is transitive is quite hard. 205: 172: 1886: 1308:. Here a complemented modular lattice has order 747:, if they have a common complement. This is an 662:This has a dimension function taking values all 110:. Von Neumann was motivated by his discovery of 1870:Complemented modular lattices and regular rings 1404:its lattice of principal right ideals, so that 714:This section summarizes some of the results of 299:, and the same condition with ∧ and ∨ reversed. 1702:(1936b), "Examples of continuous geometries", 1275:correspond to the principal right ideals of a 833:to the unit interval is defined as follows. 702:, and is called the continuous geometry over 1831:Memoirs of the American Mathematical Society 1698: 699: 421: 365: 78:, it can be an element of the unit interval 1821: 1800: 1765: 1621: 1390: 1271:has order at least 4, then the elements of 1264: 1243: 715: 33: 29: 1866: 1279:. More precisely if the lattice has order 1260:of a matrix algebra over a division ring. 874:is defined to be the equivalence class of 1749: 1723: 1674: 1648: 1572: 1501: 1076: 1057: 471: 408: 389: 1525: 1482: 1464: 1429: 1412:is a continuous geometry if and only if 1304:) over another von Neumann regular ring 71:{\displaystyle 0,1,\dots ,{\textit {n}}} 894:is not defined. For a positive integer 1887: 1775:, Princeton Landmarks in Mathematics, 770:have a total order on them defined by 1071: 1052: 403: 384: 63: 698:. This geometry was constructed by 13: 1400:is a von Neumann regular ring and 14: 1916: 1825:(1981) , Halperin, Israel (ed.), 1312:if it has a homogeneous basis of 1625:(1936), "Continuous geometry", 505:to the lattice of subspaces of 1489:Canadian Mathematical Bulletin 983:is defined to be the limit of 806:. (This need not hold for all 685: 673: 642: 629: 617: 604: 592: 579: 567: 561: 531:{\displaystyle V\otimes F^{2}} 455: 443: 248: 229: 137:with the following properties 97: 85: 1: 1873:, London: Oliver & Boyd, 1441:American Mathematical Society 1423: 121: 1248:In projective geometry, the 902:is defined to be the sum of 709: 7: 1804:(1962), Taub, A. H. (ed.), 1472:Encyclopedia of Mathematics 1416:is an irreducible complete 1316:elements, where a basis is 352: 130:A continuous geometry is a 10: 1921: 1867:Skornyakov, L. A. (1964), 1810:, Oxford: Pergamon Press, 1777:Princeton University Press 1704:Proc. Natl. Acad. Sci. USA 1107:have the same image under 1099:for some positive integer 116:hyperfinite type II factor 20:is an analogue of complex 910:, if this sum is defined. 485:is a vector space over a 1465:Fofanova, T.S. (2001) , 1393:, Part II theorem 2.4). 1277:von Neumann regular ring 1244:Coordinatization theorem 971:not {0} the real number 959:For equivalence classes 913:For equivalence classes 758:The equivalence classes 837:If equivalence classes 825:The dimension function 1503:10.4153/CMB-1960-034-5 1467:"Orthomodular lattice" 1258:principal right ideals 1093: 692: 652: 532: 462: 428: 255: 104: 72: 1725:10.1073/pnas.22.2.101 1579:Annals of Mathematics 1094: 693: 653: 533: 463: 429: 256: 105: 73: 1900:Von Neumann algebras 1650:10.1073/pnas.22.2.92 1250:Veblen–Young theorem 1115:has the properties: 1033: 884:. Otherwise the sum 749:equivalence relation 670: 552: 509: 440: 362: 167: 112:von Neumann algebras 82: 40: 1895:Projective geometry 1772:Continuous geometry 1716:1936PNAS...22..101N 1641:1936PNAS...22...92N 1005:) is defined to be 700:von Neumann (1936b) 22:projective geometry 18:continuous geometry 1543:10.1007/BF00383607 1103:. Two elements of 1089: 688: 648: 528: 501:) of subspaces of 458: 424: 251: 228: 192: 100: 68: 1844:978-0-8218-2252-4 1823:von Neumann, John 1802:von Neumann, John 1786:978-0-691-05893-1 1767:von Neumann, John 1700:von Neumann, John 1623:von Neumann, John 1582:, Second Series, 1574:Kaplansky, Irving 1450:978-0-8218-1025-5 1431:Birkhoff, Garrett 1073: 1054: 845:contain elements 780:if there is some 716:von Neumann (1998 476:orthocomplemented 405: 386: 304:Every element in 219: 177: 65: 1912: 1881: 1863: 1818: 1797: 1762: 1753: 1727: 1695: 1678: 1652: 1618: 1569: 1527:Halperin, Israel 1522: 1505: 1484:Halperin, Israel 1479: 1461: 1391:von Neumann 1998 1385: 1366: 1356: 1265:von Neumann 1998 1239: 1226: 1219: 1208: 1201: 1147: 1128: 1098: 1096: 1095: 1090: 1075: 1074: 1068: 1056: 1055: 1049: 1012: 986: 982: 955: 945: 931: 893: 883: 873: 863: 805: 779: 746: 697: 695: 694: 691:{\displaystyle } 689: 664:dyadic rationals 657: 655: 654: 649: 641: 640: 616: 615: 591: 590: 537: 535: 534: 529: 527: 526: 474:showed that any 472:Kaplansky (1955) 467: 465: 464: 461:{\displaystyle } 459: 433: 431: 430: 425: 407: 406: 400: 388: 387: 381: 337: 326: 298: 278: 260: 258: 257: 252: 241: 240: 227: 209: 208: 202: 201: 191: 176: 175: 109: 107: 106: 103:{\displaystyle } 101: 77: 75: 74: 69: 67: 66: 16:In mathematics, 1920: 1919: 1915: 1914: 1913: 1911: 1910: 1909: 1885: 1884: 1845: 1787: 1592:10.2307/1969811 1451: 1426: 1383: 1374: 1368: 1358: 1354: 1345: 1337: 1335: 1326: 1299: 1246: 1229: 1221: 1220:if and only if 1210: 1203: 1202:if and only if 1192: 1130: 1120: 1070: 1069: 1064: 1051: 1050: 1045: 1034: 1031: 1030: 1006: 984: 972: 947: 933: 926: 885: 875: 865: 864:then their sum 854: 797: 771: 738: 712: 671: 668: 667: 636: 632: 611: 607: 586: 582: 553: 550: 549: 522: 518: 510: 507: 506: 441: 438: 437: 402: 401: 396: 383: 382: 377: 363: 360: 359: 355: 328: 317: 297: 288: 280: 270: 236: 232: 223: 204: 203: 197: 193: 181: 171: 170: 168: 165: 164: 124: 83: 80: 79: 62: 61: 41: 38: 37: 24:introduced by 12: 11: 5: 1918: 1908: 1907: 1905:Lattice theory 1902: 1897: 1883: 1882: 1864: 1843: 1819: 1798: 1785: 1763: 1710:(2): 101–108, 1696: 1619: 1586:(3): 524–541, 1570: 1537:(3): 301–305, 1523: 1496:(3): 273–288, 1480: 1462: 1449: 1436:Lattice theory 1425: 1422: 1396:Suppose that 1379: 1372: 1350: 1341: 1331: 1324: 1295: 1245: 1242: 1241: 1240: 1227: 1190: 1148: 1088: 1085: 1082: 1079: 1067: 1063: 1060: 1048: 1044: 1041: 1038: 1023: 1022: 996: 957: 911: 898:, the product 711: 708: 707: 706: 687: 684: 681: 678: 675: 660: 659: 658: 647: 644: 639: 635: 631: 628: 625: 622: 619: 614: 610: 606: 603: 600: 597: 594: 589: 585: 581: 578: 575: 572: 569: 566: 563: 560: 557: 544: 543: 525: 521: 517: 514: 479: 469: 457: 454: 451: 448: 445: 434: 423: 420: 417: 414: 411: 399: 395: 392: 380: 376: 373: 370: 367: 354: 351: 350: 349: 343: 312:is an element 302: 301: 300: 293: 284: 250: 247: 244: 239: 235: 231: 226: 222: 218: 215: 212: 207: 200: 196: 190: 187: 184: 180: 174: 159: 149: 123: 120: 99: 96: 93: 90: 87: 60: 57: 54: 51: 48: 45: 9: 6: 4: 3: 2: 1917: 1906: 1903: 1901: 1898: 1896: 1893: 1892: 1890: 1880: 1876: 1872: 1871: 1865: 1862: 1858: 1854: 1850: 1846: 1840: 1836: 1832: 1828: 1824: 1820: 1817: 1813: 1809: 1808: 1803: 1799: 1796: 1792: 1788: 1782: 1778: 1774: 1773: 1768: 1764: 1761: 1757: 1752: 1747: 1743: 1739: 1735: 1731: 1726: 1721: 1717: 1713: 1709: 1705: 1701: 1697: 1694: 1690: 1686: 1682: 1677: 1672: 1668: 1664: 1660: 1656: 1651: 1646: 1642: 1638: 1635:(2): 92–100, 1634: 1630: 1629: 1624: 1620: 1617: 1613: 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1580: 1575: 1571: 1568: 1564: 1560: 1556: 1552: 1548: 1544: 1540: 1536: 1532: 1528: 1524: 1521: 1517: 1513: 1509: 1504: 1499: 1495: 1491: 1490: 1485: 1481: 1478: 1474: 1473: 1468: 1463: 1460: 1456: 1452: 1446: 1442: 1438: 1437: 1432: 1428: 1427: 1421: 1419: 1415: 1411: 1407: 1403: 1399: 1394: 1392: 1387: 1382: 1378: 1371: 1365: 1361: 1353: 1349: 1344: 1340: 1334: 1330: 1323: 1319: 1315: 1311: 1307: 1303: 1298: 1294: 1290: 1286: 1282: 1278: 1274: 1270: 1266: 1261: 1259: 1255: 1251: 1237: 1233: 1228: 1224: 1217: 1213: 1206: 1199: 1195: 1191: 1188: 1184: 1180: 1176: 1172: 1168: 1164: 1160: 1156: 1152: 1149: 1145: 1141: 1137: 1133: 1127: 1123: 1118: 1117: 1116: 1114: 1110: 1106: 1102: 1086: 1083: 1080: 1077: 1065: 1061: 1058: 1046: 1042: 1039: 1036: 1028: 1025:The image of 1020: 1016: 1011:} : {1}) 1010: 1004: 1000: 997: 994: 990: 980: 976: 970: 966: 962: 958: 954: 950: 944: 940: 936: 929: 924: 920: 916: 912: 909: 905: 901: 897: 892: 888: 882: 878: 872: 868: 861: 857: 852: 848: 844: 840: 836: 835: 834: 832: 828: 823: 821: 817: 813: 809: 804: 800: 795: 791: 787: 783: 778: 774: 769: 765: 761: 756: 754: 750: 745: 741: 736: 732: 728: 724: 721:Two elements 719: 717: 705: 701: 682: 679: 676: 665: 661: 645: 637: 633: 626: 623: 620: 612: 608: 601: 598: 595: 587: 583: 576: 573: 570: 564: 558: 555: 548: 547: 546: 545: 541: 523: 519: 515: 512: 504: 500: 496: 492: 491:division ring 488: 484: 480: 477: 473: 470: 452: 449: 446: 435: 418: 415: 412: 409: 397: 393: 390: 378: 374: 371: 368: 357: 356: 347: 344: 341: 335: 331: 324: 320: 315: 311: 307: 303: 296: 292: 287: 283: 277: 273: 268: 264: 245: 242: 237: 233: 224: 220: 216: 213: 210: 198: 194: 188: 185: 182: 178: 163: 162: 160: 157: 153: 150: 147: 143: 140: 139: 138: 136: 133: 128: 119: 117: 113: 94: 91: 88: 58: 55: 52: 49: 46: 43: 35: 31: 27: 23: 19: 1869: 1834: 1830: 1806: 1771: 1707: 1703: 1632: 1626: 1583: 1577: 1534: 1530: 1493: 1487: 1470: 1435: 1413: 1409: 1405: 1401: 1397: 1395: 1388: 1380: 1376: 1369: 1363: 1359: 1351: 1347: 1342: 1338: 1332: 1328: 1321: 1317: 1313: 1309: 1305: 1301: 1296: 1292: 1291:matrix ring 1288: 1284: 1280: 1272: 1268: 1262: 1247: 1235: 1231: 1222: 1215: 1211: 1204: 1197: 1193: 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1158: 1154: 1150: 1143: 1139: 1135: 1131: 1125: 1121: 1112: 1108: 1104: 1100: 1026: 1024: 1018: 1014: 1008: 1002: 998: 992: 988: 978: 974: 968: 964: 960: 952: 948: 942: 938: 934: 927: 922: 918: 914: 907: 903: 899: 895: 890: 886: 880: 876: 870: 866: 859: 855: 850: 846: 842: 838: 830: 826: 824: 819: 815: 811: 807: 802: 798: 793: 789: 785: 781: 776: 772: 767: 763: 759: 757: 752: 743: 739: 734: 730: 726: 722: 720: 713: 703: 540:direct limit 502: 498: 494: 482: 345: 339: 333: 329: 322: 318: 313: 309: 305: 294: 290: 285: 281: 275: 271: 267:directed set 262: 151: 141: 134: 129: 125: 17: 15: 735:perspective 733:are called 26:von Neumann 1889:Categories 1734:62.0648.03 1693:0014.22307 1424:References 1336:such that 1254:isomorphic 932:such that 906:copies of 737:, written 122:Definition 1853:0065-9266 1769:(1998) , 1659:0027-8424 1600:0003-486X 1567:122594481 1551:0167-8094 1512:0008-4395 1477:EMS Press 1433:(1979) , 1418:rank ring 1320:elements 1081:… 1013:, where { 766:, ... of 710:Dimension 646:⋯ 621:⊂ 596:⊂ 571:⊂ 516:⊗ 413:… 243:∨ 238:α 225:α 221:⋀ 211:∨ 199:α 186:∈ 183:α 179:⋀ 56:… 1760:16588050 1685:16588062 1375:∨ ... ∨ 977: : 353:Examples 261:, where 156:complete 1879:0166126 1861:0634656 1837:(252), 1816:0157874 1795:0120174 1751:1076713 1712:Bibcode 1676:1076712 1637:Bibcode 1616:0088476 1608:1969811 1559:1554221 1520:0123923 1459:0598630 1327:, ..., 1138:) < 269:and if 146:modular 132:lattice 28: ( 1877:  1859:  1851:  1841:  1814:  1793:  1783:  1758:  1748:  1740:  1732:  1691:  1683:  1673:  1665:  1657:  1614:  1606:  1598:  1565:  1557:  1549:  1518:  1510:  1457:  1447:  1367:, and 1209:, and 1021:and 1. 1742:86391 1738:JSTOR 1667:86390 1663:JSTOR 1604:JSTOR 1563:S2CID 1531:Order 1238:) ≤ 1 1218:) = 1 1200:) = 0 1129:then 1124:< 967:with 951:< 946:with 921:with 853:with 829:from 796:with 487:field 316:with 289:< 279:then 274:< 265:is a 1849:ISSN 1839:ISBN 1781:ISBN 1756:PMID 1681:PMID 1655:ISSN 1596:ISSN 1547:ISSN 1508:ISSN 1445:ISBN 1230:0 ≤ 1181:) + 1173:) = 1161:) + 963:and 917:and 849:and 841:and 814:and 788:and 725:and 489:(or 34:1998 30:1936 1746:PMC 1730:JFM 1720:doi 1689:Zbl 1671:PMC 1645:doi 1588:doi 1539:doi 1498:doi 1384:= 1 1357:if 1355:= 0 1287:by 1225:= 1 1207:= 0 1119:If 987:as 930:≥ 0 862:= 0 822:.) 818:in 810:in 792:in 784:in 751:on 729:of 481:If 336:= 1 325:= 0 154:is 144:is 1891:: 1875:MR 1857:MR 1855:, 1847:, 1835:34 1833:, 1829:, 1812:MR 1791:MR 1789:, 1779:, 1754:, 1744:, 1736:, 1728:, 1718:, 1708:22 1706:, 1687:, 1679:, 1669:, 1661:, 1653:, 1643:, 1633:22 1631:, 1612:MR 1610:, 1602:, 1594:, 1584:61 1561:, 1555:MR 1553:, 1545:, 1533:, 1516:MR 1514:, 1506:, 1492:, 1475:, 1469:, 1455:MR 1453:, 1443:, 1420:. 1362:≠ 1346:∧ 1169:∧ 1157:∨ 1007:({ 985:/ 941:+ 939:nA 937:= 900:nA 889:+ 879:∨ 869:+ 858:∧ 801:≤ 775:≤ 762:, 742:∼ 542:of 493:) 332:∨ 327:, 321:∧ 118:. 32:, 1722:: 1714:: 1647:: 1639:: 1590:: 1541:: 1535:1 1500:: 1494:3 1414:R 1410:L 1406:L 1402:L 1398:R 1381:n 1377:a 1373:1 1370:a 1364:j 1360:i 1352:j 1348:a 1343:i 1339:a 1333:n 1329:a 1325:1 1322:a 1318:n 1314:n 1310:n 1306:R 1302:R 1300:( 1297:n 1293:M 1289:n 1285:n 1281:n 1273:L 1269:L 1236:a 1234:( 1232:D 1223:a 1216:a 1214:( 1212:D 1205:a 1198:a 1196:( 1194:D 1189:) 1187:b 1185:( 1183:D 1179:a 1177:( 1175:D 1171:b 1167:a 1165:( 1163:D 1159:b 1155:a 1153:( 1151:D 1146:) 1144:b 1142:( 1140:D 1136:a 1134:( 1132:D 1126:b 1122:a 1113:D 1109:D 1105:L 1101:n 1087:1 1084:, 1078:, 1072:n 1066:/ 1062:2 1059:, 1053:n 1047:/ 1043:1 1040:, 1037:0 1027:D 1019:a 1015:a 1009:a 1003:a 1001:( 999:D 993:C 989:C 981:) 979:A 975:B 973:( 969:A 965:B 961:A 956:. 953:B 949:C 943:C 935:B 928:n 923:A 919:B 915:A 908:A 904:n 896:n 891:B 887:A 881:b 877:a 871:B 867:A 860:b 856:a 851:b 847:a 843:B 839:A 831:L 827:D 820:B 816:b 812:A 808:a 803:b 799:a 794:B 790:b 786:A 782:a 777:B 773:A 768:L 764:B 760:A 753:L 744:b 740:a 731:L 727:b 723:a 704:F 686:] 683:1 680:, 677:0 674:[ 643:) 638:8 634:F 630:( 627:G 624:P 618:) 613:4 609:F 605:( 602:G 599:P 593:) 588:2 584:F 580:( 577:G 574:P 568:) 565:F 562:( 559:G 556:P 524:2 520:F 513:V 503:V 499:V 495:F 483:V 468:. 456:] 453:1 450:, 447:0 444:[ 422:} 419:1 416:, 410:, 404:n 398:/ 394:2 391:, 385:n 379:/ 375:1 372:, 369:0 366:{ 346:L 342:. 340:L 334:b 330:a 323:b 319:a 314:b 310:a 306:L 295:β 291:a 286:α 282:a 276:β 272:α 263:A 249:) 246:b 234:a 230:( 217:= 214:b 206:) 195:a 189:A 173:( 158:. 152:L 148:. 142:L 135:L 98:] 95:1 92:, 89:0 86:[ 64:n 59:, 53:, 50:1 47:, 44:0

Index

projective geometry
von Neumann
1936
1998
von Neumann algebras
hyperfinite type II factor
lattice
modular
complete
directed set
Kaplansky (1955)
orthocomplemented
field
division ring
direct limit
dyadic rationals
von Neumann (1936b)
von Neumann (1998
equivalence relation
Veblen–Young theorem
isomorphic
principal right ideals
von Neumann 1998
von Neumann regular ring
von Neumann 1998
rank ring
Birkhoff, Garrett
Lattice theory
American Mathematical Society
ISBN

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.