Knowledge

Dyadic rational

Source 📝

291: 1593:, a system of numbers that can be defined from binary representations that are finite to the right of the binary point but may extend infinitely far to the left. The 2-adic numbers include all rational numbers, not just the dyadic rationals. Embedding the dyadic rationals into the 2-adic numbers does not change the arithmetic of the dyadic rationals, but it gives them a different topological structure than they have as a subring of the real numbers. As they do in the reals, the dyadic rationals form a dense subset of the 2-adic numbers, and are the set of 2-adic numbers with finite binary expansions. Every 2-adic number can be decomposed into the sum of a 2-adic integer and a dyadic rational; in this sense, the dyadic rationals can represent the 454:, fractional numbers arising from halving and repeated halving are among the earliest forms of fractions to develop. This stage of development of the concept of fractions has been called "algorithmic halving". Addition and subtraction of these numbers can be performed in steps that only involve doubling, halving, adding, and subtracting integers. In contrast, addition and subtraction of more general fractions involves integer multiplication and factorization to reach a common denominator. Therefore, dyadic fractions can be easier for students to calculate with than more general fractions. 191: 1738: 1723: 4658: 960: 1081: 22: 942: 4627: 550: 937:{\displaystyle {\begin{aligned}{\frac {a}{2^{b}}}+{\frac {c}{2^{d}}}&={\frac {2^{d-\min(b,d)}a+2^{b-\min(b,d)}c}{2^{\max(b,d)}}}\\{\frac {a}{2^{b}}}-{\frac {c}{2^{d}}}&={\frac {2^{d-\min(b,d)}a-2^{b-\min(b,d)}c}{2^{\max(b,d)}}}\\{\frac {a}{2^{b}}}\cdot {\frac {c}{2^{d}}}&={\frac {ac}{2^{b+d}}}\end{aligned}}} 279:
from random bits, in a fixed amount of time, is possible only when the variable has finitely many outcomes whose probabilities are all dyadic rational numbers. For random variables whose probabilities are not dyadic, it is necessary either to approximate their probabilities by dyadic rationals, or to
64:
The sum, difference, or product of any two dyadic rational numbers is another dyadic rational number, given by a simple formula. However, division of one dyadic rational number by another does not always produce a dyadic rational result. Mathematically, this means that the dyadic rational numbers
239:
are for the most part based on repeated halving; anthropologist Heather M.-L. Miller writes that "halving is a relatively simple operation with beam balances, which is likely why so many weight systems of this time period used binary systems".
1900:
are generated by an iterated construction principle which starts by generating all finite dyadic rationals, and then goes on to create new and strange kinds of infinite, infinitesimal and other numbers. This number system is foundational to
1175:, is a dyadic rational. They both meet the definition of being an integer divided by a power of two: every integer is an integer divided by one (the zeroth power of two), and every half-integer is an integer divided by two. 434:), although the horizontal line of the musical staff that separates the top and bottom number is usually omitted when writing the signature separately from its staff. As fractions they are generally dyadic, although 555: 2745:
Ambos-Spies, Klaus; Zheng, Xizhong (2019), "On the differences and sums of strongly computably enumerable real numbers", in Manea, Florin; Martin, Barnaby; Paulusma, Daniël; Primiero, Giuseppe (eds.),
2454:
Miller, Heather M.-L. (2013), "Weighty matters: evidence for unity and regional diversity from the Indus civilization weights", in Abraham, Shinu Anna; Gullapalli, Praveena; Raczek, Teresa P.;
5088: 3402: 5380: 3819: 1651: 1252: 995: 1300: 1126: 264:, which also use powers of two implicitly in the majority of cases. Because of the simplicity of computing with dyadic rationals, they are also used for exact real computing using 3614: 1994: 1785:
of these wavelets is non-smooth. Similarly, the dyadic rationals parameterize the discontinuities in the boundary between stable and unstable points in the parameter space of the
4398: 3319: 5333: 5296: 2328: 2100: 4365: 4336: 1074: 1497:. Their binary expansions are not unique; there is one finite and one infinite representation of each dyadic rational other than 0 (ignoring terminal 0s). For example, 0.11 215:
Many traditional systems of weights and measures are based on the idea of repeated halving, which produces dyadic rationals when measuring fractional amounts of units. The
5042: 3579: 3557: 3367: 3347: 3249: 1564: 119: 2062: 2181: 3284: 1453: 1418: 1359: 1161: 1030: 260:, are called its representable numbers. For most floating-point representations, the representable numbers are a subset of the dyadic rationals. The same is true for 256:
are often defined as integers multiplied by positive or negative powers of two. The numbers that can be represented precisely in a floating-point format, such as the
1936: 1883: 1488: 2291: 2020: 500: 57:. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any 4418: 3874: 3852: 2265: 2245: 2221: 2201: 2140: 2120: 1856: 1379: 1324: 1274: 1200: 520: 1685:, with pointwise multiplication as the dual group operation. The dual group of the additive dyadic rationals, constructed in this way, can also be viewed as a 4064: 2934:
Hiebert, James; Tonnessen, Lowell H. (November 1978), "Development of the fraction concept in two physical contexts: an exploratory investigation",
1566:, meaning that it can be generated by evaluating polynomials with integer coefficients, at the argument 1/2. As a ring, the dyadic rationals are a 1818:. The same group can also be represented by an action on rooted binary trees, or by an action on the dyadic rationals within the unit interval. 235:
are also dyadic. The ancient Egyptians used dyadic rationals in measurement, with denominators up to 64. Similarly, systems of weights from the
4603: 5485: 2975: 2936: 951:
one dyadic rational by another is not necessarily a dyadic rational. For instance, 1 and 3 are both dyadic rational numbers, but 1/3 is not.
1084:
Real numbers with no unusually-accurate dyadic rational approximations. The red circles surround numbers that are approximated within error
4226: 4100:
Cvitanović, Predrag; Gunaratne, Gemunu H.; Procaccia, Itamar (1988), "Topological and metric properties of Hénon-type strange attractors",
438:
have also been used. The numeric value of the signature, interpreted as a fraction, describes the length of a measure as a fraction of a
4822: 4158: 2747:
Computing with Foresight and Industry: 15th Conference on Computability in Europe, CiE 2019, Durham, UK, July 15–19, 2019, Proceedings
4570: 2905:
Yanakiev, Ivan K. (2020), "Mathematical devices in aid of music theory, composition, and performance", in Bozhikova, Milena (ed.),
199: 1505:, giving two different representations for 3/4. The dyadic rationals are the only numbers whose binary expansions are not unique. 1385:
subset of the real numbers, this error bound is within a constant factor of optimal: for these numbers, there is no approximation
3038:
Uiterwijk, Jos W. H. M.; Barton, Michael (2015), "New results for Domineering from combinatorial game theory endgame databases",
3040: 2796: 2604: 3523: 3020: 2914: 2890: 2565: 2475: 2399: 2365: 1767: 1728: 252:
as a type of fractional number that many computers can manipulate directly. In particular, as a data type used by computers,
129: 4942: 3099: 1689:. It is called the dyadic solenoid, and is isomorphic to the topological product of the real numbers and 2-adic numbers, 1665:
Considering only the addition and subtraction operations of the dyadic rationals gives them the structure of an additive
294: 4596: 1518:
Because they are closed under addition, subtraction, and multiplication, but not division, the dyadic rationals are a
219:
is customarily subdivided in dyadic rationals rather than using a decimal subdivision. The customary divisions of the
5478: 5430: 4432: 4295: 4039: 3984: 3895: 3217: 2672: 2522: 1455:. The existence of accurate dyadic approximations can be expressed by saying that the set of all dyadic rationals is 5507: 5052: 3372: 442:. Its numerator describes the number of beats per measure, and the denominator describes the length of each beat. 1759: 4263:, Lecture Notes in Logic, vol. 21, La Jolla, California: Association for Symbolic Logic, pp. 175–188, 5347: 4815: 3774: 1885:
that approximates the given real number. Defining real numbers in this way allows many of the basic results of
1754:
Because they are a dense subset of the real numbers, the dyadic rationals, with their numeric ordering, form a
1606: 970: 1206: 4589: 4214: 3879: 3460: 3416: 2073: 3488:, Wavelet Analysis and Its Applications, vol. 2, Boston, Massachusetts: Academic Press, pp. 3–13, 2659:, Progress in Theoretical Computer Science, Boston, Massachusetts: Birkhäuser Boston, Inc., pp. 41–43, 1279: 5471: 5338: 3663:
Lucyshyn-Wright, Rory B. B. (2018), "Convex spaces, affine spaces, and commutants for algebraic theories",
3463:, vol. 12, New York: John Wiley & Sons for the Mathematical Association of America, pp. 2–3, 2973:; Sawada, Daiyo (November 1983), "Partitioning: the emergence of rational number ideas in young children", 2294: 1905:, and dyadic rationals arise naturally in this theory as the set of values of certain combinatorial games. 1803:
to itself that have power-of-2 slopes and dyadic-rational breakpoints forms a group under the operation of
1087: 3584: 2406:
Note that binary measures (2, 4, 8, 16) are very common indeed. This is particularly obvious with volumes.
1941: 5188: 2420: 290: 4370: 3289: 4948: 5309: 5272: 4963: 2300: 2078: 1463:. More strongly, this set is uniformly dense, in the sense that the dyadic rationals with denominator 49:. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in 5512: 4808: 4769: 4341: 4312: 1902: 1793: 253: 236: 3097:
Krebbers, Robbert; Spitters, Bas (2013), "Type classes for efficient exact real arithmetic in Coq",
1035: 5423: 5226: 5176: 3720: 1706: 544:
of any two dyadic rationals produces another dyadic rational, according to the following formulas:
5025: 3562: 3540: 3352: 3332: 3234: 1529: 164:
of 2-adic numbers. Functions from natural numbers to dyadic rationals have been used to formalize
84: 5235: 4969: 4928: 4757: 1890: 1812: 1674: 435: 297: 2025: 522:
is a power of two. Another equivalent way of defining the dyadic rationals is that they are the
5522: 5392: 5243: 5194: 4975: 4639: 2545: 2145: 1702: 1575: 948: 261: 125: 2878: 2553: 2482: 2355: 1182:
can be arbitrarily closely approximated by dyadic rationals. In particular, for a real number
4862: 4253: 3254: 3207: 3010: 2921: 2654: 2502: 2381: 1886: 1673:
is a method for understanding abelian groups by constructing dual groups, whose elements are
1423: 1388: 1329: 1131: 1000: 527: 165: 124:
In advanced mathematics, the dyadic rational numbers are central to the constructions of the
54: 4026:, Texts and Readings in Mathematics, vol. 12, Berlin: Springer-Verlag, pp. 77–86, 2703:
Zheng, Xizhong; Rettinger, Robert (2004), "Weak computability and representation of reals",
5517: 5116: 4990: 4752: 4495: 4461: 4305: 4285: 4268: 4239: 4189: 4131: 4111: 4087: 4049: 3961: 3905: 3759: 3739: 3694: 3650: 3493: 3468: 3439: 3182: 3130: 3071: 2819: 2762: 2724: 2682: 2627: 2532: 2498: 2429: 1915: 1861: 1835: 1804: 1466: 4522:
Proceedings of the 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2021)
8: 5398: 5206: 5157: 5102: 4996: 4982: 4910: 4878: 3326: 2840: 2494: 2270: 1999: 1827: 1523: 477: 265: 257: 169: 74: 4115: 3743: 2749:, Lecture Notes in Computer Science, vol. 11558, Cham: Springer, pp. 310–322, 2433: 5411: 4897: 4715: 4700: 4543: 4525: 4499: 4449: 4403: 4281: 4218: 4193: 4167: 4001: 3965: 3939: 3930: 3859: 3837: 3763: 3729: 3698: 3672: 3627: 3186: 3160: 3134: 3108: 3075: 3049: 2992: 2953: 2857: 2766: 2728: 2686: 2337:
utilizes the dyadic fractions for constructing the separating function from the lemma.
2334: 2250: 2230: 2206: 2186: 2125: 2105: 1841: 1778: 1744: 1678: 1670: 1519: 1364: 1309: 1259: 1185: 505: 450:
In theories of childhood development of the concept of a fraction based on the work of
313: 133: 66: 5452: 5249: 5014: 4955: 4730: 4547: 4503: 4291: 4135: 4102: 4035: 3891: 3767: 3641: 3519: 3213: 3190: 3138: 3016: 2910: 2886: 2861: 2810: 2794:(1986), "Random generation of combinatorial structures from a uniform distribution", 2770: 2668: 2561: 2518: 2471: 2395: 2361: 1763: 1694: 1686: 269: 153: 4197: 3969: 2838:; Pearson, Dunn (May 2013), "Music: highly engaged students connect music to math", 2732: 2690: 5458: 5444: 5258: 5200: 5163: 4936: 4922: 4774: 4720: 4539: 4535: 4483: 4441: 4177: 4119: 4073: 4027: 4019: 3993: 3953: 3949: 3922: 3883: 3747: 3702: 3682: 3636: 3511: 3425: 3170: 3118: 3079: 3059: 2984: 2945: 2849: 2805: 2750: 2712: 2660: 2613: 2585: 2510: 2463: 2437: 2387: 2224: 964: 386: 249: 50: 4517: 4062:
Girgensohn, Roland (1996), "Constructing singular functions via Farey fractions",
3151:
O'Connor, Russell (2007), "A monadic, functional implementation of real numbers",
3122: 1782: 190: 5220: 5170: 5008: 4831: 4764: 4491: 4457: 4301: 4264: 4235: 4210: 4185: 4127: 4083: 4045: 3957: 3901: 3831: 3755: 3690: 3646: 3489: 3464: 3435: 3178: 3126: 3067: 2835: 2815: 2758: 2754: 2720: 2678: 2623: 2528: 1808: 1594: 463: 308: 276: 161: 137: 78: 4031: 2589: 1838:
to dyadic rationals, where the value of one of these functions for the argument
1654: 141: 5264: 3619: 3092: 2970: 2791: 2787: 1909: 1897: 1690: 1682: 1601: 1303: 541: 382: 149: 145: 4181: 3887: 3751: 3686: 3515: 3430: 3174: 3063: 2664: 2618: 2514: 2391: 5501: 5405: 5301: 4916: 4789: 4710: 4123: 2853: 2455: 1800: 1796: 1666: 1590: 1494: 959: 157: 3414:
Nilsson, Johan (2009), "On numbers badly approximable by dyadic rationals",
5437: 5212: 5108: 4857: 4847: 4740: 4735: 4705: 4078: 2716: 2460:
Connections and Complexity: New Approaches to the Archaeology of South Asia
2418:
Curtis, Lorenzo J. (1978), "Concept of the exponential law prior to 1900",
1815: 1579: 1172: 1167:
outside the circles, all dyadic rational approximations have larger errors.
1080: 471: 280:
use a random generation process whose time is itself random and unbounded.
203: 46: 4139: 3982:
Nadler, S. B. Jr. (1973), "The indecomposability of the dyadic solenoid",
2602:
van der Hoeven, Joris (2006), "Computations with effective real numbers",
2467: 1786: 1722: 1712: 5417: 5128: 5002: 4884: 4560: 4430:
Mauldon, J. G. (1978), "Num, a variant of Nim with no first-player win",
2783: 2549: 1831: 1774:
between the set of all rational numbers and the set of dyadic rationals.
1755: 1586: 1179: 537: 523: 451: 58: 42: 4474:
Flanigan, J. A. (1982), "A complete analysis of black-white Hackendot",
1737: 5182: 4784: 4779: 4581: 4487: 4453: 4005: 3510:, Undergraduate Texts in Mathematics, New York: Springer, p. 186, 3322: 2069: 2065: 1306:
that rounds its argument down to an integer. These numbers approximate
1164: 439: 389:
traditionally are written in a form resembling fractions (for example:
232: 2996: 2957: 5142: 5047: 4172: 3944: 3537:
In the notation of Estes and Ohm for rings that are both subrings of
2584:(2nd ed.), Springer International Publishing, pp. 183–214, 1771: 1460: 1456: 4445: 4156:
in groups of piecewise linear homeomorphisms of the unit interval",
4017: 3997: 2441: 1076:
The height of the pink region above each approximation is its error.
5136: 5122: 4800: 4647: 4612: 4530: 4018:
Bhattacharjee, Meenaxi; Macpherson, Dugald; Möller, Rögnvaldur G.;
3677: 3457:
Statistical Independence in Probability, Analysis and Number Theory
3452: 3165: 3054: 2988: 2949: 1698: 1571: 1493:
The dyadic rationals are precisely those numbers possessing finite
533: 38: 3734: 3113: 21: 5020: 4904: 4842: 4747: 4643: 4626: 1697:
of the dyadic rationals into this product. It is an example of a
1567: 1382: 467: 70: 997:), found by rounding to the nearest smaller integer multiple of 4254:"Basic applications of weak König's lemma in feasible analysis" 220: 3012:
Motivating Mathematics: Engaging Teachers And Engaged Students
2558:
Programming Massively Parallel Processors: A Hands-on Approach
1758:. As with any two unbounded countable dense linear orders, by 4616: 3718:
Manners, Freddie (2015), "A solution to the pyjama problem",
3212:, Geometry and Computing, vol. 6, Springer, p. 51, 3091:
Equivalent formulas to these, written in the language of the
2580:
Kneusel, Ronald T. (2017), "Chapter 6: Fixed-point numbers",
1912:
are a subset of the dyadic rationals, the closure of the set
224: 4099: 3882:, vol. 198, New York: Springer-Verlag, pp. 40–43, 4564: 4152:
Brin, Matthew G. (1999), "The ubiquity of Thompson's group
228: 216: 4516:
Erickson, Jeff; Nivasch, Gabriel; Xu, Junyan (June 2021),
3484:
Pollen, David (1992), "Daubechies' scaling function on ",
3921:
de Cornulier, Yves; Guyot, Luc; Pitsch, Wolfgang (2007),
1597:
of 2-adic numbers, but this decomposition is not unique.
296:
Audio playback is not supported in your browser. You can
1777:
The dyadic rationals play a key role in the analysis of
3920: 2507:
Wavelet Analysis: The Scalable Structure of Information
1713:
Functions with dyadic rationals as distinguished points
4559: 4379: 4346: 4317: 4290:(Second ed.), Natick, Massachusetts: A K Peters, 3383: 1747:, showing points of non-smoothness at dyadic rationals 1619: 1542: 1209: 1092: 156:
to the rational numbers; they form a subsystem of the
97: 5350: 5312: 5275: 5055: 5028: 4406: 4373: 4344: 4315: 3862: 3840: 3777: 3587: 3565: 3543: 3375: 3369:
approaches zero. The illustration shows this set for
3355: 3335: 3292: 3257: 3251:, the set of real numbers that have no approximation 3237: 3209:
Analysis and Design of Univariate Subdivision Schemes
2782: 2303: 2273: 2253: 2233: 2209: 2189: 2148: 2128: 2108: 2081: 2028: 2002: 1944: 1918: 1864: 1844: 1609: 1532: 1469: 1426: 1391: 1367: 1332: 1312: 1282: 1262: 1188: 1134: 1090: 1038: 1003: 973: 553: 508: 480: 87: 1589:, the dyadic rational numbers form a subring of the 2560:(2nd ed.), Morgan Kaufmann, pp. 155–159, 1653:of the dyadic rationals by the integers) forms the 5374: 5327: 5290: 5082: 5036: 4412: 4392: 4359: 4330: 4252:Fernandes, António M.; Ferreira, Fernando (2005), 3868: 3846: 3813: 3608: 3573: 3551: 3396: 3361: 3341: 3313: 3278: 3243: 2883:The NPR Listener's Encyclopedia of Classical Music 2322: 2285: 2259: 2239: 2215: 2195: 2175: 2134: 2114: 2094: 2056: 2014: 1988: 1930: 1877: 1850: 1645: 1558: 1482: 1447: 1412: 1373: 1361:, which can be made arbitrarily small by choosing 1353: 1318: 1294: 1268: 1246: 1194: 1155: 1120: 1068: 1024: 989: 936: 514: 494: 113: 4515: 4251: 4065:Journal of Mathematical Analysis and Applications 2909:, Cambridge Scholars Publishing, pp. 35–62, 2122:the smallest fusible number that is greater than 1574:of the integers. Algebraically, this ring is the 5499: 3096: 2933: 2744: 2357:How Mathematics Happened: The First 50,000 Years 832: 803: 766: 682: 653: 616: 268:, and are central to some theoretical models of 202:Kitchen weights measuring dyadic fractions of a 3923:"On the isolated points in the space of groups" 3662: 3037: 160:as well as of the reals, and can represent the 3916: 3914: 3834:(2000), "5.4 Fractional and integral parts of 2702: 2601: 2493: 1821: 1526:. The ring of dyadic rationals may be denoted 5479: 4816: 4597: 4309:; for the dyadic rationals, see "The numbers 3231:More precisely, for small positive values of 2976:Journal for Research in Mathematics Education 2969: 2937:Journal for Research in Mathematics Education 2509:, New York: Springer-Verlag, pp. 17–18, 1811:, the first known example of an infinite but 457: 5083:{\displaystyle 0=\mathbb {Z} /1\mathbb {Z} } 4227:Notices of the American Mathematical Society 3601: 3595: 3397:{\displaystyle \varepsilon ={\tfrac {1}{6}}} 3150: 2834: 1925: 1919: 1289: 1283: 1226: 1210: 1202:, consider the dyadic rationals of the form 502:in simplest terms is a dyadic rational when 25:Dyadic rationals in the interval from 0 to 1 4209: 4093: 3911: 3153:Mathematical Structures in Computer Science 1889:to be proven within a restricted theory of 1600:Addition of dyadic rationals modulo 1 (the 1578:of the integers with respect to the set of 445: 53:because they are the only ones with finite 5486: 5472: 4823: 4809: 4604: 4590: 4509: 4159:Journal of the London Mathematical Society 4061: 4055: 3713: 3711: 3033: 3031: 2830: 2828: 2503:"2.2.1: Digital computers and measurement" 1508: 5375:{\displaystyle \mathbb {Z} (p^{\infty })} 5352: 5315: 5278: 5076: 5063: 5030: 4571:On-Line Encyclopedia of Integer Sequences 4529: 4377: 4171: 4077: 3943: 3814:{\displaystyle {\widehat {\mathbb {Z} }}} 3783: 3733: 3676: 3640: 3590: 3567: 3545: 3479: 3477: 3429: 3286:with error smaller than a constant times 3164: 3112: 3095:interactive theorem prover, are given by 3085: 3053: 2872: 2870: 2809: 2617: 1731:maps rational numbers to dyadic rationals 1646:{\displaystyle \mathbb {Z} /\mathbb {Z} } 1639: 1611: 1534: 1420:with error smaller than a constant times 1247:{\textstyle \lfloor 2^{i}x\rfloor /2^{i}} 990:{\displaystyle {\sqrt {2}}\approx 1.4142} 89: 4611: 4473: 4467: 3617: 3201: 3199: 2904: 2898: 1766:to the rational numbers. In this case, 1079: 958: 954: 20: 18:Fraction with denominator a power of two 4553: 4429: 4423: 4245: 4203: 3717: 3708: 3531: 3413: 3407: 3144: 3028: 2963: 2927: 2825: 2579: 2544: 2538: 2297:for large numbers) already larger than 1834:is to represent them as functions from 1490:are uniformly spaced on the real line. 37:is a number that can be expressed as a 5500: 4518:"Fusible numbers and Peano arithmetic" 4280: 4274: 3981: 3975: 3830: 3824: 3505: 3499: 3483: 3474: 2876: 2867: 2573: 2462:, Left Coast Press, pp. 161–177, 2453: 2417: 2379: 2353: 1858:is a dyadic rational with denominator 1513: 1295:{\displaystyle \lfloor \dots \rfloor } 963:Dyadic rational approximations to the 4804: 4585: 3508:An Invitation to Abstract Mathematics 3205: 3196: 3008: 3002: 2487: 2447: 2411: 2386:, Springer International Publishing, 2373: 2347: 1121:{\displaystyle {\tfrac {1}{6}}/2^{i}} 4943:Free product of associative algebras 4830: 4476:International Journal of Game Theory 4151: 4145: 4024:Notes on Infinite Permutation Groups 4011: 3771:; see section 6.2.1, "A model case: 3656: 3609:{\displaystyle \mathbb {Z} _{\{2\}}} 3581:, the dyadic rationals are the ring 3015:, World Scientific, pp. 32–33, 2648: 2646: 2644: 2642: 2640: 2638: 2636: 1989:{\displaystyle x,y\mapsto (x+y+1)/2} 1585:As well as forming a subring of the 3620:"Stable range in commutative rings" 3451: 3445: 3100:Logical Methods in Computer Science 2907:Music between Ontology and Ideology 2885:, Workman Publishing, p. 873, 2776: 2738: 2656:Complexity Theory of Real Functions 1893:called "feasible analysis" (BTFA). 1681:to the multiplicative group of the 13: 5364: 4393:{\displaystyle 1\,{\tfrac {1}{2}}} 3314:{\displaystyle \varepsilon /2^{i}} 2696: 2652: 2595: 2247:grows so rapidly as a function of 1768:Minkowski's question-mark function 1729:Minkowski's question-mark function 1660: 130:Minkowski's question-mark function 14: 5534: 5431:Noncommutative algebraic geometry 4433:The American Mathematical Monthly 3985:The American Mathematical Monthly 3618:Estes, Dennis; Ohm, Jack (1967), 2633: 2360:, Prometheus Books, p. 148, 1781:, as the set of points where the 1326:from below to within an error of 180: 5328:{\displaystyle \mathbb {Q} _{p}} 5291:{\displaystyle \mathbb {Z} _{p}} 4656: 4625: 2323:{\displaystyle 2\uparrow ^{9}16} 2095:{\displaystyle \varepsilon _{0}} 1736: 1721: 1570:of the rational numbers, and an 248:Dyadic rationals are central to 189: 4360:{\displaystyle {\tfrac {3}{4}}} 4331:{\displaystyle {\tfrac {1}{4}}} 3225: 1381:to be arbitrarily large. For a 243: 175: 5369: 5356: 4540:10.1109/lics52264.2021.9470703 3954:10.1016/j.jalgebra.2006.02.012 3801: 3787: 3665:Applied Categorical Structures 2308: 2044: 2030: 1975: 1957: 1954: 1830:, one way of constructing the 1630: 1615: 1553: 1538: 1069:{\displaystyle i=0,1,2,\dots } 847: 835: 818: 806: 781: 769: 697: 685: 668: 656: 631: 619: 108: 93: 1: 4219:"What is … Thompson's group?" 3880:Graduate Texts in Mathematics 3461:Carus Mathematical Monographs 3417:Israel Journal of Mathematics 2340: 1770:provides an order-preserving 1163:. For numbers in the fractal 466:that result from dividing an 258:IEEE floating-point datatypes 5037:{\displaystyle \mathbb {Z} } 4022:(1997), "Rational numbers", 3642:10.1016/0021-8693(67)90075-0 3574:{\displaystyle \mathbb {Z} } 3552:{\displaystyle \mathbb {Q} } 3362:{\displaystyle \varepsilon } 3342:{\displaystyle \varepsilon } 3244:{\displaystyle \varepsilon } 3041:Theoretical Computer Science 3009:Wells, David Graham (2015), 2811:10.1016/0304-3975(86)90174-X 2797:Theoretical Computer Science 2755:10.1007/978-3-030-22996-2_27 2705:Mathematical Logic Quarterly 2605:Theoretical Computer Science 1760:Cantor's isomorphism theorem 1559:{\displaystyle \mathbb {Z} } 293: 114:{\displaystyle \mathbb {Z} } 69:, lying between the ring of 7: 5189:Unique factorization domain 4032:10.1007/978-93-80250-91-5_9 2590:10.1007/978-3-319-50508-4_6 2554:"7.2 Representable numbers" 2421:American Journal of Physics 1822:Other related constructions 1762:, the dyadic rationals are 462:The dyadic numbers are the 283: 81:. This ring may be denoted 10: 5539: 4949:Tensor product of algebras 4561:Sloane, N. J. A. 2057:{\displaystyle |x-y|<1} 458:Definitions and arithmetic 436:non-dyadic time signatures 4838: 4696: 4665: 4654: 4632: 4623: 4182:10.1112/S0024610799007905 3888:10.1007/978-1-4757-3254-2 3752:10.1007/s00222-014-0571-7 3687:10.1007/s10485-017-9496-9 3516:10.1007/978-1-4614-6636-9 3431:10.1007/s11856-009-0042-9 3175:10.1017/S0960129506005871 3064:10.1016/j.tcs.2015.05.017 2877:Libbey, Theodore (2006), 2665:10.1007/978-1-4684-6802-1 2619:10.1016/j.tcs.2005.09.060 2515:10.1007/978-1-4612-0593-7 2392:10.1007/978-3-319-46831-0 2354:Rudman, Peter S. (2009), 2295:Knuth's up-arrow notation 2176:{\displaystyle n+1/2^{k}} 1903:combinatorial game theory 1171:Every integer, and every 237:Indus Valley civilisation 210:down to 1/64 lb (1/4 oz) 5227:Formal power series ring 5177:Integrally closed domain 4261:Reverse Mathematics 2001 4124:10.1103/PhysRevA.38.1503 3721:Inventiones Mathematicae 2854:10.1177/1048371313486478 1707:indecomposable continuum 526:that have a terminating 446:In mathematics education 318:showing time signatures 5508:Fractions (mathematics) 5236:Algebraic number theory 4929:Total ring of fractions 4565:"Sequence A188545" 4524:, IEEE, pp. 1–13, 4420:, and so on", pp. 10–12 3279:{\displaystyle n/2^{i}} 3206:Sabin, Malcolm (2010), 3123:10.2168/LMCS-9(1:1)2013 1891:second-order arithmetic 1677:of the original group, 1509:In advanced mathematics 1448:{\displaystyle 1/2^{i}} 1413:{\displaystyle n/2^{i}} 1354:{\displaystyle 1/2^{i}} 1276:can be any integer and 1156:{\displaystyle n/2^{i}} 1025:{\displaystyle 1/2^{i}} 947:However, the result of 298:download the audio file 5393:Noncommutative algebra 5376: 5329: 5292: 5244:Algebraic number field 5195:Principal ideal domain 5084: 5038: 4976:Frobenius endomorphism 4414: 4394: 4361: 4332: 4079:10.1006/jmaa.1996.0370 3870: 3848: 3815: 3610: 3575: 3553: 3398: 3363: 3343: 3315: 3280: 3245: 2717:10.1002/malq.200310110 2324: 2287: 2261: 2241: 2217: 2197: 2177: 2136: 2116: 2096: 2058: 2016: 1996:, restricted to pairs 1990: 1932: 1879: 1852: 1647: 1560: 1484: 1449: 1414: 1375: 1355: 1320: 1296: 1270: 1248: 1196: 1168: 1157: 1122: 1077: 1070: 1026: 991: 938: 516: 496: 254:floating-point numbers 115: 55:binary representations 26: 5377: 5330: 5293: 5085: 5039: 4863:Superparticular ratio 4415: 4395: 4362: 4333: 3871: 3849: 3816: 3611: 3576: 3554: 3506:Bajnok, Béla (2013), 3399: 3364: 3344: 3316: 3281: 3246: 2582:Numbers and Computers 2499:Wells, Raymond O. Jr. 2468:10.4324/9781315431857 2380:Barnes, John (2016), 2325: 2288: 2262: 2242: 2218: 2198: 2178: 2137: 2117: 2097: 2059: 2017: 1991: 1933: 1931:{\displaystyle \{0\}} 1887:mathematical analysis 1880: 1878:{\displaystyle 2^{i}} 1853: 1648: 1561: 1485: 1483:{\displaystyle 2^{i}} 1450: 1415: 1376: 1356: 1321: 1297: 1271: 1249: 1197: 1158: 1123: 1083: 1071: 1027: 992: 962: 955:Additional properties 939: 528:binary representation 517: 497: 262:fixed-point datatypes 166:mathematical analysis 116: 24: 5399:Noncommutative rings 5348: 5310: 5273: 5117:Non-associative ring 5053: 5026: 4983:Algebraic structures 4404: 4371: 4342: 4313: 4287:On Numbers and Games 3860: 3838: 3775: 3585: 3563: 3541: 3373: 3353: 3333: 3290: 3255: 3235: 2920:; see in particular 2495:Resnikoff, Howard L. 2481:; see in particular 2301: 2271: 2251: 2231: 2223:cannot be proven in 2207: 2187: 2146: 2126: 2106: 2079: 2026: 2000: 1942: 1938:under the operation 1916: 1862: 1842: 1805:function composition 1607: 1530: 1467: 1424: 1389: 1365: 1330: 1310: 1280: 1260: 1207: 1186: 1132: 1088: 1036: 1001: 971: 551: 506: 478: 474:. A rational number 152:. These numbers are 85: 5158:Commutative algebra 4997:Associative algebra 4879:Algebraic structure 4116:1988PhRvA..38.1503C 3744:2015InMat.202..239M 3616:. See section 7 of 3329:, as a function of 3327:Hausdorff dimension 2841:General Music Today 2434:1978AmJPh..46..896C 2333:The usual proof of 2286:{\displaystyle n=3} 2183:. The existence of 2102:. For each integer 2015:{\displaystyle x,y} 1828:reverse mathematics 1779:Daubechies wavelets 1679:group homomorphisms 1514:Algebraic structure 495:{\displaystyle p/q} 266:interval arithmetic 223:into half-gallons, 170:reverse mathematics 134:Daubechies wavelets 5412:Semiprimitive ring 5372: 5325: 5288: 5096:Related structures 5080: 5034: 4970:Inner automorphism 4956:Ring homomorphisms 4633:Division and ratio 4488:10.1007/BF01771244 4410: 4390: 4388: 4357: 4355: 4328: 4326: 3931:Journal of Algebra 3866: 3844: 3811: 3628:Journal of Algebra 3606: 3571: 3549: 3394: 3392: 3359: 3339: 3311: 3276: 3241: 2792:Vazirani, Vijay V. 2788:Valiant, Leslie G. 2653:Ko, Ker-I (1991), 2320: 2283: 2257: 2237: 2213: 2193: 2173: 2132: 2112: 2092: 2054: 2012: 1986: 1928: 1875: 1848: 1813:finitely presented 1745:Daubechies wavelet 1695:diagonal embedding 1671:Pontryagin duality 1643: 1628: 1556: 1551: 1480: 1445: 1410: 1371: 1351: 1316: 1292: 1266: 1244: 1192: 1169: 1153: 1118: 1101: 1078: 1066: 1022: 987: 934: 932: 512: 492: 314:The Rite of Spring 270:computable numbers 111: 106: 29:In mathematics, a 27: 5496: 5495: 5453:Geometric algebra 5164:Commutative rings 5015:Category of rings 4871: 4870: 4798: 4797: 4574:, OEIS Foundation 4413:{\displaystyle 3} 4387: 4354: 4325: 4162:, Second Series, 4103:Physical Review A 4020:Neumann, Peter M. 3869:{\displaystyle p} 3847:{\displaystyle p} 3808: 3559:and overrings of 3525:978-1-4614-6635-2 3391: 3349:, goes to one as 3022:978-1-78326-755-2 2916:978-1-5275-4758-2 2892:978-0-7611-2072-8 2567:978-0-12-391418-7 2477:978-1-59874-686-0 2401:978-3-319-46830-3 2367:978-1-61592-176-8 2260:{\displaystyle n} 2240:{\displaystyle k} 2216:{\displaystyle n} 2196:{\displaystyle k} 2135:{\displaystyle n} 2115:{\displaystyle n} 1851:{\displaystyle i} 1687:topological group 1627: 1550: 1495:binary expansions 1374:{\displaystyle i} 1319:{\displaystyle x} 1269:{\displaystyle i} 1195:{\displaystyle x} 1100: 979: 928: 893: 873: 852: 743: 723: 702: 593: 573: 515:{\displaystyle q} 302: 105: 5530: 5513:Rational numbers 5488: 5481: 5474: 5459:Operator algebra 5445:Clifford algebra 5381: 5379: 5378: 5373: 5368: 5367: 5355: 5334: 5332: 5331: 5326: 5324: 5323: 5318: 5297: 5295: 5294: 5289: 5287: 5286: 5281: 5259:Ring of integers 5253: 5250:Integers modulo 5201:Euclidean domain 5089: 5087: 5086: 5081: 5079: 5071: 5066: 5043: 5041: 5040: 5035: 5033: 4937:Product of rings 4923:Fractional ideal 4882: 4874: 4873: 4832:Rational numbers 4825: 4818: 4811: 4802: 4801: 4775:Musical interval 4688: 4687: 4685: 4684: 4681: 4678: 4660: 4659: 4629: 4606: 4599: 4592: 4583: 4582: 4576: 4575: 4557: 4551: 4550: 4533: 4513: 4507: 4506: 4471: 4465: 4464: 4427: 4421: 4419: 4417: 4416: 4411: 4399: 4397: 4396: 4391: 4389: 4380: 4366: 4364: 4363: 4358: 4356: 4347: 4337: 4335: 4334: 4329: 4327: 4318: 4308: 4278: 4272: 4271: 4258: 4249: 4243: 4242: 4234:(8): 1112–1113, 4223: 4207: 4201: 4200: 4175: 4155: 4149: 4143: 4142: 4110:(3): 1503–1520, 4106:, Third Series, 4097: 4091: 4090: 4081: 4059: 4053: 4052: 4015: 4009: 4008: 3979: 3973: 3972: 3947: 3927: 3918: 3909: 3908: 3875: 3873: 3872: 3867: 3854:-adic numbers", 3853: 3851: 3850: 3845: 3832:Robert, Alain M. 3828: 3822: 3820: 3818: 3817: 3812: 3810: 3809: 3804: 3797: 3786: 3780: 3770: 3737: 3715: 3706: 3705: 3680: 3660: 3654: 3653: 3644: 3624: 3615: 3613: 3612: 3607: 3605: 3604: 3593: 3580: 3578: 3577: 3572: 3570: 3558: 3556: 3555: 3550: 3548: 3535: 3529: 3528: 3503: 3497: 3496: 3481: 3472: 3471: 3449: 3443: 3442: 3433: 3411: 3405: 3403: 3401: 3400: 3395: 3393: 3384: 3368: 3366: 3365: 3360: 3348: 3346: 3345: 3340: 3320: 3318: 3317: 3312: 3310: 3309: 3300: 3285: 3283: 3282: 3277: 3275: 3274: 3265: 3250: 3248: 3247: 3242: 3229: 3223: 3222: 3203: 3194: 3193: 3168: 3148: 3142: 3141: 3116: 3089: 3083: 3082: 3057: 3035: 3026: 3025: 3006: 3000: 2999: 2967: 2961: 2960: 2931: 2925: 2919: 2902: 2896: 2895: 2879:"Time signature" 2874: 2865: 2864: 2836:Jones, Shelly M. 2832: 2823: 2822: 2813: 2804:(2–3): 169–188, 2780: 2774: 2773: 2742: 2736: 2735: 2711:(4–5): 431–442, 2700: 2694: 2693: 2650: 2631: 2630: 2621: 2599: 2593: 2592: 2577: 2571: 2570: 2542: 2536: 2535: 2491: 2485: 2480: 2451: 2445: 2444: 2415: 2409: 2408: 2377: 2371: 2370: 2351: 2329: 2327: 2326: 2321: 2316: 2315: 2292: 2290: 2289: 2284: 2266: 2264: 2263: 2258: 2246: 2244: 2243: 2238: 2225:Peano arithmetic 2222: 2220: 2219: 2214: 2202: 2200: 2199: 2194: 2182: 2180: 2179: 2174: 2172: 2171: 2162: 2141: 2139: 2138: 2133: 2121: 2119: 2118: 2113: 2101: 2099: 2098: 2093: 2091: 2090: 2063: 2061: 2060: 2055: 2047: 2033: 2021: 2019: 2018: 2013: 1995: 1993: 1992: 1987: 1982: 1937: 1935: 1934: 1929: 1884: 1882: 1881: 1876: 1874: 1873: 1857: 1855: 1854: 1849: 1809:Thompson's group 1794:piecewise linear 1783:scaling function 1764:order-isomorphic 1740: 1725: 1652: 1650: 1649: 1644: 1642: 1637: 1629: 1620: 1614: 1595:fractional parts 1565: 1563: 1562: 1557: 1552: 1543: 1537: 1489: 1487: 1486: 1481: 1479: 1478: 1454: 1452: 1451: 1446: 1444: 1443: 1434: 1419: 1417: 1416: 1411: 1409: 1408: 1399: 1380: 1378: 1377: 1372: 1360: 1358: 1357: 1352: 1350: 1349: 1340: 1325: 1323: 1322: 1317: 1301: 1299: 1298: 1293: 1275: 1273: 1272: 1267: 1255: 1253: 1251: 1250: 1245: 1243: 1242: 1233: 1222: 1221: 1201: 1199: 1198: 1193: 1162: 1160: 1159: 1154: 1152: 1151: 1142: 1127: 1125: 1124: 1119: 1117: 1116: 1107: 1102: 1093: 1075: 1073: 1072: 1067: 1031: 1029: 1028: 1023: 1021: 1020: 1011: 996: 994: 993: 988: 980: 975: 965:square root of 2 943: 941: 940: 935: 933: 929: 927: 926: 911: 903: 894: 892: 891: 879: 874: 872: 871: 859: 853: 851: 850: 826: 822: 821: 785: 784: 753: 744: 742: 741: 729: 724: 722: 721: 709: 703: 701: 700: 676: 672: 671: 635: 634: 603: 594: 592: 591: 579: 574: 572: 571: 559: 521: 519: 518: 513: 501: 499: 498: 493: 488: 464:rational numbers 433: 432: 431: 430: 418: 417: 416: 415: 403: 402: 401: 400: 387:musical notation 377: 376: 375: 374: 362: 361: 360: 359: 347: 346: 345: 344: 332: 331: 330: 329: 250:computer science 209: 193: 162:fractional parts 154:order-isomorphic 138:Thompson's group 120: 118: 117: 112: 107: 98: 92: 79:rational numbers 51:computer science 5538: 5537: 5533: 5532: 5531: 5529: 5528: 5527: 5498: 5497: 5492: 5463: 5462: 5395: 5385: 5384: 5363: 5359: 5351: 5349: 5346: 5345: 5319: 5314: 5313: 5311: 5308: 5307: 5282: 5277: 5276: 5274: 5271: 5270: 5251: 5221:Polynomial ring 5171:Integral domain 5160: 5150: 5149: 5075: 5067: 5062: 5054: 5051: 5050: 5029: 5027: 5024: 5023: 5009:Involutive ring 4894: 4883: 4877: 4872: 4867: 4853:Dyadic rational 4834: 4829: 4799: 4794: 4765:Just intonation 4692: 4682: 4679: 4676: 4675: 4673: 4672: 4661: 4657: 4652: 4630: 4619: 4610: 4580: 4579: 4558: 4554: 4514: 4510: 4472: 4468: 4446:10.2307/2320870 4428: 4424: 4405: 4402: 4401: 4378: 4372: 4369: 4368: 4345: 4343: 4340: 4339: 4316: 4314: 4311: 4310: 4298: 4279: 4275: 4256: 4250: 4246: 4221: 4208: 4204: 4153: 4150: 4146: 4098: 4094: 4060: 4056: 4042: 4016: 4012: 3998:10.2307/2319174 3980: 3976: 3925: 3919: 3912: 3898: 3861: 3858: 3857: 3839: 3836: 3835: 3829: 3825: 3821:", pp. 255–257. 3793: 3782: 3781: 3779: 3778: 3776: 3773: 3772: 3716: 3709: 3661: 3657: 3622: 3594: 3589: 3588: 3586: 3583: 3582: 3566: 3564: 3561: 3560: 3544: 3542: 3539: 3538: 3536: 3532: 3526: 3504: 3500: 3482: 3475: 3450: 3446: 3412: 3408: 3382: 3374: 3371: 3370: 3354: 3351: 3350: 3334: 3331: 3330: 3305: 3301: 3296: 3291: 3288: 3287: 3270: 3266: 3261: 3256: 3253: 3252: 3236: 3233: 3232: 3230: 3226: 3220: 3204: 3197: 3149: 3145: 3107:(1): 1:01, 27, 3090: 3086: 3036: 3029: 3023: 3007: 3003: 2971:Pothier, Yvonne 2968: 2964: 2932: 2928: 2917: 2903: 2899: 2893: 2875: 2868: 2833: 2826: 2784:Jerrum, Mark R. 2781: 2777: 2743: 2739: 2701: 2697: 2675: 2651: 2634: 2600: 2596: 2578: 2574: 2568: 2550:Hwu, Wen-mei W. 2543: 2539: 2525: 2492: 2488: 2478: 2452: 2448: 2442:10.1119/1.11512 2416: 2412: 2402: 2378: 2374: 2368: 2352: 2348: 2343: 2335:Urysohn's lemma 2311: 2307: 2302: 2299: 2298: 2272: 2269: 2268: 2252: 2249: 2248: 2232: 2229: 2228: 2208: 2205: 2204: 2188: 2185: 2184: 2167: 2163: 2158: 2147: 2144: 2143: 2127: 2124: 2123: 2107: 2104: 2103: 2086: 2082: 2080: 2077: 2076: 2043: 2029: 2027: 2024: 2023: 2001: 1998: 1997: 1978: 1943: 1940: 1939: 1917: 1914: 1913: 1910:fusible numbers 1898:surreal numbers 1869: 1865: 1863: 1860: 1859: 1843: 1840: 1839: 1824: 1752: 1751: 1750: 1749: 1748: 1741: 1733: 1732: 1726: 1715: 1683:complex numbers 1663: 1661:Dyadic solenoid 1638: 1633: 1618: 1610: 1608: 1605: 1604: 1541: 1533: 1531: 1528: 1527: 1516: 1511: 1504: 1500: 1474: 1470: 1468: 1465: 1464: 1439: 1435: 1430: 1425: 1422: 1421: 1404: 1400: 1395: 1390: 1387: 1386: 1366: 1363: 1362: 1345: 1341: 1336: 1331: 1328: 1327: 1311: 1308: 1307: 1281: 1278: 1277: 1261: 1258: 1257: 1238: 1234: 1229: 1217: 1213: 1208: 1205: 1204: 1203: 1187: 1184: 1183: 1147: 1143: 1138: 1133: 1130: 1129: 1112: 1108: 1103: 1091: 1089: 1086: 1085: 1037: 1034: 1033: 1016: 1012: 1007: 1002: 999: 998: 974: 972: 969: 968: 957: 931: 930: 916: 912: 904: 902: 895: 887: 883: 878: 867: 863: 858: 855: 854: 831: 827: 796: 792: 759: 755: 754: 752: 745: 737: 733: 728: 717: 713: 708: 705: 704: 681: 677: 646: 642: 609: 605: 604: 602: 595: 587: 583: 578: 567: 563: 558: 554: 552: 549: 548: 507: 504: 503: 484: 479: 476: 475: 460: 448: 429: 424: 423: 422: 421: 420: 414: 409: 408: 407: 406: 405: 399: 394: 393: 392: 391: 390: 383:Time signatures 380: 379: 378: 373: 368: 367: 366: 365: 364: 358: 353: 352: 351: 350: 349: 343: 338: 337: 336: 335: 334: 328: 323: 322: 321: 320: 319: 317: 309:Igor Stravinski 307:Five bars from 305: 304: 303: 301: 286: 277:random variable 246: 213: 212: 211: 207: 201: 196: 195: 194: 183: 178: 150:fusible numbers 146:surreal numbers 126:dyadic solenoid 96: 88: 86: 83: 82: 35:binary rational 31:dyadic rational 19: 12: 11: 5: 5536: 5526: 5525: 5520: 5515: 5510: 5494: 5493: 5491: 5490: 5483: 5476: 5468: 5465: 5464: 5456: 5455: 5427: 5426: 5420: 5414: 5408: 5396: 5391: 5390: 5387: 5386: 5383: 5382: 5371: 5366: 5362: 5358: 5354: 5335: 5322: 5317: 5298: 5285: 5280: 5268:-adic integers 5261: 5255: 5246: 5232: 5231: 5230: 5229: 5223: 5217: 5216: 5215: 5203: 5197: 5191: 5185: 5179: 5161: 5156: 5155: 5152: 5151: 5148: 5147: 5146: 5145: 5133: 5132: 5131: 5125: 5113: 5112: 5111: 5093: 5092: 5091: 5090: 5078: 5074: 5070: 5065: 5061: 5058: 5044: 5032: 5011: 5005: 4999: 4993: 4979: 4978: 4972: 4966: 4952: 4951: 4945: 4939: 4933: 4932: 4931: 4925: 4913: 4907: 4895: 4893:Basic concepts 4892: 4891: 4888: 4887: 4869: 4868: 4866: 4865: 4860: 4855: 4850: 4845: 4839: 4836: 4835: 4828: 4827: 4820: 4813: 4805: 4796: 4795: 4793: 4792: 4787: 4782: 4777: 4772: 4767: 4762: 4761: 4760: 4750: 4745: 4744: 4743: 4733: 4728: 4723: 4718: 4713: 4708: 4703: 4697: 4694: 4693: 4691: 4690: 4669: 4667: 4663: 4662: 4655: 4653: 4651: 4650: 4636: 4634: 4631: 4624: 4621: 4620: 4609: 4608: 4601: 4594: 4586: 4578: 4577: 4552: 4508: 4466: 4440:(7): 575–578, 4422: 4409: 4386: 4383: 4376: 4353: 4350: 4324: 4321: 4296: 4273: 4244: 4202: 4166:(2): 449–460, 4144: 4092: 4072:(1): 127–141, 4054: 4040: 4010: 3992:(6): 677–679, 3974: 3938:(1): 254–277, 3910: 3896: 3876:-adic Analysis 3865: 3843: 3823: 3807: 3803: 3800: 3796: 3792: 3789: 3785: 3728:(1): 239–270, 3707: 3671:(2): 369–400, 3655: 3635:(3): 343–362, 3603: 3600: 3597: 3592: 3569: 3547: 3530: 3524: 3498: 3473: 3444: 3406: 3390: 3387: 3381: 3378: 3358: 3338: 3308: 3304: 3299: 3295: 3273: 3269: 3264: 3260: 3240: 3224: 3218: 3195: 3159:(1): 129–159, 3143: 3084: 3027: 3021: 3001: 2989:10.2307/748675 2983:(5): 307–317, 2962: 2950:10.2307/748774 2944:(5): 374–378, 2926: 2915: 2897: 2891: 2866: 2824: 2775: 2737: 2695: 2673: 2632: 2594: 2572: 2566: 2546:Kirk, David B. 2537: 2523: 2486: 2476: 2456:Rizvi, Uzma Z. 2446: 2428:(9): 896–906, 2410: 2400: 2372: 2366: 2345: 2344: 2342: 2339: 2319: 2314: 2310: 2306: 2282: 2279: 2276: 2256: 2236: 2212: 2192: 2170: 2166: 2161: 2157: 2154: 2151: 2131: 2111: 2089: 2085: 2074:epsilon number 2053: 2050: 2046: 2042: 2039: 2036: 2032: 2011: 2008: 2005: 1985: 1981: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1927: 1924: 1921: 1872: 1868: 1847: 1823: 1820: 1797:homeomorphisms 1742: 1735: 1734: 1727: 1720: 1719: 1718: 1717: 1716: 1714: 1711: 1662: 1659: 1655:Prüfer 2-group 1641: 1636: 1632: 1626: 1623: 1617: 1613: 1602:quotient group 1591:2-adic numbers 1555: 1549: 1546: 1540: 1536: 1515: 1512: 1510: 1507: 1502: 1498: 1477: 1473: 1442: 1438: 1433: 1429: 1407: 1403: 1398: 1394: 1370: 1348: 1344: 1339: 1335: 1315: 1304:floor function 1291: 1288: 1285: 1265: 1241: 1237: 1232: 1228: 1225: 1220: 1216: 1212: 1191: 1150: 1146: 1141: 1137: 1115: 1111: 1106: 1099: 1096: 1065: 1062: 1059: 1056: 1053: 1050: 1047: 1044: 1041: 1019: 1015: 1010: 1006: 986: 983: 978: 956: 953: 945: 944: 925: 922: 919: 915: 910: 907: 901: 898: 896: 890: 886: 882: 877: 870: 866: 862: 857: 856: 849: 846: 843: 840: 837: 834: 830: 825: 820: 817: 814: 811: 808: 805: 802: 799: 795: 791: 788: 783: 780: 777: 774: 771: 768: 765: 762: 758: 751: 748: 746: 740: 736: 732: 727: 720: 716: 712: 707: 706: 699: 696: 693: 690: 687: 684: 680: 675: 670: 667: 664: 661: 658: 655: 652: 649: 645: 641: 638: 633: 630: 627: 624: 621: 618: 615: 612: 608: 601: 598: 596: 590: 586: 582: 577: 570: 566: 562: 557: 556: 542:multiplication 511: 491: 487: 483: 459: 456: 447: 444: 425: 410: 395: 369: 354: 339: 324: 306: 295: 292: 289: 288: 287: 285: 282: 245: 242: 198: 197: 188: 187: 186: 185: 184: 182: 181:In measurement 179: 177: 174: 158:2-adic numbers 142:Prüfer 2-group 110: 104: 101: 95: 91: 17: 9: 6: 4: 3: 2: 5535: 5524: 5523:Number theory 5521: 5519: 5516: 5514: 5511: 5509: 5506: 5505: 5503: 5489: 5484: 5482: 5477: 5475: 5470: 5469: 5467: 5466: 5461: 5460: 5454: 5450: 5449: 5448: 5447: 5446: 5441: 5440: 5439: 5434: 5433: 5432: 5425: 5421: 5419: 5415: 5413: 5409: 5407: 5406:Division ring 5403: 5402: 5401: 5400: 5394: 5389: 5388: 5360: 5344: 5342: 5336: 5320: 5306: 5305:-adic numbers 5304: 5299: 5283: 5269: 5267: 5262: 5260: 5256: 5254: 5247: 5245: 5241: 5240: 5239: 5238: 5237: 5228: 5224: 5222: 5218: 5214: 5210: 5209: 5208: 5204: 5202: 5198: 5196: 5192: 5190: 5186: 5184: 5180: 5178: 5174: 5173: 5172: 5168: 5167: 5166: 5165: 5159: 5154: 5153: 5144: 5140: 5139: 5138: 5134: 5130: 5126: 5124: 5120: 5119: 5118: 5114: 5110: 5106: 5105: 5104: 5100: 5099: 5098: 5097: 5072: 5068: 5059: 5056: 5049: 5048:Terminal ring 5045: 5022: 5018: 5017: 5016: 5012: 5010: 5006: 5004: 5000: 4998: 4994: 4992: 4988: 4987: 4986: 4985: 4984: 4977: 4973: 4971: 4967: 4965: 4961: 4960: 4959: 4958: 4957: 4950: 4946: 4944: 4940: 4938: 4934: 4930: 4926: 4924: 4920: 4919: 4918: 4917:Quotient ring 4914: 4912: 4908: 4906: 4902: 4901: 4900: 4899: 4890: 4889: 4886: 4881:→ Ring theory 4880: 4876: 4875: 4864: 4861: 4859: 4856: 4854: 4851: 4849: 4846: 4844: 4841: 4840: 4837: 4833: 4826: 4821: 4819: 4814: 4812: 4807: 4806: 4803: 4791: 4788: 4786: 4783: 4781: 4778: 4776: 4773: 4771: 4768: 4766: 4763: 4759: 4756: 4755: 4754: 4751: 4749: 4746: 4742: 4739: 4738: 4737: 4734: 4732: 4729: 4727: 4724: 4722: 4719: 4717: 4714: 4712: 4709: 4707: 4704: 4702: 4699: 4698: 4695: 4671: 4670: 4668: 4664: 4649: 4645: 4641: 4638: 4637: 4635: 4628: 4622: 4618: 4614: 4607: 4602: 4600: 4595: 4593: 4588: 4587: 4584: 4573: 4572: 4566: 4562: 4556: 4549: 4545: 4541: 4537: 4532: 4527: 4523: 4519: 4512: 4505: 4501: 4497: 4493: 4489: 4485: 4481: 4477: 4470: 4463: 4459: 4455: 4451: 4447: 4443: 4439: 4435: 4434: 4426: 4407: 4384: 4381: 4374: 4351: 4348: 4322: 4319: 4307: 4303: 4299: 4297:1-56881-127-6 4293: 4289: 4288: 4283: 4282:Conway, J. H. 4277: 4270: 4266: 4262: 4255: 4248: 4241: 4237: 4233: 4229: 4228: 4220: 4216: 4212: 4211:Cannon, J. W. 4206: 4199: 4195: 4191: 4187: 4183: 4179: 4174: 4169: 4165: 4161: 4160: 4148: 4141: 4137: 4133: 4129: 4125: 4121: 4117: 4113: 4109: 4105: 4104: 4096: 4089: 4085: 4080: 4075: 4071: 4067: 4066: 4058: 4051: 4047: 4043: 4041:81-85931-13-5 4037: 4033: 4029: 4025: 4021: 4014: 4007: 4003: 3999: 3995: 3991: 3987: 3986: 3978: 3971: 3967: 3963: 3959: 3955: 3951: 3946: 3941: 3937: 3933: 3932: 3924: 3917: 3915: 3907: 3903: 3899: 3897:0-387-98669-3 3893: 3889: 3885: 3881: 3877: 3863: 3841: 3833: 3827: 3805: 3798: 3794: 3790: 3769: 3765: 3761: 3757: 3753: 3749: 3745: 3741: 3736: 3731: 3727: 3723: 3722: 3714: 3712: 3704: 3700: 3696: 3692: 3688: 3684: 3679: 3674: 3670: 3666: 3659: 3652: 3648: 3643: 3638: 3634: 3630: 3629: 3621: 3598: 3534: 3527: 3521: 3517: 3513: 3509: 3502: 3495: 3491: 3487: 3480: 3478: 3470: 3466: 3462: 3458: 3454: 3448: 3441: 3437: 3432: 3427: 3423: 3419: 3418: 3410: 3388: 3385: 3379: 3376: 3356: 3336: 3328: 3324: 3306: 3302: 3297: 3293: 3271: 3267: 3262: 3258: 3238: 3228: 3221: 3219:9783642136481 3215: 3211: 3210: 3202: 3200: 3192: 3188: 3184: 3180: 3176: 3172: 3167: 3162: 3158: 3154: 3147: 3140: 3136: 3132: 3128: 3124: 3120: 3115: 3110: 3106: 3102: 3101: 3094: 3088: 3081: 3077: 3073: 3069: 3065: 3061: 3056: 3051: 3047: 3043: 3042: 3034: 3032: 3024: 3018: 3014: 3013: 3005: 2998: 2994: 2990: 2986: 2982: 2978: 2977: 2972: 2966: 2959: 2955: 2951: 2947: 2943: 2939: 2938: 2930: 2923: 2918: 2912: 2908: 2901: 2894: 2888: 2884: 2880: 2873: 2871: 2863: 2859: 2855: 2851: 2847: 2843: 2842: 2837: 2831: 2829: 2821: 2817: 2812: 2807: 2803: 2799: 2798: 2793: 2789: 2785: 2779: 2772: 2768: 2764: 2760: 2756: 2752: 2748: 2741: 2734: 2730: 2726: 2722: 2718: 2714: 2710: 2706: 2699: 2692: 2688: 2684: 2680: 2676: 2674:0-8176-3586-6 2670: 2666: 2662: 2658: 2657: 2649: 2647: 2645: 2643: 2641: 2639: 2637: 2629: 2625: 2620: 2615: 2611: 2607: 2606: 2598: 2591: 2587: 2583: 2576: 2569: 2563: 2559: 2555: 2551: 2547: 2541: 2534: 2530: 2526: 2524:0-387-98383-X 2520: 2516: 2512: 2508: 2504: 2500: 2496: 2490: 2484: 2479: 2473: 2469: 2465: 2461: 2457: 2450: 2443: 2439: 2435: 2431: 2427: 2423: 2422: 2414: 2407: 2403: 2397: 2393: 2389: 2385: 2384: 2376: 2369: 2363: 2359: 2358: 2350: 2346: 2338: 2336: 2331: 2317: 2312: 2304: 2296: 2280: 2277: 2274: 2254: 2234: 2226: 2210: 2190: 2168: 2164: 2159: 2155: 2152: 2149: 2142:has the form 2129: 2109: 2087: 2083: 2075: 2072:equal to the 2071: 2067: 2051: 2048: 2040: 2037: 2034: 2009: 2006: 2003: 1983: 1979: 1972: 1969: 1966: 1963: 1960: 1951: 1948: 1945: 1922: 1911: 1906: 1904: 1899: 1894: 1892: 1888: 1870: 1866: 1845: 1837: 1836:unary numbers 1833: 1829: 1819: 1817: 1814: 1810: 1806: 1802: 1801:unit interval 1798: 1795: 1790: 1788: 1784: 1780: 1775: 1773: 1769: 1765: 1761: 1757: 1746: 1739: 1730: 1724: 1710: 1708: 1704: 1700: 1696: 1692: 1688: 1684: 1680: 1676: 1672: 1668: 1667:abelian group 1658: 1656: 1634: 1624: 1621: 1603: 1598: 1596: 1592: 1588: 1583: 1581: 1580:powers of two 1577: 1573: 1569: 1547: 1544: 1525: 1521: 1506: 1496: 1491: 1475: 1471: 1462: 1458: 1440: 1436: 1431: 1427: 1405: 1401: 1396: 1392: 1384: 1368: 1346: 1342: 1337: 1333: 1313: 1305: 1286: 1263: 1239: 1235: 1230: 1223: 1218: 1214: 1189: 1181: 1176: 1174: 1166: 1148: 1144: 1139: 1135: 1113: 1109: 1104: 1097: 1094: 1082: 1063: 1060: 1057: 1054: 1051: 1048: 1045: 1042: 1039: 1017: 1013: 1008: 1004: 984: 981: 976: 966: 961: 952: 950: 923: 920: 917: 913: 908: 905: 899: 897: 888: 884: 880: 875: 868: 864: 860: 844: 841: 838: 828: 823: 815: 812: 809: 800: 797: 793: 789: 786: 778: 775: 772: 763: 760: 756: 749: 747: 738: 734: 730: 725: 718: 714: 710: 694: 691: 688: 678: 673: 665: 662: 659: 650: 647: 643: 639: 636: 628: 625: 622: 613: 610: 606: 599: 597: 588: 584: 580: 575: 568: 564: 560: 547: 546: 545: 543: 539: 535: 531: 529: 525: 509: 489: 485: 481: 473: 469: 465: 455: 453: 443: 441: 437: 428: 413: 398: 388: 384: 372: 357: 342: 327: 316: 315: 310: 299: 281: 278: 275:Generating a 273: 271: 267: 263: 259: 255: 251: 241: 238: 234: 230: 226: 222: 218: 205: 200: 192: 173: 171: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 127: 122: 102: 99: 80: 76: 72: 68: 62: 60: 56: 52: 48: 44: 40: 36: 32: 23: 16: 5457: 5443: 5442: 5438:Free algebra 5436: 5435: 5429: 5428: 5397: 5340: 5302: 5265: 5234: 5233: 5213:Finite field 5162: 5109:Finite field 5095: 5094: 5021:Initial ring 4981: 4980: 4954: 4953: 4896: 4858:Half-integer 4852: 4848:Dedekind cut 4725: 4568: 4555: 4521: 4511: 4482:(1): 21–25, 4479: 4475: 4469: 4437: 4431: 4425: 4286: 4276: 4260: 4247: 4231: 4225: 4215:Floyd, W. J. 4205: 4173:math/9705205 4163: 4157: 4147: 4107: 4101: 4095: 4069: 4063: 4057: 4023: 4013: 3989: 3983: 3977: 3945:math/0511714 3935: 3929: 3856:A Course in 3855: 3826: 3725: 3719: 3668: 3664: 3658: 3632: 3626: 3533: 3507: 3501: 3485: 3456: 3447: 3421: 3415: 3409: 3227: 3208: 3156: 3152: 3146: 3104: 3098: 3087: 3045: 3039: 3011: 3004: 2980: 2974: 2965: 2941: 2935: 2929: 2906: 2900: 2882: 2848:(1): 18–23, 2845: 2839: 2801: 2795: 2778: 2746: 2740: 2708: 2704: 2698: 2655: 2612:(1): 52–60, 2609: 2603: 2597: 2581: 2575: 2557: 2540: 2506: 2489: 2459: 2449: 2425: 2419: 2413: 2405: 2383:Nice Numbers 2382: 2375: 2356: 2349: 2332: 2066:well-ordered 1907: 1895: 1832:real numbers 1825: 1816:simple group 1791: 1776: 1753: 1664: 1599: 1587:real numbers 1584: 1576:localization 1517: 1501:= 0.10111... 1492: 1302:denotes the 1177: 1173:half-integer 1170: 946: 532: 524:real numbers 472:power of two 461: 449: 426: 411: 396: 381: 370: 355: 340: 325: 312: 274: 247: 244:In computing 214: 176:Applications 123: 63: 47:power of two 34: 30: 28: 15: 5518:Ring theory 5418:Simple ring 5129:Jordan ring 5003:Graded ring 4885:Ring theory 4753:Irreducible 4683:Denominator 2064:. They are 1792:The set of 1756:dense order 1180:real number 538:subtraction 452:Jean Piaget 385:in Western 59:real number 43:denominator 5502:Categories 5424:Commutator 5183:GCD domain 4785:Percentage 4780:Paper size 4689:= Quotient 4531:2003.14342 3678:1603.03351 3424:: 93–110, 3323:Cantor set 3166:cs/0605058 3055:1506.03949 2341:References 2293:it is (in 2070:order type 1807:. This is 1691:quotiented 1675:characters 1522:but not a 1165:Cantor set 440:whole note 5365:∞ 5143:Semifield 4758:Reduction 4716:Continued 4701:Algebraic 4677:Numerator 4613:Fractions 4548:214727767 4504:119964871 3806:^ 3768:119148680 3735:1305.1514 3453:Kac, Mark 3377:ε 3357:ε 3337:ε 3294:ε 3239:ε 3191:221168970 3139:218627153 3114:1106.3448 3048:: 72–86, 2862:220604326 2771:195795492 2309:↑ 2267:that for 2203:for each 2084:ε 2038:− 1955:↦ 1799:from the 1787:Hénon map 1772:bijection 1705:, and an 1461:real line 1290:⌋ 1287:… 1284:⌊ 1227:⌋ 1211:⌊ 1064:… 982:≈ 876:⋅ 801:− 790:− 764:− 726:− 651:− 614:− 5137:Semiring 5123:Lie ring 4905:Subrings 4731:Egyptian 4666:Fraction 4648:Quotient 4640:Dividend 4284:(2001), 4217:(2011), 4198:14490692 3970:11566447 3486:Wavelets 3455:(1959), 3321:forms a 2733:15815720 2691:11758381 2552:(2013), 2501:(1998), 2458:(eds.), 1703:solenoid 1699:protorus 1572:overring 949:dividing 534:Addition 284:In music 73:and the 71:integers 39:fraction 5339:Prüfer 4941:•  4843:Integer 4748:Integer 4721:Decimal 4686:⁠ 4674:⁠ 4644:Divisor 4563:(ed.), 4496:0665515 4462:0503877 4454:2320870 4306:1803095 4269:2185433 4240:2856142 4190:1724861 4140:9900529 4132:0970237 4112:Bibcode 4088:1412484 4050:1632579 4006:2319174 3962:2278053 3906:1760253 3760:3402799 3740:Bibcode 3703:3743682 3695:3770912 3651:0217052 3494:1161245 3469:0110114 3440:2520103 3183:2311089 3131:3029087 3080:5899577 3072:3367582 2820:0855970 2763:3981892 2725:2090389 2683:1137517 2628:2201092 2533:1712468 2430:Bibcode 2068:, with 1693:by the 1568:subring 1459:in the 1383:fractal 468:integer 65:form a 4991:Module 4964:Kernel 4741:Silver 4736:Golden 4726:Dyadic 4711:Binary 4706:Aspect 4617:ratios 4546:  4502:  4494:  4460:  4452:  4304:  4294:  4267:  4238:  4196:  4188:  4138:  4130:  4086:  4048:  4038:  4004:  3968:  3960:  3904:  3894:  3766:  3758:  3701:  3693:  3649:  3522:  3492:  3467:  3438:  3325:whose 3216:  3189:  3181:  3137:  3129:  3078:  3070:  3019:  2997:748675 2995:  2958:748774 2956:  2913:  2889:  2860:  2818:  2769:  2761:  2731:  2723:  2689:  2681:  2671:  2626:  2564:  2531:  2521:  2483:p. 166 2474:  2398:  2364:  2227:, and 1256:where 1178:Every 985:1.4142 540:, and 363:, and 231:, and 225:quarts 221:gallon 148:, and 41:whose 5343:-ring 5207:Field 5103:Field 4911:Ideal 4898:Rings 4544:S2CID 4526:arXiv 4500:S2CID 4450:JSTOR 4257:(PDF) 4222:(PDF) 4194:S2CID 4168:arXiv 4002:JSTOR 3966:S2CID 3940:arXiv 3926:(PDF) 3764:S2CID 3730:arXiv 3699:S2CID 3673:arXiv 3623:(PDF) 3187:S2CID 3161:arXiv 3135:S2CID 3109:arXiv 3076:S2CID 3050:arXiv 2993:JSTOR 2954:JSTOR 2922:p. 37 2858:S2CID 2767:S2CID 2729:S2CID 2687:S2CID 2022:with 1524:field 1457:dense 470:by a 419:, or 229:pints 206:from 204:pound 75:field 45:is a 4790:Unit 4615:and 4569:The 4292:ISBN 4136:PMID 4036:ISBN 3892:ISBN 3520:ISBN 3214:ISBN 3017:ISBN 2911:ISBN 2887:ISBN 2669:ISBN 2562:ISBN 2519:ISBN 2472:ISBN 2396:ISBN 2362:ISBN 2049:< 1908:The 1896:The 1701:, a 1520:ring 1032:for 233:cups 217:inch 208:2 lb 67:ring 4770:LCD 4536:doi 4484:doi 4442:doi 4178:doi 4120:doi 4074:doi 4070:203 4028:doi 3994:doi 3950:doi 3936:307 3884:doi 3748:doi 3726:202 3683:doi 3637:doi 3512:doi 3426:doi 3422:171 3171:doi 3119:doi 3093:Coq 3060:doi 3046:592 2985:doi 2946:doi 2850:doi 2806:doi 2751:doi 2713:doi 2661:doi 2614:doi 2610:351 2586:doi 2511:doi 2464:doi 2438:doi 2388:doi 1826:In 1128:by 833:max 804:min 767:min 683:max 654:min 617:min 311:'s 168:in 77:of 33:or 5504:: 5451:• 5422:• 5416:• 5410:• 5404:• 5337:• 5300:• 5263:• 5257:• 5248:• 5242:• 5225:• 5219:• 5211:• 5205:• 5199:• 5193:• 5187:• 5181:• 5175:• 5169:• 5141:• 5135:• 5127:• 5121:• 5115:• 5107:• 5101:• 5046:• 5019:• 5013:• 5007:• 5001:• 4995:• 4989:• 4974:• 4968:• 4962:• 4947:• 4935:• 4927:• 4921:• 4915:• 4909:• 4903:• 4646:= 4642:÷ 4567:, 4542:, 4534:, 4520:, 4498:, 4492:MR 4490:, 4480:11 4478:, 4458:MR 4456:, 4448:, 4438:85 4436:, 4400:, 4367:, 4338:, 4302:MR 4300:, 4265:MR 4259:, 4236:MR 4232:58 4230:, 4224:, 4213:; 4192:, 4186:MR 4184:, 4176:, 4164:60 4134:, 4128:MR 4126:, 4118:, 4108:38 4084:MR 4082:, 4068:, 4046:MR 4044:, 4034:, 4000:, 3990:80 3988:, 3964:, 3958:MR 3956:, 3948:, 3934:, 3928:, 3913:^ 3902:MR 3900:, 3890:, 3878:, 3762:, 3756:MR 3754:, 3746:, 3738:, 3724:, 3710:^ 3697:, 3691:MR 3689:, 3681:, 3669:26 3667:, 3647:MR 3645:, 3631:, 3625:, 3518:, 3490:MR 3476:^ 3465:MR 3459:, 3436:MR 3434:, 3420:, 3198:^ 3185:, 3179:MR 3177:, 3169:, 3157:17 3155:, 3133:, 3127:MR 3125:, 3117:, 3103:, 3074:, 3068:MR 3066:, 3058:, 3044:, 3030:^ 2991:, 2981:14 2979:, 2952:, 2940:, 2881:, 2869:^ 2856:, 2846:27 2844:, 2827:^ 2816:MR 2814:, 2802:43 2800:, 2790:; 2786:; 2765:, 2759:MR 2757:, 2727:, 2721:MR 2719:, 2709:50 2707:, 2685:, 2679:MR 2677:, 2667:, 2635:^ 2624:MR 2622:, 2608:, 2556:, 2548:; 2529:MR 2527:, 2517:, 2505:, 2497:; 2470:, 2436:, 2426:46 2424:, 2404:, 2394:, 2330:. 2318:16 1789:. 1743:A 1709:. 1669:. 1657:. 1582:. 536:, 530:. 404:, 356:16 348:, 341:16 333:, 326:16 272:. 227:, 172:. 144:, 140:, 136:, 132:, 128:, 121:. 61:. 5487:e 5480:t 5473:v 5370:) 5361:p 5357:( 5353:Z 5341:p 5321:p 5316:Q 5303:p 5284:p 5279:Z 5266:p 5252:n 5077:Z 5073:1 5069:/ 5064:Z 5060:= 5057:0 5031:Z 4824:e 4817:t 4810:v 4680:/ 4605:e 4598:t 4591:v 4538:: 4528:: 4486:: 4444:: 4408:3 4385:2 4382:1 4375:1 4352:4 4349:3 4323:4 4320:1 4180:: 4170:: 4154:F 4122:: 4114:: 4076:: 4030:: 3996:: 3952:: 3942:: 3886:: 3864:p 3842:p 3802:] 3799:2 3795:/ 3791:1 3788:[ 3784:Z 3750:: 3742:: 3732:: 3685:: 3675:: 3639:: 3633:7 3602:} 3599:2 3596:{ 3591:Z 3568:Z 3546:Q 3514:: 3428:: 3404:. 3389:6 3386:1 3380:= 3307:i 3303:2 3298:/ 3272:i 3268:2 3263:/ 3259:n 3173:: 3163:: 3121:: 3111:: 3105:9 3062:: 3052:: 2987:: 2948:: 2942:9 2924:. 2852:: 2808:: 2753:: 2715:: 2663:: 2616:: 2588:: 2513:: 2466:: 2440:: 2432:: 2390:: 2313:9 2305:2 2281:3 2278:= 2275:n 2255:n 2235:k 2211:n 2191:k 2169:k 2165:2 2160:/ 2156:1 2153:+ 2150:n 2130:n 2110:n 2088:0 2052:1 2045:| 2041:y 2035:x 2031:| 2010:y 2007:, 2004:x 1984:2 1980:/ 1976:) 1973:1 1970:+ 1967:y 1964:+ 1961:x 1958:( 1952:y 1949:, 1946:x 1926:} 1923:0 1920:{ 1871:i 1867:2 1846:i 1640:Z 1635:/ 1631:] 1625:2 1622:1 1616:[ 1612:Z 1554:] 1548:2 1545:1 1539:[ 1535:Z 1503:2 1499:2 1476:i 1472:2 1441:i 1437:2 1432:/ 1428:1 1406:i 1402:2 1397:/ 1393:n 1369:i 1347:i 1343:2 1338:/ 1334:1 1314:x 1264:i 1254:, 1240:i 1236:2 1231:/ 1224:x 1219:i 1215:2 1190:x 1149:i 1145:2 1140:/ 1136:n 1114:i 1110:2 1105:/ 1098:6 1095:1 1061:, 1058:2 1055:, 1052:1 1049:, 1046:0 1043:= 1040:i 1018:i 1014:2 1009:/ 1005:1 977:2 967:( 924:d 921:+ 918:b 914:2 909:c 906:a 900:= 889:d 885:2 881:c 869:b 865:2 861:a 848:) 845:d 842:, 839:b 836:( 829:2 824:c 819:) 816:d 813:, 810:b 807:( 798:b 794:2 787:a 782:) 779:d 776:, 773:b 770:( 761:d 757:2 750:= 739:d 735:2 731:c 719:b 715:2 711:a 698:) 695:d 692:, 689:b 686:( 679:2 674:c 669:) 666:d 663:, 660:b 657:( 648:b 644:2 640:+ 637:a 632:) 629:d 626:, 623:b 620:( 611:d 607:2 600:= 589:d 585:2 581:c 576:+ 569:b 565:2 561:a 510:q 490:q 486:/ 482:p 427:8 412:4 397:2 371:8 300:. 109:] 103:2 100:1 94:[ 90:Z

Index

Unit interval subdivided into 1/128ths
fraction
denominator
power of two
computer science
binary representations
real number
ring
integers
field
rational numbers
dyadic solenoid
Minkowski's question-mark function
Daubechies wavelets
Thompson's group
Prüfer 2-group
surreal numbers
fusible numbers
order-isomorphic
2-adic numbers
fractional parts
mathematical analysis
reverse mathematics
Photo of metal disks used as kitchen weights

pound
inch
gallon
quarts
pints

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.