Knowledge

Surreal number

Source 📝

12469: 10541:
player can move. Each island is like a separate game of Go, played on a very small board. It would be useful if each subgame could be analyzed separately, and then the results combined to give an analysis of the entire game. This doesn't appear to be easy to do. For example, there might be two subgames where whoever moves first wins, but when they are combined into one big game, it is no longer the first player who wins. Fortunately, there is a way to do this analysis. The following theorem can be applied:
20: 4248: 14278: 10582:. From this he invented the concept of a Game and the addition operator for it. From there he moved on to developing a definition of negation and comparison. Then he noticed that a certain class of Games had interesting properties; this class became the surreal numbers. Finally, he developed the multiplication operator, and proved that the surreals are actually a field, and that it includes both the reals and ordinals. 10494:
play in at each stage, and the loser is still the player who ends up with no legal move. One can imagine two chess boards between two players, with players making moves alternately, but with complete freedom as to which board to play on. If G is the Game {L | R}, −G is the Game {−R | −L}, i.e. with the role of the two players reversed. It is easy to show G – G = 0 for all Games G (where G – H is defined as G + (–H)).
3908: 14382: 210:
natural description of the surreals as the result of a cut-filling process along their birthdays given by Conway. This additional structure has become fundamental to a modern understanding of the surreal numbers, and Conway is thus given credit for discovering the surreals as we know them today—Alling himself gives Conway full credit in a 1985 paper preceding his book on the subject.
5700:. (This is the same inductive step as before, since the ordinal number ω is the smallest ordinal that is larger than all natural numbers; however, the set union appearing in the inductive step is now an infinite union of finite sets, and so this step can only be performed in a set theory that allows such a union.) A unique infinitely large positive number occurs in 3485: 2145:, which is to be understood as the result of choosing a form of the number, evaluating the negation of this form, and taking the equivalence class of the resulting form. This only makes sense if the result is the same, irrespective of the choice of form of the operand. This can be proved inductively using the fact that the numbers occurring in 12441:. The valuation ring then consists of the finite surreal numbers (numbers with a real and/or an infinitesimal part). The reason for the sign inversion is that the exponents in the Conway normal form constitute a reverse well-ordered set, whereas Hahn series are formulated in terms of (non-reversed) well-ordered subsets of the value group. 4243:{\displaystyle {\frac {1}{y}}=\left\{\left.0,{\frac {1+(y_{R}-y)\left({\frac {1}{y}}\right)_{L}}{y_{R}}},{\frac {1+\left(y_{L}-y\right)\left({\frac {1}{y}}\right)_{R}}{y_{L}}}\,\,\right|\,\,{\frac {1+(y_{L}-y)\left({\frac {1}{y}}\right)_{L}}{y_{L}}},{\frac {1+(y_{R}-y)\left({\frac {1}{y}}\right)_{R}}{y_{R}}}\right\}} 6330: 3157: 259:
including the extra space adjacent to each brace. When a set is empty, it is often simply omitted. When a set is explicitly described by its elements, the pair of braces that encloses the list of elements is often omitted. When a union of sets is taken, the operator that represents that is often a
12413:
A construction of the surreal numbers as a maximal binary pseudo-tree with simplicity (ancestor) and ordering relations is due to Philip Ehrlich. The difference from the usual definition of a tree is that the set of ancestors of a vertex is well-ordered, but may not have a maximal element (immediate
10493:
The zero Game (called 0) is the Game where L and R are both empty, so the player to move next (L or R) immediately loses. The sum of two Games G = { L1 | R1 } and H = { L2 | R2 } is defined as the Game G + H = { L1 + H, G + L2 | R1 + H, G + R2 } where the player to move chooses which of the Games to
7128:
are in one-to-one correspondence with the reals obtained by Dedekind cuts, under the proviso that Dedekind reals corresponding to rational numbers are represented by the form in which the cut point is omitted from both left and right sets.) The rationals are not an identifiable stage in the surreal
538:
The integers are thus contained within the surreal numbers. (The above identities are definitions, in the sense that the right-hand side is a name for the left-hand side. That the names are actually appropriate will be evident when the arithmetic operations on surreal numbers are defined, as in the
11331:
One advantage of this alternative realization is that equality is identity, not an inductively defined relation. Unlike Conway's realization of the surreal numbers, however, the sign-expansion requires a prior construction of the ordinals, while in Conway's realization, the ordinals are constructed
10540:
Sometimes when a game nears the end, it will decompose into several smaller games that do not interact, except in that each player's turn allows moving in only one of them. For example, in Go, the board will slowly fill up with pieces until there are just a few small islands of empty space where a
1660:
The informal interpretations of { 1 | } and { | −1 } are "the number just after 1" and "the number just before −1" respectively; their equivalence classes are labeled 2 and −2. The informal interpretations of { 0 | 1 } and { −1 | 0 } are "the number halfway between 0 and 1" and "the number halfway
785:
is a transfinite number greater than all integers and ε is an infinitesimal greater than 0 but less than any positive real number. Moreover, the standard arithmetic operations (addition, subtraction, multiplication, and division) can be extended to these non-real numbers in a manner that turns the
209:
one stage above the cardinal, and Alling accordingly deserves much credit for the discovery/invention of the surreals in this sense. There is an important additional field structure on the surreals that isn't visible through this lens however, namely the notion of a 'birthday' and the corresponding
1712:
number from previous generations in its left or right set, in which case this is the first generation in which this number occurs; or it contains all numbers from previous generations but one, in which case it is a new form of this one number. We retain the labels from the previous generation for
10489:
For most games, the initial board position gives no great advantage to either player. As the game progresses and one player starts to win, board positions will occur in which that player has a clear advantage. For analyzing games, it is useful to associate a Game with every board position. The
1753:
The third observation extends to all surreal numbers with finite left and right sets. (For infinite left or right sets, this is valid in an altered form, since infinite sets might not contain a maximal or minimal element.) The number { 1, 2 | 5, 8 } is therefore equivalent to { 2 | 5 }; one can
12426:
with real coefficients on the value group of surreal numbers themselves (the series representation corresponding to the normal form of a surreal number, as defined above). This provides a connection between surreal numbers and more conventional mathematical approaches to ordered field theory.
10328:
A move in a game involves the player whose move it is choosing a game from those available in L (for the left player) or R (for the right player) and then passing this chosen game to the other player. A player who cannot move because the choice is from the empty set has lost. A positive game
8283:
s form a strictly decreasing sequence of surreal numbers. This "sum", however, may have infinitely many terms, and in general has the length of an arbitrary ordinal number. (Zero corresponds of course to the case of an empty sequence, and is the only surreal number with no leading exponent.)
1630:
contains four new surreal numbers. Two contain extremal forms: { | −1, 0, 1 } contains all numbers from previous generations in its right set, and { −1, 0, 1 | } contains all numbers from previous generations in its left set. The others have a form that partitions all numbers from previous
6103: 4648: 5560: 11335:
However, similar definitions can be made that eliminate the need for prior construction of the ordinals. For instance, we could let the surreals be the (recursively-defined) class of functions whose domain is a subset of the surreals satisfying the transitivity rule
820:
of sets of surreal numbers, restricted by the condition that each element of the first set is smaller than each element of the second set. The construction consists of three interdependent parts: the construction rule, the comparison rule and the equivalence rule.
9445: 6154: 10490:
value of a given position will be the Game {L|R}, where L is the set of values of all the positions that can be reached in a single move by Left. Similarly, R is the set of values of all the positions that can be reached in a single move by Right.
9860:
While there is no general inductive definition of log (unlike for exp), the partial results are given in terms of such definitions. In this way, the logarithm can be calculated explicitly, without reference to the fact that it's the inverse of the
3141: 193:
and asked if it was possible to find a compatible ordered group or field structure. In 1962, Norman Alling used a modified form of Hahn series to construct such ordered fields associated to certain ordinals α and, in 1987, he showed that taking
2415: 7043: 3684: 8495: 5976: 12514:
is not precisely correct; where this distinction is important, some authors use Field or FIELD to refer to a proper class that has the arithmetic properties of a field. One can obtain a true field by limiting the construction to a
4538: 2536: 12414:
predecessor); in other words the order type of that set is a general ordinal number, not just a natural number. This construction fulfills Alling's axioms as well and can easily be mapped to the sign-sequence representation.
2877: 2748: 8835: 5605:
There are infinite ordinal numbers β for which the set of surreal numbers with birthday less than β is closed under the different arithmetic operations. For any ordinal α, the set of surreal numbers with birthday less than
5933: 5634:
However, it is always possible to construct a surreal number that is greater than any member of a set of surreals (by including the set on the left side of the constructor) and thus the collection of surreal numbers is a
4533: 4455: 3480:{\displaystyle {\begin{aligned}xy&=\{X_{L}\mid X_{R}\}\{Y_{L}\mid Y_{R}\}\\&=\left\{X_{L}y+xY_{L}-X_{L}Y_{L},X_{R}y+xY_{R}-X_{R}Y_{R}\mid X_{L}y+xY_{R}-X_{L}Y_{R},xY_{L}+X_{R}y-X_{R}Y_{L}\right\}\\\end{aligned}}} 8734: 8291:, except that the decreasing sequences of exponents must be bounded in length by an ordinal and are not allowed to be as long as the class of ordinals. This is the basis for the formulation of the surreal numbers as a 5404: 9703: 5797: 12043:
In another approach to the surreals, given by Alling, explicit construction is bypassed altogether. Instead, a set of axioms is given that any particular approach to the surreals must satisfy. Much like the
10296:
is not a surreal number. The class of games is more general than the surreals, and has a simpler definition, but lacks some of the nicer properties of surreal numbers. The class of surreal numbers forms a
2619: 2072: 12094: 10249:
The definition of surreal numbers contained one restriction: each element of L must be strictly less than each element of R. If this restriction is dropped we can generate a more general class known as
4730: 9080: 5951:
with any form of 3 is a form whose left set contains only numbers less than 1 and whose right set contains only numbers greater than 1; the birthday property implies that this product is a form of 1.
9183: 7855: 3899: 10309:: there exist pairs of games that are neither equal, greater than, nor less than each other. Each surreal number is either positive, negative, or zero. Each game is either positive, negative, 8578: 5409: 3162: 1438:). The equivalence class containing { 0 | } is labeled 1 and the equivalence class containing { | 0 } is labeled −1. These three labels have a special significance in the axioms that define a 14580: 4795:
As long as the operands are well-defined surreal number forms (each element of the left set is less than each element of the right set), the results are again well-defined surreal number forms;
2233: 10521:
The notation G || H means that G and H are incomparable. G || H is equivalent to G − H || 0, i.e. that G > H, G < H and G = H are all false. Incomparable games are sometimes said to be
9583:
is given in Conway normal form, the set of exponents in the result is well-ordered and the coefficients are finite sums, directly giving the normal form of the result (which has a leading 1)
2964: 8930:
function is also an exponential function, but does not have the properties desired for an extension of the function on the reals. It will, however, be needed in the development of the base-
8303:
In contrast to the real numbers, a (proper) subset of the surreal numbers does not have a least upper (or lower) bound unless it has a maximal (minimal) element. Conway defines a gap as
4841:
With these rules one can now verify that the numbers found in the first few generations were properly labeled. The construction rule is repeated to obtain more generations of surreals:
2245: 8531: 8396: 5399: 8772:
can be defined as well, although they have to be indexed by the class of ordinals; these will always converge, but the limit may be either a number or a gap that can be expressed as
6911: 1442:; they are the additive identity (0), the multiplicative identity (1), and the additive inverse of 1 (−1). The arithmetic operations defined below are consistent with these labels. 8166:
surreal number in its archimedean class; conversely, every archimedean class within the surreal numbers contains a unique simplest member. Thus, for every positive surreal number
3554: 2541:
This formula involves sums of one of the original operands and a surreal number drawn from the left or right set of the other. It can be proved inductively with the special cases:
8410: 1398: 1333: 10497:
This simple way to associate Games with games yields a very interesting result. Suppose two perfect players play a game starting with a given position whose associated Game is
8989:
may be composed from multiplication, multiplicative inverse and square root, all of which can be defined inductively. Its values are completely determined by the basic relation
8358: 12430:
This isomorphism makes the surreal numbers into a valued field where the valuation is the additive inverse of the exponent of the leading term in the Conway normal form, e.g.,
2133: 12317: 8977: 13775: 9550: 14090: 14013: 13974: 13936: 13908: 13880: 13852: 13740: 13707: 13679: 13651: 10677:
For surreal numbers define the binary relation < to be lexicographic order (with the convention that "undefined values" are greater than −1 and less than 1). So
79:
The surreals share many properties with the reals, including the usual arithmetic operations (addition, subtraction, multiplication, and division); as such, they form an
12286: 12225: 12189: 12157: 12127: 9809:
The normal form can be written out by multiplying the infinite part (a single power of ω) and the real exponential into the power series resulting from the infinitesimal
9806:
Any surreal number can be written as the sum of a pure infinite, a real and an infinitesimal part, and the exponential is the product of the partial results given above
8892: 8867: 8762: 8665: 8636: 8611: 5670: 5647:. In fact it is the biggest ordered field, in that every ordered field is a subfield of the surreal numbers. The class of all surreal numbers is denoted by the symbol 2752: 2623: 8775: 10025: 6325:{\displaystyle \varepsilon =\{S_{-}\cup S_{0}\mid S_{+}\}=\left\{0\mid 1,{\tfrac {1}{2}},{\tfrac {1}{4}},{\tfrac {1}{8}},\ldots \right\}=\{0\mid y\in S_{*}:y>0\}} 5832: 4460: 4382: 12540:
The set of dyadic fractions constitutes the simplest non-trivial group and ring of this kind; it consists of the surreal numbers with birthday less than ω = ω = ω.
9986: 5623:) is closed under addition and forms a group; for birthday less than ω it is closed under multiplication and forms a ring; and for birthday less than an (ordinal) 6855: 6792: 10029:
holds for a large part of its range, for instance for any finite number with positive real part and any infinite number that is less than some iterated power of
3738: 3711: 5631:
it is closed under multiplicative inverse and forms a field. The latter sets are also closed under the exponential function as defined by Kruskal and Gonshor.
1220:
Surreal numbers can be compared to each other (or to numeric forms) by choosing a numeric form from its equivalence class to represent each surreal number.
13080:
An update of the first part of the 1981 book that presented surreal numbers and the analysis of games to a broader audience: Berlekamp, Conway, and Guy,
5714: 4784:
Multiplication is defined recursively in terms of additions, negations, and "simpler" multiplication steps, so that the product of numbers with birthday
7442:, each point of which is uniquely identified by a partition of the central-third intervals into left and right sets, corresponding precisely to a form 1434:
The first iteration of the induction rule produces the three numeric forms { | 0 } < { | } < { 0 | } (the form { 0 | 0 } is non-numeric because
2544: 2422: 1978: 12982: 12827: 7182:
is closed under individual repetitions of the surreal arithmetic operations, one can show that it is a field; and by showing that every element of
6098:{\displaystyle \pi =\left\{3,{\tfrac {25}{8}},{\tfrac {201}{64}},\ldots \mid 4,{\tfrac {7}{2}},{\tfrac {13}{4}},{\tfrac {51}{16}},\ldots \right\}.} 10571:
of those smaller games, and the theorem states that the method of addition we defined is equivalent to taking the disjunctive sum of the addends.
10525:
with each other, because one or the other may be preferred by a player depending on what is added to it. A game confused with zero is said to be
7857:
This involves an infinite union of infinite sets, which is a "stronger" set theoretic operation than the previous transfinite induction required.
4679: 340:
are equivalent and denote the same number.) Each number is formed from an ordered pair of subsets of numbers already constructed: given subsets
8670: 12507: 12454: 84: 14585: 9018: 7864:
addition and multiplication of ordinals does not always coincide with these operations on their surreal representations. The sum of ordinals
4773:
Addition and negation are defined recursively in terms of "simpler" addition and negation steps, so that operations on numbers with birthday
9647: 4643:{\displaystyle {\frac {1}{3}}=\left\{\left.0,{\frac {1}{4}},{\frac {5}{16}},\ldots \,\right|\,{\frac {1}{2}},{\frac {3}{8}},\ldots \right\}} 4278:
are always positive). This formula involves not only recursion in terms of being able to divide by numbers from the left and right sets of
7811: 3858: 304:
In the Conway construction, the surreal numbers are constructed in stages, along with an ordering ≤ such that for any two surreal numbers
1638:
that existed in the previous "generation" exists also in this generation, and includes at least one new form: a partition of all numbers
12741: 9857:, where each factor has a form for which a way of calculating the logarithm has been given above; the sum is then the general logarithm 2174: 1339:
The base case is actually a special case of the induction rule, with 0 taken as a label for the "least ordinal". Since there exists no
10574:
Historically, Conway developed the theory of surreal numbers in the reverse order of how it has been presented here. He was analyzing
8869:. (All such gaps can be understood as Cauchy sequences themselves, but there are other types of gap that are not limits, such as ∞ and 1708:(each containing as many elements as possible of previous generations in its left and right sets). Either this complete form contains 10578:, and realized that it would be useful to have some way to combine the analyses of non-interacting subgames into an analysis of their 3567: 87:, the surreal numbers are a universal ordered field in the sense that all other ordered fields, such as the rationals, the reals, the 13222: 14314: 13601: 7067:
that is closed under (finite series of) arithmetic operations is the field of real numbers, obtained by leaving out the infinities
5555:{\displaystyle {\begin{aligned}S_{0}&=\{0\}\\S_{+}&=\{x\in S_{*}:x>0\}\\S_{-}&=\{x\in S_{*}:x<0\}\end{aligned}}} 13317: 12054: 8499:
is greater than all real numbers and less than all positive infinite surreals, and is thus the least upper bound of the reals in
478:
In the first stage of construction, there are no previously existing numbers so the only representation must use the empty set:
12986: 10162:. Again it is essential to distinguish this definition from the "powers of ω" function, especially if ω may occur as the base. 8584:: In the general construction of ordinals, α "is" the set of ordinals smaller than α, and we can use this equivalence to write 1656:
The equivalence class of a number depends only on the maximal element of its left set and the minimal element of the right set.
11444:
assigns to each of these elements in order. The ordinals then occur naturally as those surreal numbers whose range is { + }.
7496:. (This is essentially a definition of the ordinal numbers resulting from transfinite induction.) The first such ordinal is 198:
to be the class of all ordinals in his construction gives a class that is an ordered field isomorphic to the surreal numbers.
10329:
represents a win for the left player, a negative game for the right player, a zero game for the second player to move, and a
13790: 9946:
constitute a field that is closed under exponentials, and is likewise an elementary extension of the real exponential field
8360:; this is not a number because at least one of the sides is a proper class. Though similar, gaps are not quite the same as 4825:
These operations obey the associativity, commutativity, additive inverse, and distributivity axioms in the definition of a
13307: 10424:, and there are numerous connections between popular games and the surreals. In this section, we will use a capitalized 9082:
more specifically those partial sums that can be shown by basic algebra to be positive but less than all later ones. For
3487:
The formula contains arithmetic expressions involving the operands and their left and right sets, such as the expression
201:
If the surreals are considered as 'just' a proper-class-sized real closed field, Alling's 1962 paper handles the case of
13785: 13065:
An update of the classic 1976 book defining the surreal numbers, and exploring their connections to games: John Conway,
13059: 11436:) = + (or both). Converting these functions into sign sequences is a straightforward task; arrange the elements of dom 8536: 6356:-complete form of 0, except that 0 is included in the left (respectively right) set. The only "pure" infinitesimals in 14611: 13267: 7106:
in that it starts from dyadic fractions rather than general rationals and naturally identifies each dyadic fraction in
4788:
will eventually be expressed entirely in terms of sums and differences of products of numbers with birthdays less than
2085: 1618:
Comparison of these equivalence classes is consistent, irrespective of the choice of form. Three observations follow:
12583:
Even the most trivial-looking of these equalities may involve transfinite induction and constitute a separate theorem.
14528: 14421: 14365: 14352: 13512: 13181: 13173: 13154: 13139: 13107: 13089: 13074: 13055: 12963: 12893: 12801: 12617: 9104:
denotes the odd steps in the series starting from the first one with a positive real part (which always exists). For
13745: 9116:
notation denotes the empty set, but it turns out that the corresponding elements are not needed in the induction.
1236:
to define the universe of objects (forms and numbers) that occur in them. The only surreal numbers reachable via
14411: 14163: 13368: 9440:{\displaystyle \exp z=\{0,\exp z_{L}\cdot _{n},\exp z_{R}\cdot _{2n+1}\mid \exp z_{R}/_{n},\exp z_{L}/_{2n+1}\}.} 4769:
It can be shown that the definitions of negation, addition and multiplication are consistent, in the sense that:
134:
led to the original definition and construction of the surreal numbers. Conway's construction was introduced in
14241: 9990:, combined with well-known behaviour on finite numbers. Only examples of the former will be given. In addition, 8768:
are unions of open intervals (indexed by proper sets) and continuous functions can be defined. An equivalent of
12520: 8502: 8367: 938:. The elements of the left and right sets of a form are drawn from the universe of the surreal numbers (not of 8236:
This gets extended by transfinite induction so that every surreal number has a "normal form" analogous to the
5348: 14636: 14416: 14124: 12607: 12574:
Importantly, there is no claim that the collection of Cauchy sequences constitutes a class in NBG set theory.
12528: 114:. It has also been shown (in von Neumann–Bernays–Gödel set theory) that the maximal class hyperreal field is 13160:
A detailed philosophical development of the concept of surreal numbers as a most general concept of number:
12449:
Philip Ehrlich has constructed an isomorphism between Conway's maximal surreal number field and the maximal
9015:
The induction steps for the surreal exponential are based on the series expansion for the real exponential,
66:
led to the original definition and construction of surreal numbers. Conway's construction was introduced in
14493: 14307: 13594: 13414: 13233: 13195: 10473:(the game at each step will completely depend on the choices the players make, rather than a random factor) 10228: 5624: 459:
are different representations of the same rational number.) So strictly speaking, the surreal numbers are
12402:
Both Conway's original construction and the sign-expansion construction of surreals satisfy these axioms.
11599:
the number 0 is the unique function whose domain is the ordinal 0, and the additive inverse of the number
10305:: given any two surreals, they are either equal, or one is greater than the other. The games have only a 9957:
The surreal exponential is essentially given by its behaviour on positive powers of ω, i.e., the function
8237: 7891: 6908:
is not an algebraic field, because it is not closed under arithmetic operations; consider ω+1, whose form
3490: 111: 14631: 14616: 14426: 13750: 12422:
Alling also proves that the field of surreal numbers is isomorphic (as an ordered field) to the field of
9812:
Conversely, dividing out the leading term of the normal form will bring any surreal number into the form
7465:. This places the Cantor set in one-to-one correspondence with the set of surreal numbers with birthday 6495:
are positive infinitesimals and all the elements of the right set are positive infinities, and therefore
3136:{\displaystyle x-y=\{X_{L}\mid X_{R}\}+\{-Y_{R}\mid -Y_{L}\}=\{X_{L}-y,x-Y_{R}\mid X_{R}-y,x-Y_{L}\}\,.} 1360: 1295: 14626: 14442: 8326: 13558: 12405:
Given these axioms, Alling derives Conway's original definition of ≤ and develops surreal arithmetic.
9449:
This is well-defined for all surreal arguments (the value exists and does not depend on the choice of
7890:. The addition and multiplication of the surreal numbers associated with ordinals coincides with the 6403:
One can determine the relationship between ω and ε by multiplying particular forms of them to obtain:
2953:
which by the birthday property is a form of 1. This justifies the label used in the previous section.
14544: 14158: 14114: 13553: 10244: 10225: 3150:
Multiplication can be defined recursively as well, beginning from the special cases involving 0, the
160: 13756: 12291: 10281:
Addition, negation, and comparison are all defined the same way for both surreal numbers and games.
8951: 2410:{\displaystyle x+y=\{X_{L}\mid X_{R}\}+\{Y_{L}\mid Y_{R}\}=\{X_{L}+y,x+Y_{L}\mid X_{R}+y,x+Y_{R}\},} 14371: 14281: 14153: 11075: 10209: 9523: 1693:. These labels will also be justified by the rules for surreal addition and multiplication below. 14073: 13996: 13957: 13919: 13891: 13863: 13835: 13723: 13690: 13662: 13634: 13522: 12640: 6332:. This number is larger than zero but less than all positive dyadic fractions. It is therefore an 1578:
A second iteration of the construction rule yields the following ordering of equivalence classes:
14300: 13587: 13332: 4777:
will eventually be expressed entirely in terms of operations on numbers with birthdays less than
3151: 127: 10590:
Alternative approaches to the surreal numbers complement Conway's exposition in terms of games.
7038:{\displaystyle \omega +1=\{1,2,3,4,...\mid {}\}+\{0\mid {}\}=\{1,2,3,4,\ldots ,\omega \mid {}\}} 644:(rational numbers whose denominators are powers of 2) are contained within the surreal numbers. 14473: 13260: 12266: 12205: 12169: 12137: 12107: 10612: 8872: 8847: 8742: 8645: 8616: 8591: 6461:
This expression is only well-defined in a set theory which permits transfinite induction up to
5650: 1233: 992: 12880:. London Mathematical Society Lecture Note Series. Vol. 110. Cambridge University Press. 12561:
not have a largest element, and also the identification of a cut with the smallest element in
12045: 10545:
If a big game decomposes into two smaller games, and the small games have associated Games of
1292:
is the set of all surreal numbers that are generated by the construction rule from subsets of
14559: 14342: 14226: 14062: 13419: 13327: 13322: 12524: 12516: 12487: 8639: 8490:{\displaystyle \{x:\exists n\in \mathbb {N} :x<n\mid x:\forall n\in \mathbb {N} :x>n\}} 1510:). (The set union expression appears in our construction rule, rather than the simpler form 1245: 202: 150:. Conway later adopted Knuth's term, and used surreals for analyzing games in his 1976 book 13048:
Surreal Numbers: How Two Ex-Students Turned on to Pure Mathematics and Found Total Happiness
12914:
Rubinstein-Salzedo, Simon; Swaminathan, Ashvin (2015-05-19). "Analysis on Surreal Numbers".
9995: 140:
Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness
73:
Surreal Numbers: How Two Ex-Students Turned On to Pure Mathematics and Found Total Happiness
14401: 14396: 13979: 13712: 13358: 13312: 13209: 13203: 13118: 12727: 10616: 10485:
As soon as there are no legal moves left for a player, the game ends, and that player loses
10202: 9922: 8907: 8903: 8085: 5282: 809: 206: 152: 13242:, survey of Conway's accomplishments in the AMS Notices, with a section on surreal numbers 10518:
More generally, we can define G > H as G – H > 0, and similarly for <, = and ||.
9962: 8: 14406: 14190: 14100: 14057: 14039: 13817: 13527: 13353: 13123: 12511: 11039: 10298: 10205: 8288: 4826: 168: 6834: 6771: 14590: 14478: 14095: 13807: 13496: 13480: 13009: 12915: 12474: 10534: 10530: 10479:
Players alternate taking turns (the game may or may not allow multiple moves in a turn)
10285: 10235:, this fact characterizes the field of surcomplex numbers within any fixed set theory. 3716: 3689: 1439: 131: 104: 63: 12987:"The absolute arithmetic continuum and the unification of all numbers great and small" 12761: 12718: 8084:
To classify the "orders" of infinite and infinitesimal surreal numbers, also known as
934:
The numeric forms are placed in equivalence classes; each such equivalence class is a
14621: 14513: 14503: 14488: 14253: 14216: 14180: 14119: 14105: 13800: 13780: 13470: 13424: 13389: 13297: 13253: 13177: 13169: 13150: 13135: 13103: 13085: 13070: 13051: 13017: 12959: 12889: 12853: 12797: 12662: 12613: 12468: 11971:
The inverse map from the alternative realization to Conway's realization is given by
10284:
Every surreal number is a game, but not all games are surreal numbers, e.g. the game
10213: 9911: 8581: 5691:
as the set of all surreal numbers generated by the construction rule from subsets of
5644: 963:
are forms of the same number (lie in the same equivalence class) if and only if both
813: 460: 92: 88: 13013: 12842:(2). Warszawa: Institute of Mathematics of the Polish Academy of Sciences: 173–188. 14641: 14554: 14549: 14447: 14271: 14200: 14175: 14109: 14018: 13984: 13825: 13795: 13717: 13620: 13568: 13563: 13475: 13450: 13429: 13348: 13001: 12881: 12843: 12756: 12713: 12482: 12398:. (Alling calls a system that satisfies this axiom a "full surreal number system".) 10217: 10095:" function is not compatible with exp, since compatibility would demand a value of 9573: 8399: 7117:
with its forms in previous generations. (The ω-complete forms of real elements of
1400:
is the empty set; the only subset of the empty set is the empty set, and therefore
647:
After an infinite number of stages, infinite subsets become available, so that any
424: 100: 96: 6472:. In such a system, one can demonstrate that all the elements of the left set of 4322:, and that can be used to find more terms in a recursive fashion. For example, if 3853:
The definition of division is done in terms of the reciprocal and multiplication:
3686:, the set of numbers generated by picking all possible combinations of members of 872:
Either or both of the left and right set of a form may be the empty set. The form
14523: 14508: 14347: 14148: 14052: 13684: 13409: 13394: 13281: 13199: 12791: 12723: 12450: 11679: 11663: 11360:)) and whose range is { −, + }. "Simpler than" is very simply defined now— 10579: 10568: 10449: 10421: 8769: 8398:
of the surreal numbers with the natural ordering which is a (proper class-sized)
5955: 5810: 5278: 2872:{\displaystyle 0+y=\{{}\mid {}\}+y=\{0+Y_{L}\mid 0+Y_{R}\}=\{Y_{L}\mid Y_{R}\}=y} 2743:{\displaystyle x+0=x+\{{}\mid {}\}=\{X_{L}+0\mid X_{R}+0\}=\{X_{L}\mid X_{R}\}=x} 1241: 1060:
The recursive definition of surreal numbers is completed by defining comparison:
641: 205:
cardinals which can naturally be considered as proper classes by cutting off the
172: 13517: 13145:
A treatment of surreals based on the sign-expansion realization: Harry Gonshor,
9108:
negative infinite the odd-numbered partial sums are strictly decreasing and the
8830:{\displaystyle \sum _{\alpha \in \mathbb {No} }r_{\alpha }\omega ^{a_{\alpha }}} 1889:
The addition, negation (additive inverse), and multiplication of surreal number
1713:
these "old" numbers, and write the ordering above using the old and new labels:
786:
collection of surreal numbers into an ordered field, so that one can talk about
14564: 14185: 14170: 13989: 13857: 13628: 13465: 13440: 13435: 13095: 10620: 9004: 8946: 5259: 1409:
consists of a single surreal form { | } lying in a single equivalence class 0.
1275: 107: 55: 9937:
an ordinal epsilon number, the set of surreal numbers with birthday less than
5928:{\displaystyle {\tfrac {1}{3}}=\{y\in S_{*}:3y<1\mid y\in S_{*}:3y>1\}.} 4528:{\displaystyle {\frac {1+(2-3)\left({\frac {1}{4}}\right)}{2}}={\frac {3}{8}}} 4450:{\displaystyle {\frac {1+(2-3)\left({\frac {1}{2}}\right)}{2}}={\frac {1}{4}}} 103:) can be realized as subfields of the surreals. The surreals also contain all 14605: 14323: 14258: 14231: 14140: 13548: 13460: 13445: 13005: 12885: 12857: 11440:
in order of simplicity (i.e., inclusion), and then write down the signs that
10470: 10306: 7781:
by the successor operation) and because it coincides with the surreal sum of
7543:
is not the successor of any ordinal. This is a surreal number with birthday
7103: 6333: 5640: 1527: 80: 51: 13228: 8729:{\textstyle \{\mathbb {No} \mid {}\}=\{\mathbb {On} \mid {}\}=\mathbb {On} } 4267:
are permitted in the formula, with any nonpositive terms being ignored (and
14498: 14483: 14221: 14023: 13543: 13455: 13399: 13161: 13043: 12934: 12684:
Alling, Norman L. (1962), "On the existence of real-closed fields that are
11079: 10221: 8361: 8240:
for ordinal numbers. This is the Conway normal form: Every surreal number
7195:
by a finite series (no longer than two, actually) of arithmetic operations
7099: 5636: 5602:
is; it is the subring of the rationals consisting of all dyadic fractions.
988: 927: 817: 707: 224: 135: 67: 39: 14452: 14358: 14047: 13829: 13404: 12423: 12101: 10302: 10232: 9558:
exp coincides with the usual exponential function on the reals (and thus
8934:
exponential, and it is this function that is meant whenever the notation
7707:
At a later stage of transfinite induction, there is a number larger than
7229: 5970: 648: 164: 142:. In his book, which takes the form of a dialogue, Knuth coined the term 43: 36: 28: 10575: 14337: 14028: 13885: 13363: 10526: 10330: 10317: 9698:{\textstyle g:\mathbb {No} _{+}\to \mathbb {No} :\alpha \mapsto \beta } 7434: 4282:, but also recursion in that the members of the left and right sets of 1560:. The smallest value of α for which a given surreal number appears in 1431:
by the ordering induced by the comparison rule on the surreal numbers.
1428: 115: 59: 13189: 12848: 12831: 11384:
as sets of ordered pairs (as a function is normally defined): Either
9910:. This stronger constraint is one of the Ressayre axioms for the real 8405:
For instance there is no least positive infinite surreal, but the gap
1661:
between −1 and 0" respectively; their equivalence classes are labeled
19: 14518: 13486: 12624:
Theorem 24.29. The surreal number system is the largest ordered field
12359:. (This axiom is often referred to as "Conway's Simplicity Theorem".) 10420:
The surreal numbers were originally motivated by studies of the game
10311: 9918:
exp satisfies all the Ressayre axioms for the real exponential field
9576:) of exp is well defined and coincides with the inductive definition 1575:. For example, the birthday of 0 is 0, and the birthday of −1 is 1. 1229: 368:
represents a number intermediate in value between all the members of
12920: 12549:
The definition of a gap omits the conditions of a Dedekind cut that
7565:. Similarly, there are two new infinitesimal numbers in generation 6894:
is some real number that has no representation as a dyadic fraction.
5792:{\displaystyle \omega =\{S_{*}\mid {}\}=\{1,2,3,4,\ldots \mid {}\}.} 1822:
are already separated by a number created at an earlier stage, then
869:
are given as lists of elements, the braces around them are omitted.
14136: 14067: 13913: 13384: 13276: 13239: 12510:, the surreals form a proper class, rather than a set, so the term 12048:
to the reals, these axioms guarantee uniqueness up to isomorphism.
11896:
The multiplicative identity is given by the number 1 = { (0,+1) },
11412:(or both, but in this case the signs must disagree). We then have 10624: 8765: 8200:, defined on the positive surreals; it can be demonstrated that log 7236:. This can be demonstrated by exhibiting surjective mappings from 4814:
will represent the same number regardless of the choice of form of
47: 14381: 10476:
No hidden information (such as cards or tiles that a player hides)
8906:, a construction (by transfinite induction) that extends the real 8124:
then ω is "infinitely greater" than ω, in that it is greater than
5639:. With their ordering and algebraic operations they constitute an 1826:
does not represent a new number but one already constructed.) If
176: 14292: 13656: 13579: 13302: 13236:, a series of articles about surreal numbers and their variations 13187: 11908:
The map from Conway's realization to sign expansions is given by
7492:, each represented as the largest surreal number having birthday 5313: 3679:{\textstyle \left\{x'y+xy'-x'y':x'\in X_{R},~y'\in Y_{R}\right\}} 1645:
from previous generations into a left set (all numbers less than
710:). Thus the real numbers are also embedded within the surreals. 490:
are both empty, is called 0. Subsequent stages yield forms like
278:, which is common notation in other contexts, we typically write 13610: 13245: 11900:
the number 1 has domain equal to the ordinal 1, and 1(0) = +1.
10643: 10508:
If x < 0 then Right will win, regardless of who plays first.
9868:
The exponential function is much greater than any finite power
2614:{\displaystyle 0+0=\{{}\mid {}\}+\{{}\mid {}\}=\{{}\mid {}\}=0} 2531:{\displaystyle X+y=\{x'+y:x'\in X\},\quad x+Y=\{x+y':y'\in Y\}} 2167:
are drawn from generations earlier than that in which the form
13223:
Hackenstrings, and the 0.999... ?= 1 FAQ, by A. N. Walker
12096:
is a surreal number system if and only if the following hold:
10505:
If x > 0 then Left will win, regardless of who plays first.
7808:
via the construction step requires a transfinite induction on
2067:{\displaystyle -x=-\{X_{L}\mid X_{R}\}=\{-X_{R}\mid -X_{L}\},} 1033:
are the same object. This is not the case for surreal number
883: 159:
A separate route to defining the surreals began in 1907, when
12913: 12523:, or by using a form of set theory in which constructions by 10627:
is { −1, +1 }. This is equivalent to Conway's L-R sequences.
10445: 9178:
and this can be extended to the surreals with the definition
6882:
Every dyadic fraction is either greater than some element of
13110:, Chapter 4. A non-technical overview; reprint of the 1976 12089:{\textstyle \langle \mathbb {No} ,\mathrm {<} ,b\rangle } 8162:
Each power of ω also has the redeeming feature of being the
4725:{\displaystyle {\frac {1}{y}}=-\left({\frac {1}{-y}}\right)} 13130:
A detailed treatment of surreal numbers: Norman L. Alling,
12159: 11903: 10501:. We can classify all Games into four classes as follows: 10415: 7507:. There is another positive infinite number in generation 6140:
among the reals. Consider the smallest positive number in
4561: 3931: 13191:
Homotopy Type Theory: Univalent Foundations of Mathematics
8159:
so they behave the way one would expect powers to behave.
5330:
The set of all surreal numbers that are generated in some
2078:
of numbers is given by the set of the negated elements of
10630:
Define the binary predicate "simpler than" on numbers by
10412:. Note that "=" here means equality, not identity. 9075:{\displaystyle \exp x=\sum _{n\geq 0}{\frac {x^{n}}{n!}}} 9003:, and where defined it necessarily agrees with any other 8287:
Looked at in this manner, the surreal numbers resemble a
8079: 1785:
represents a number inherited from an earlier generation
10301:, but the class of games does not. The surreals have a 6518:
is the oldest positive finite number, 1. Consequently,
2242:
The definition of addition is also a recursive formula:
1613:< { 1 | } = { 0, 1 | } = { −1, 1 | } = { −1, 0, 1 | } 379:
Different subsets may end up defining the same number:
247:
in many other mathematical contexts, is instead written
7416:; and so forth. This maps a nonempty open interval of 7098:
This construction of the real numbers differs from the
4802:(equivalence classes of forms): the result of negating 12294: 12269: 12208: 12172: 12140: 12110: 12057: 11595:
The additive identity is given by the number 0 = { },
9650: 9526: 8954: 8875: 8850: 8745: 8673: 8648: 8619: 8594: 8539: 8505: 8370: 8329: 8204:
maps the positive surreals onto the surreals and that
6837: 6774: 6257: 6242: 6227: 6070: 6055: 6040: 6013: 5998: 5837: 5653: 5351: 3719: 3692: 3570: 3493: 1862:. In other words, it lies in the equivalence class in 1363: 1298: 14076: 13999: 13960: 13922: 13894: 13866: 13838: 13759: 13726: 13693: 13665: 13637: 13229:
A gentle yet thorough introduction by Claus Tøndering
10254:. All games are constructed according to this rule: 9998: 9965: 9572:
infinitesimal, the value of the formal power series (
9186: 9021: 8778: 8413: 7814: 6914: 6157: 5979: 5835: 5717: 5407: 4682: 4541: 4463: 4385: 3911: 3861: 3160: 2967: 2755: 2626: 2547: 2425: 2248: 2177: 2088: 1981: 1830:
represents a number from any generation earlier than
1583:{ | −1 } = { | −1, 0 } = { | −1, 1 } = { | −1, 0, 1 } 12825: 12464: 10553:, then the big game will have an associated Game of 9644:. In fact there is an inductively defined bijection 7850:{\displaystyle \bigcup _{k<\omega }S_{\omega +k}} 7804:. It is the second limit ordinal; reaching it from 5813:. For example, the ω-complete form of the fraction 5809:
also contains objects that can be identified as the
5584:
is closed under addition and multiplication (except
3894:{\displaystyle {\frac {x}{y}}=x\cdot {\frac {1}{y}}} 8573:{\textstyle \mathbb {On} =\{\mathbb {No} \mid {}\}} 7477:Continuing to perform transfinite induction beyond 2961:Subtraction is defined with addition and negation: 1244:; a wider universe is reachable given some form of 876:with both left and right set empty is also written 539:section below). Similarly, representations such as 14084: 14007: 13968: 13930: 13902: 13874: 13846: 13769: 13734: 13701: 13673: 13645: 13208:The surreal numbers are studied in the context of 13132:Foundations of Analysis over Surreal Number Fields 12956:Foundations of Analysis over Surreal Number Fields 12311: 12280: 12219: 12183: 12151: 12121: 12088: 10514:If x || 0 then the player who goes first will win. 10511:If x = 0 then the player who goes second will win. 10019: 9980: 9697: 9544: 9439: 9074: 8971: 8918:) to the surreals was carried through by Gonshor. 8886: 8861: 8829: 8756: 8728: 8659: 8630: 8613:denotes the class of ordinal numbers, and because 8605: 8572: 8525: 8489: 8390: 8352: 8170:there will always exist some positive real number 8088:classes, Conway associated to each surreal number 7875:, but the surreal sum is commutative and produces 7849: 7037: 6849: 6786: 6324: 6097: 5927: 5791: 5664: 5554: 5393: 4724: 4642: 4527: 4449: 4242: 3893: 3732: 3705: 3678: 3548: 3479: 3135: 2871: 2742: 2613: 2530: 2409: 2228:{\displaystyle -0=-\{{}\mid {}\}=\{{}\mid {}\}=0.} 2227: 2137:This formula involves the negation of the surreal 2127: 2066: 1392: 1327: 12638: 1754:establish that these are forms of 3 by using the 833:is a pair of sets of surreal numbers, called its 14603: 13147:An Introduction to the Theory of Surreal Numbers 12878:An Introduction to the Theory of Surreal Numbers 11376:. The total ordering is defined by considering 9479:exp is a strictly increasing positive function, 8580:is larger than all surreal numbers. (This is an 4302:itself. 0 is always a member of the left set of 702:is the set of all dyadic rationals greater than 10567:A game composed of smaller games is called the 10482:Every game must end in a finite number of moves 10158:, giving an interpretation to expressions like 7554:on the basis that it coincides with the sum of 3556:that appears in the left set of the product of 1522:, so that the definition also makes sense when 58:than any positive real number. Research on the 13119:"Infinity Plus One, and Other Surreal Numbers" 12981: 12832:"Fields of surreal numbers and exponentiation" 12634: 12632: 12519:, yielding a set with the cardinality of some 11447: 7270:is routine; map numbers less than or equal to 2171:first occurs, and observing the special case: 1208:. That is, every element in the right part of 14308: 13595: 13261: 9705:whose inverse can also be defined inductively 7777:(the first ordinal number not reachable from 4535:will be a right term. Continuing, this gives 3740:, and substituting them into the expression. 1758:, which is a consequence of the rules above. 1162:. That is, every element in the left part of 687:is the set of all dyadic rationals less than 12083: 12058: 9431: 9199: 8712: 8696: 8690: 8674: 8567: 8551: 8484: 8414: 7032: 6991: 6985: 6974: 6968: 6927: 6794:is greater than or equal to all elements of 6319: 6282: 6203: 6164: 5919: 5851: 5783: 5748: 5742: 5724: 5545: 5514: 5490: 5459: 5435: 5429: 3233: 3207: 3204: 3178: 3126: 3050: 3044: 3012: 3006: 2980: 2860: 2834: 2828: 2790: 2778: 2768: 2731: 2705: 2699: 2661: 2655: 2645: 2602: 2592: 2586: 2576: 2570: 2560: 2525: 2491: 2472: 2438: 2401: 2325: 2319: 2293: 2287: 2261: 2216: 2206: 2200: 2190: 2119: 2098: 2058: 2026: 2020: 1994: 1873:that is a superset of the representation of 1649:) and a right set (all numbers greater than 1598:< { | } = { −1 | } = { | 1 } = { −1 | 1 } 12629: 10837:if and only if one of the following holds: 10611:of a surreal number, a surreal number is a 10585: 10143:A general exponentiation can be defined as 9475:Using this definition, the following hold: 8364:, but we can still talk about a completion 8132:. Powers of ω also satisfy the conditions 1700:of induction may be characterized by their 884:Numeric forms and their equivalence classes 23:A visualization of the surreal number tree. 14315: 14301: 14277: 13602: 13588: 13268: 13254: 13188:The Univalent Foundations Program (2013). 12958:. Mathematics Studies 141. North-Holland. 12821: 12819: 12817: 12815: 12813: 8764:can be equipped with a topology where the 8526:{\textstyle \mathbb {No} _{\mathfrak {D}}} 8391:{\textstyle \mathbb {No} _{\mathfrak {D}}} 8116:range over the positive real numbers. If 8034:. It can be identified as the product of 8006:where on the right hand side the notation 6861:and less than or equal to all elements of 6129:; but there are other non-real numbers in 5643:, with the caveat that they do not form a 1037:, but is true by construction for surreal 352:are strictly less than all the members of 299: 14078: 14001: 13962: 13924: 13896: 13868: 13840: 13728: 13695: 13667: 13639: 12949: 12947: 12945: 12943: 12919: 12847: 12760: 12733: 12717: 12444: 12305: 12302: 12274: 12271: 12213: 12210: 12177: 12174: 12145: 12142: 12115: 12112: 12065: 12062: 10455:We consider games with these properties: 9679: 9676: 9662: 9659: 9532: 9529: 8965: 8962: 8880: 8877: 8855: 8852: 8794: 8791: 8750: 8747: 8722: 8719: 8703: 8700: 8681: 8678: 8653: 8650: 8624: 8621: 8599: 8596: 8558: 8555: 8544: 8541: 8511: 8508: 8468: 8433: 8376: 8373: 8346: 8343: 7793:because it coincides with the product of 7281:) to 0, numbers greater than or equal to 7129:construction; they are merely the subset 5658: 5655: 5394:{\textstyle S_{*}=\bigcup _{n\in N}S_{n}} 4605: 4599: 4093: 4092: 4086: 4085: 3129: 1942:are defined by three recursive formulas. 1499:(as supersets of their representation in 1267:, in which 0 consists of the single form 121: 110:; the arithmetic on them is given by the 13225:, an archive of the disappeared original 13082:Winning Ways for Your Mathematical Plays 12977: 12975: 12935:Surreal vectors and the game of Cutblock 12909: 12907: 12905: 12871: 12869: 12867: 12601: 12599: 11904:Correspondence with Conway's realization 10416:Application to combinatorial game theory 10216:of the field generated by extending the 8844:decreasing and having no lower bound in 7472: 6594:, exactly one of the following is true: 3743:For example, to show that the square of 2141:appearing in the left and right sets of 348:of numbers such that all the members of 18: 12875: 12810: 12785: 12783: 12781: 12779: 12777: 12527:stop at some countable ordinal such as 12408: 8897: 7203:is strictly smaller than the subset of 6749:equals the oldest such dyadic fraction 1795:if and only if there is some number in 995:, i.e., it must have the property that 427:are defined as quotients of integers: 175:introduced certain ordered sets called 14604: 12953: 12940: 12789: 12739: 12683: 12605: 11082:(except that < is a proper class). 9594:is given by power series expansion of 8298: 8080:Powers of ω and the Conway normal form 1696:The equivalence classes at each stage 1541:that are a superset of some number in 223:In the context of surreal numbers, an 14427:Infinitesimal strain theory (physics) 14296: 13583: 13249: 12972: 12902: 12864: 12609:An Invitation to Abstract Mathematics 12596: 12166:is called the "birthday function" on 12038: 10165: 9640:is a strictly increasing function of 8921: 7303:(mapping the infinitesimal neighbors 6375:; adding them to any dyadic fraction 5253: 3549:{\textstyle X_{R}y+xY_{R}-X_{R}Y_{R}} 1806:that is greater than all elements of 930:≤ given by the comparison rule below. 918:is the empty set and each element of 423:. (A similar phenomenon occurs when 13318:Hilbert's paradox of the Grand Hotel 13234:Good Math, Bad Math: Surreal Numbers 12774: 12508:von Neumann–Bernays–Gödel set theory 12455:von Neumann–Bernays–Gödel set theory 9921:The surreals with exponential is an 9712:is "pure infinite" with normal form 1761: 1631:generations into two non-empty sets. 713:There are also representations like 207:cumulative hierarchy of the universe 118:to the maximal class surreal field. 85:von Neumann–Bernays–Gödel set theory 54:, respectively larger or smaller in 13791:Set-theoretically definable numbers 13058:. More information can be found at 12742:"Conway's Field of surreal numbers" 10208:(except for being a proper class), 8517: 8382: 1834:, there is a least such generation 1393:{\textstyle \bigcup _{i<0}S_{i}} 1328:{\textstyle \bigcup _{i<n}S_{i}} 1052:is a form of the surreal number 0. 403:may define the same number even if 13: 14322: 13762: 13609: 13100:Penrose Tiles to Trapdoor Ciphers, 13037: 12506:In the original formulation using 10396:, then it is not always true that 10201:. The surcomplex numbers form an 9552:) and has a well-defined inverse, 9092:and include all partial sums; for 9010: 8739:With a bit of set-theoretic care, 8458: 8423: 8353:{\textstyle L\cup R=\mathbb {No} } 7933:that is infinite but smaller than 7292:) to 1, and numbers between ε and 7197:including multiplicative inversion 7081:, and the infinitesimal neighbors 6542:. Some authors systematically use 5401:. One may form the three classes 4798:The operations can be extended to 1846:as its birthday that lies between 1810:and less than all elements of the 146:for what Conway had called simply 16:Generalization of the real numbers 14: 14653: 14529:Transcendental law of homogeneity 14422:Constructive nonstandard analysis 14366:The Method of Mechanical Theorems 14353:Criticism of nonstandard analysis 13513:Differential geometry of surfaces 13240:Conway's Mathematics after Conway 13216: 13168:, New York: Polity Press, 2008, 12762:10.1090/s0002-9947-1985-0766225-7 12719:10.1090/S0002-9947-1962-0146089-X 12660: 12639:O'Connor, J.J.; Robertson, E.F., 11705:, is defined by induction on dom( 11468:, is defined by induction on dom( 11332:as particular cases of surreals. 10593: 10321:(incomparable with zero, such as 10138: 9119:The relations that hold for real 8276:is a nonzero real number and the 7429:, monotonically. The residue of 6647:is greater than every element of 6633:equals the smallest such integer 6625:is greater than every element of 6555: 3145: 2128:{\displaystyle -S=\{-s:s\in S\}.} 1251: 1044:The equivalence class containing 922:is greater than every element of 332:. (Both may hold, in which case 14380: 14276: 13308:Controversy over Cantor's theory 13275: 12467: 11117:), there exists a unique number 10533:. An example of a fuzzy game is 9590:infinitesimally close to 1, log 8927: 8292: 7340:, map the (open) central third ( 7091:of each nonzero dyadic fraction 6857:is greater than all elements of 6683:equals the largest such integer 5954:Not only do all the rest of the 5617: 3811:= { 0 | 1 } ⋅ { 0 | 1 } = { 0 | 3154:1, and its additive inverse −1: 1412:For every finite ordinal number 475:that designate the same number. 260:comma. For example, instead of 14412:Synthetic differential geometry 13369:Synthetic differential geometry 13102:W. H. Freeman & Co., 1989, 12937:, James Propp, August 22, 1994. 12928: 12790:Conway, John H. (2000-12-11) . 12577: 12568: 12543: 12312:{\textstyle z\in \mathbb {No} } 12255:(using Alling's terminology, 〈 11232:is the simplest number between 10685:if one of the following holds: 8972:{\textstyle x\in \mathbb {No} } 7892:natural sum and natural product 7539:is not an ordinal; the ordinal 4329:}, then we know a left term of 2478: 1593:< { −1 | 0 } = { −1 | 0, 1 } 803: 463:of representations of the form 13770:{\displaystyle {\mathcal {P}}} 12994:The Bulletin of Symbolic Logic 12677: 12654: 12534: 12521:strongly inaccessible cardinal 12500: 12417: 12288:). Then there exists a unique 11392:, or else the surreal number 11078:). This means that < is a 10598: 10333:for the first player to move. 10091:This shows that the "power of 10008: 10002: 9975: 9969: 9689: 9672: 9545:{\textstyle \mathbb {No} _{+}} 9413: 9393: 9360: 9340: 9298: 9278: 9247: 9227: 8319:is less than every element of 7488:produces more ordinal numbers 7045:does not lie in any number in 6798:and less than all elements of 6741:and less than all elements of 6737:(greater than all elements of 6697:is less than every element of 6675:is less than every element of 6605:are both empty, in which case 5056:= { −4 < −3 < ... < − 4764: 4485: 4473: 4407: 4395: 4345:will be 0. This in turn means 4194: 4175: 4122: 4103: 3968: 3949: 2956: 1603:< { 0 | 1 } = { −1, 0 | 1 } 1048:is labeled 0; in other words, 482:. This representation, where 213: 1: 14581:Analyse des Infiniment Petits 14417:Smooth infinitesimal analysis 14125:Plane-based geometric algebra 12590: 10269:are two sets of games then { 9925:of the real exponential field 8902:Based on unpublished work by 8196:is the "base ω logarithm" of 8188:is "infinitely smaller" than 7767:both because its birthday is 7522:− 1 = { 0, 1, 2, 3, 4, ... | 6886:or less than some element of 5573:is the union. No individual 5281:, i.e., can be written as an 1884: 1228:This group of definitions is 14085:{\displaystyle \mathbb {S} } 14008:{\displaystyle \mathbb {C} } 13969:{\displaystyle \mathbb {R} } 13931:{\displaystyle \mathbb {O} } 13903:{\displaystyle \mathbb {H} } 13875:{\displaystyle \mathbb {C} } 13847:{\displaystyle \mathbb {R} } 13735:{\displaystyle \mathbb {A} } 13702:{\displaystyle \mathbb {Q} } 13674:{\displaystyle \mathbb {Z} } 13646:{\displaystyle \mathbb {N} } 13415:Cardinality of the continuum 13196:Institute for Advanced Study 13060:the book's official homepage 10444:for recreational games like 10428:for the mathematical object 10037:for some number of levels). 7915:, there is a surreal number 7247:to the closed unit interval 5935:The product of this form of 4833:and multiplicative identity 4379:is a right term. This means 2915:= { 0 | 1 } + { 0 | 1 } = { 2074:where the negation of a set 1455:, since every valid form in 1232:, and requires some form of 1223: 7: 12740:Alling, Norman (Jan 1985), 12460: 12362:Furthermore, if an ordinal 12162:the class of all ordinals ( 11448:Addition and multiplication 11228:by transfinite induction. 10781:)} ∪ { α : α < dom( 10531:positive, negative, or zero 9952: 9086:positive these are denoted 8315:such that every element of 8244:may be uniquely written as 7757:This number may be labeled 7214:identified with the reals. 6831:, but some dyadic fraction 6768:, but some dyadic fraction 5675: 5266:, all numbers generated in 4457:is a left term. This means 3848: 2237: 1950:Negation of a given number 1945: 218: 10: 14658: 13378:Formalizations of infinity 12954:Alling, Norman L. (1987). 12281:{\textstyle \mathbb {No} } 12220:{\textstyle \mathbb {No} } 12184:{\textstyle \mathbb {No} } 12152:{\textstyle \mathbb {No} } 12122:{\textstyle \mathbb {No} } 11682:if and only if 0 < dom( 11666:if and only if 0 < dom( 10603:In what is now called the 10242: 9871:For any positive infinite 9774:, the inverse is given by 9520:exp is a surjection (onto 9470: 8945:is a dyadic fraction, the 8938:is used in the following. 8887:{\textstyle \mathbb {On} } 8862:{\textstyle \mathbb {No} } 8757:{\textstyle \mathbb {No} } 8660:{\textstyle \mathbb {No} } 8631:{\textstyle \mathbb {On} } 8606:{\textstyle \mathbb {On} } 8038:and the form { 0 | 1 } of 7789:; it may also be labeled 2 7559:= { 0, 1, 2, 3, 4, ... | } 6668:is empty and some integer 6618:is empty and some integer 6371:and its additive inverse − 5665:{\textstyle \mathbb {No} } 1608:< { 0 | } = { −1, 0 | } 14612:Combinatorial game theory 14573: 14545:Gottfried Wilhelm Leibniz 14537: 14466: 14435: 14389: 14378: 14330: 14267: 14209: 14135: 14115:Algebra of physical space 14037: 13945: 13816: 13618: 13554:Gottfried Wilhelm Leibniz 13536: 13505: 13377: 13341: 13290: 13084:, vol. 1, 2nd ed., 2001, 12796:(2 ed.). CRC Press. 12327:) is minimal and for all 11658:It follows that a number 11240:. Let the unique number 10245:Combinatorial game theory 10226:algebraically independent 7255:and vice versa. Mapping 7178:. By demonstrating that 7056:. The maximal subset of 6722:are both non-empty, and: 4829:, with additive identity 4806:or adding or multiplying 1838:, and exactly one number 1588:< { | 0 } = { | 0, 1 } 1166:is strictly smaller than 1025:are both true) only when 718:{ 0, 1, 2, 3, ... | } = 533:{ | −2 } = −3 526:{ | −1 } = −2 14171:Extended complex numbers 14154:Extended natural numbers 13046:'s original exposition: 12886:10.1017/CBO9780511629143 12493: 10586:Alternative realizations 10238: 10193:are surreal numbers and 10174:is a number of the form 8174:and some surreal number 7798:= { 1, 2, 3, 4, ... | } 7717:for all natural numbers 7412:) of the upper third to 7313:of each dyadic fraction 7144:containing all elements 6693:is empty and no integer 6643:is empty and no integer 3564:. This is understood as 1781:occurring in generation 1477:, all of the numbers in 1466:is also a valid form in 1212:is strictly larger than 1055: 824: 42:containing not only the 13559:August Ferdinand Möbius 13342:Branches of mathematics 13333:Paradoxes of set theory 12876:Gonshor, Harry (1986). 12836:Fundamenta Mathematicae 12749:Trans. Amer. Math. Soc. 12706:Trans. Amer. Math. Soc. 12263:〉 is a "Conway cut" of 10670:(α) for all α < dom( 10231:elements. Up to field 8128:ω for all real numbers 7943:for any natural number 7911:for any natural number 7299:to their equivalent in 6548:in place of the symbol 6107:The only infinities in 5969:; the remaining finite 3152:multiplicative identity 1814:. (In other words, if 1041:(equivalence classes). 910:if the intersection of 841:. A form with left set 810:constructed inductively 372:and all the members of 300:Outline of construction 167:as a generalization of 14474:Standard part function 14227:Transcendental numbers 14086: 14063:Hyperbolic quaternions 14009: 13970: 13932: 13904: 13876: 13848: 13771: 13736: 13703: 13675: 13647: 13006:10.2178/bsl/1327328438 12557:be non-empty and that 12445:Relation to hyperreals 12313: 12282: 12221: 12185: 12153: 12123: 12090: 11259:, define its left set 11220:is constructible from 11042:, and for all numbers 10821:). Then, for numbers 10725:there exists a number 10197:is the square root of 10160:2 = exp(ω · log 2) = ω 10021: 10020:{\displaystyle g(a)=a} 9982: 9699: 9605:For positive infinite 9546: 9441: 9076: 8973: 8888: 8863: 8831: 8758: 8730: 8661: 8632: 8607: 8574: 8527: 8491: 8392: 8354: 7851: 7039: 6851: 6823:lies strictly between 6788: 6760:lies strictly between 6729:is "strictly between" 6336:number, often labeled 6326: 6099: 5973:do too. For example, 5929: 5793: 5666: 5556: 5395: 4863:= { −1 < 0 < 1 } 4726: 4644: 4529: 4451: 4244: 3895: 3734: 3707: 3680: 3550: 3481: 3137: 2873: 2744: 2615: 2532: 2411: 2229: 2129: 2068: 1552:are said to have been 1394: 1329: 1257:There is a generation 1234:mathematical induction 654:can be represented by 235:, which is written as 122:History of the concept 24: 14560:Augustin-Louis Cauchy 14372:Cavalieri's principle 14159:Extended real numbers 14087: 14010: 13980:Split-complex numbers 13971: 13933: 13905: 13877: 13849: 13772: 13737: 13713:Constructible numbers 13704: 13676: 13648: 13523:Möbius transformation 13420:Dedekind-infinite set 13328:Paradoxes of infinity 13323:Infinity (philosophy) 12606:Bajnok, Béla (2013). 12525:transfinite recursion 12517:Grothendieck universe 12488:Non-standard analysis 12314: 12283: 12222: 12186: 12154: 12124: 12091: 11085:For sets of numbers, 11038:The relation < is 10022: 9983: 9700: 9547: 9442: 9096:negative but finite, 9077: 8974: 8889: 8864: 8832: 8759: 8731: 8662: 8633: 8608: 8575: 8528: 8492: 8393: 8355: 8072:is the limit ordinal 7852: 7547:+1, which is labeled 7473:Transfinite induction 7420:onto each element of 7380:; the central third ( 7074:, the infinitesimals 7040: 6852: 6789: 6725:Some dyadic fraction 6379:produces the numbers 6352:) is the same as the 6327: 6100: 5930: 5794: 5667: 5557: 5396: 4917:= { −3 < −2 < − 4874:= { −2 < −1 < − 4727: 4645: 4530: 4452: 4245: 3896: 3735: 3708: 3681: 3551: 3482: 3138: 2874: 2745: 2616: 2533: 2412: 2230: 2130: 2069: 1634:Every surreal number 1395: 1330: 1246:transfinite induction 1123:if and only if both: 989:ordering relationship 203:strongly inaccessible 52:infinitesimal numbers 22: 14637:Nonstandard analysis 14402:Nonstandard calculus 14397:Nonstandard analysis 14191:Supernatural numbers 14101:Multicomplex numbers 14074: 14058:Dual-complex numbers 13997: 13958: 13920: 13892: 13864: 13836: 13818:Composition algebras 13786:Arithmetical numbers 13757: 13724: 13691: 13663: 13635: 13359:Nonstandard analysis 13210:homotopy type theory 13067:On Numbers And Games 12826:van den Dries, Lou; 12793:On Numbers and Games 12695:-sets of power  12409:Simplicity hierarchy 12292: 12267: 12206: 12170: 12138: 12108: 12055: 11404:is in the domain of 10765:Equivalently, let δ( 10440:, and the lowercase 10203:algebraically closed 9996: 9981:{\displaystyle g(a)} 9963: 9923:elementary extension 9648: 9613:is infinite as well 9524: 9184: 9019: 8952: 8908:exponential function 8898:Exponential function 8873: 8848: 8776: 8743: 8671: 8646: 8617: 8592: 8537: 8533:. Similarly the gap 8503: 8411: 8368: 8327: 7812: 7232:as the real numbers 7199:, one can show that 6912: 6835: 6772: 6389:, which also lie in 6155: 5977: 5833: 5715: 5651: 5405: 5349: 5283:irreducible fraction 4680: 4539: 4461: 4383: 3909: 3859: 3717: 3690: 3568: 3491: 3158: 2965: 2753: 2624: 2545: 2423: 2246: 2175: 2086: 1979: 1361: 1296: 1063:Given numeric forms 808:Surreal numbers are 153:On Numbers and Games 14586:Elementary Calculus 14467:Individual concepts 14407:Internal set theory 14096:Split-biquaternions 13808:Eisenstein integers 13746:Closed-form numbers 13528:Riemannian manifold 13497:Transfinite numbers 13354:Internal set theory 13112:Scientific American 12134:is a function from 10459:Two players (named 9560:exp 0 = 1, exp 1 = 8299:Gaps and continuity 8092:the surreal number 8054:. The birthday of 7532:The surreal number 6850:{\textstyle y\in R} 6819:No dyadic fraction 6787:{\textstyle y\in L} 6756:No dyadic fraction 944:equivalence classes 926:, according to the 814:equivalence classes 640:arise, so that the 461:equivalence classes 169:formal power series 83:. If formulated in 14632:John Horton Conway 14617:Mathematical logic 14479:Transfer principle 14343:Leibniz's notation 14254:Profinite integers 14217:Irrational numbers 14082: 14005: 13966: 13928: 13900: 13872: 13844: 13801:Gaussian rationals 13781:Computable numbers 13767: 13732: 13699: 13671: 13643: 13481:Sphere at infinity 13432:(Complex infinity) 13166:Number and Numbers 12475:Mathematics portal 12309: 12278: 12227:such that for all 12217: 12181: 12149: 12119: 12086: 12046:axiomatic approach 12039:Axiomatic approach 10348:are surreals, and 10166:Surcomplex numbers 10017: 9978: 9695: 9542: 9437: 9072: 9049: 8969: 8922:Other exponentials 8884: 8859: 8827: 8799: 8754: 8726: 8657: 8628: 8603: 8570: 8523: 8487: 8388: 8350: 8289:power series field 8238:Cantor normal form 7847: 7830: 7186:is reachable from 7169:, both drawn from 7035: 6847: 6784: 6344:-complete form of 6322: 6266: 6251: 6236: 6095: 6079: 6064: 6049: 6022: 6007: 5925: 5846: 5789: 5662: 5552: 5550: 5391: 5380: 5345:may be denoted as 5254:Arithmetic closure 4722: 4640: 4525: 4447: 4240: 3891: 3733:{\textstyle Y_{R}} 3730: 3706:{\textstyle X_{R}} 3703: 3676: 3546: 3477: 3475: 3133: 2869: 2740: 2611: 2528: 2407: 2225: 2125: 2064: 1858:is a form of this 1390: 1379: 1325: 1314: 955:Two numeric forms 706:(reminiscent of a 519:{ | 0 } = −1 132:John Horton Conway 112:natural operations 89:rational functions 64:John Horton Conway 25: 14627:Real closed field 14599: 14598: 14514:Law of continuity 14504:Levi-Civita field 14489:Increment theorem 14448:Hyperreal numbers 14290: 14289: 14201:Superreal numbers 14181:Levi-Civita field 14176:Hyperreal numbers 14120:Spacetime algebra 14106:Geometric algebra 14019:Bicomplex numbers 13985:Split-quaternions 13826:Division algebras 13796:Gaussian integers 13718:Algebraic numbers 13621:definable numbers 13577: 13576: 13471:Point at infinity 13451:Hyperreal numbers 13425:Directed infinity 13390:Absolute infinite 13313:Galileo's paradox 13298:Ananta (infinite) 13194:. Princeton, NJ: 13069:, 2nd ed., 2001, 12849:10.4064/fm167-2-3 12663:"Surreal Numbers" 11408:or the domain of 11050:, exactly one of 10805:if and only if δ( 10258:Construction rule 10214:algebraic closure 10172:surcomplex number 9912:exponential field 9070: 9034: 8779: 8588:in the surreals; 7815: 7165:and some nonzero 7104:standard analysis 6745:), in which case 6265: 6250: 6235: 6078: 6063: 6048: 6021: 6006: 5845: 5365: 5262:(finite ordinal) 4716: 4691: 4627: 4614: 4591: 4578: 4550: 4523: 4510: 4500: 4445: 4432: 4422: 4233: 4210: 4161: 4138: 4083: 4060: 4007: 3984: 3920: 3889: 3870: 3649: 1762:Birthday property 1756:birthday property 1717:−2 < −1 < − 1364: 1357:, the expression 1299: 1281:, the generation 889:Construction rule 101:hyperreal numbers 97:superreal numbers 93:Levi-Civita field 14649: 14555:Pierre de Fermat 14550:Abraham Robinson 14390:Related branches 14384: 14317: 14310: 14303: 14294: 14293: 14280: 14279: 14247: 14237: 14149:Cardinal numbers 14110:Clifford algebra 14091: 14089: 14088: 14083: 14081: 14053:Dual quaternions 14014: 14012: 14011: 14006: 14004: 13975: 13973: 13972: 13967: 13965: 13937: 13935: 13934: 13929: 13927: 13909: 13907: 13906: 13901: 13899: 13881: 13879: 13878: 13873: 13871: 13853: 13851: 13850: 13845: 13843: 13776: 13774: 13773: 13768: 13766: 13765: 13741: 13739: 13738: 13733: 13731: 13708: 13706: 13705: 13700: 13698: 13685:Rational numbers 13680: 13678: 13677: 13672: 13670: 13652: 13650: 13649: 13644: 13642: 13604: 13597: 13590: 13581: 13580: 13569:Abraham Robinson 13564:Bernhard Riemann 13483:(Kleinian group) 13476:Regular cardinal 13430:Division by zero 13410:Cardinal numbers 13349:Complex analysis 13284: 13270: 13263: 13256: 13247: 13246: 13212:in section 11.6. 13207: 13127:, December 1995. 13032: 13031: 13029: 13028: 13022: 13016:. Archived from 12991: 12979: 12970: 12969: 12951: 12938: 12932: 12926: 12925: 12923: 12911: 12900: 12899: 12873: 12862: 12861: 12851: 12830:(January 2001). 12823: 12808: 12807: 12787: 12772: 12771: 12770: 12769: 12764: 12746: 12737: 12731: 12730: 12721: 12703: 12694: 12681: 12675: 12674: 12672: 12670: 12658: 12652: 12651: 12650: 12649: 12642:Conway Biography 12636: 12627: 12626: 12603: 12584: 12581: 12575: 12572: 12566: 12547: 12541: 12538: 12532: 12504: 12483:Hyperreal number 12477: 12472: 12471: 12440: 12366:is greater than 12346: 12336: 12318: 12316: 12315: 12310: 12308: 12287: 12285: 12284: 12279: 12277: 12246: 12236: 12226: 12224: 12223: 12218: 12216: 12190: 12188: 12187: 12182: 12180: 12158: 12156: 12155: 12150: 12148: 12128: 12126: 12125: 12120: 12118: 12095: 12093: 12092: 12087: 12076: 12068: 11891: 11810: 11697:of two numbers, 11607:, given by dom(− 11590: 11541: 11460:of two numbers, 11364:is simpler than 11267:) and right set 11244:be denoted by σ( 11208:is simpler than 11074:, holds (law of 10797:(α) }), so that 10741:is simpler than 10733:is simpler than 10710:is simpler than 10692:is simpler than 10634:is simpler than 10562: 10529:, as opposed to 10439: 10411: 10395: 10373: 10357: 10324: 10218:rational numbers 10200: 10196: 10184: 10161: 10157: 10036: 10028: 10026: 10024: 10023: 10018: 9989: 9987: 9985: 9984: 9979: 9890:For any integer 9856: 9844: 9801: 9773: 9761: 9750: 9738: 9704: 9702: 9701: 9696: 9682: 9671: 9670: 9665: 9600: 9574:Taylor expansion 9564: 9555: 9551: 9549: 9548: 9543: 9541: 9540: 9535: 9517: 9496: 9446: 9444: 9443: 9438: 9430: 9429: 9405: 9404: 9392: 9387: 9386: 9368: 9367: 9352: 9351: 9339: 9334: 9333: 9315: 9314: 9296: 9295: 9274: 9273: 9255: 9254: 9245: 9244: 9223: 9222: 9174: 9148: 9128: 9081: 9079: 9078: 9073: 9071: 9069: 9061: 9060: 9051: 9048: 9007:that can exist. 9002: 8988: 8978: 8976: 8975: 8970: 8968: 8893: 8891: 8890: 8885: 8883: 8868: 8866: 8865: 8860: 8858: 8836: 8834: 8833: 8828: 8826: 8825: 8824: 8823: 8809: 8808: 8798: 8797: 8770:Cauchy sequences 8763: 8761: 8760: 8755: 8753: 8735: 8733: 8732: 8727: 8725: 8711: 8706: 8689: 8684: 8666: 8664: 8663: 8658: 8656: 8637: 8635: 8634: 8629: 8627: 8612: 8610: 8609: 8604: 8602: 8587: 8579: 8577: 8576: 8571: 8566: 8561: 8547: 8532: 8530: 8529: 8524: 8522: 8521: 8520: 8514: 8496: 8494: 8493: 8488: 8471: 8436: 8400:linear continuum 8397: 8395: 8394: 8389: 8387: 8386: 8385: 8379: 8359: 8357: 8356: 8351: 8349: 8314: 8192:. The exponent 8187: 8154: 8152: 8151: 8148: 8145: 8071: 8069: 8068: 8065: 8062: 8053: 8051: 8050: 8047: 8044: 8033: 8014:is used to mean 8002: 7986: 7984: 7983: 7980: 7977: 7964: 7962: 7961: 7958: 7955: 7942: 7932: 7930: 7929: 7926: 7923: 7910: 7889: 7870: 7856: 7854: 7853: 7848: 7846: 7845: 7829: 7803: 7799: 7776: 7766: 7716: 7702: 7696: 7694: 7693: 7690: 7687: 7676: 7674: 7673: 7670: 7667: 7651: 7649: 7648: 7645: 7642: 7631: 7629: 7628: 7625: 7622: 7611: 7609: 7608: 7605: 7602: 7571: 7564: 7560: 7553: 7538: 7527: 7513: 7506: 7495: 7491: 7487: 7468: 7464: 7453: 7441: 7433:consists of the 7432: 7428: 7419: 7415: 7411: 7409: 7408: 7405: 7402: 7395: 7393: 7392: 7389: 7386: 7379: 7375: 7371: 7369: 7368: 7365: 7362: 7355: 7353: 7352: 7349: 7346: 7339: 7328: 7324: 7320: 7316: 7312: 7302: 7298: 7291: 7287: 7280: 7273: 7269: 7265: 7254: 7250: 7246: 7235: 7227: 7213: 7202: 7194: 7185: 7181: 7177: 7168: 7164: 7160: 7147: 7143: 7132: 7127: 7116: 7094: 7090: 7080: 7073: 7066: 7055: 7044: 7042: 7041: 7036: 7031: 6984: 6967: 6907: 6893: 6890:, in which case 6889: 6885: 6878: 6868: 6865:, in which case 6864: 6860: 6856: 6854: 6853: 6848: 6830: 6826: 6822: 6815: 6805: 6802:, in which case 6801: 6797: 6793: 6791: 6790: 6785: 6767: 6763: 6759: 6752: 6748: 6744: 6740: 6736: 6732: 6728: 6721: 6717: 6711: 6704: 6701:, in which case 6700: 6696: 6692: 6686: 6682: 6679:, in which case 6678: 6674: 6667: 6661: 6654: 6651:, in which case 6650: 6646: 6642: 6636: 6632: 6629:, in which case 6628: 6624: 6617: 6611: 6604: 6600: 6593: 6582: 6551: 6547: 6541: 6536: 6534: 6533: 6528: 6525: 6517: 6494: 6471: 6456: 6399: 6388: 6378: 6374: 6370: 6366: 6355: 6351: 6347: 6343: 6339: 6331: 6329: 6328: 6323: 6306: 6305: 6278: 6274: 6267: 6258: 6252: 6243: 6237: 6228: 6202: 6201: 6189: 6188: 6176: 6175: 6150: 6139: 6128: 6121: 6117: 6104: 6102: 6101: 6096: 6091: 6087: 6080: 6071: 6065: 6056: 6050: 6041: 6023: 6014: 6008: 5999: 5968: 5956:rational numbers 5950: 5948: 5947: 5944: 5941: 5934: 5932: 5931: 5926: 5903: 5902: 5869: 5868: 5847: 5838: 5828: 5826: 5825: 5822: 5819: 5811:rational numbers 5808: 5798: 5796: 5795: 5790: 5782: 5741: 5736: 5735: 5710: 5699: 5690: 5671: 5669: 5668: 5663: 5661: 5621: 5615: 5601: 5592: 5583: 5572: 5561: 5559: 5558: 5553: 5551: 5532: 5531: 5506: 5505: 5477: 5476: 5451: 5450: 5421: 5420: 5400: 5398: 5397: 5392: 5390: 5389: 5379: 5361: 5360: 5344: 5340: 5326: 5311: 5307: 5303: 5302: 5300: 5299: 5296: 5293: 5279:dyadic fractions 5276: 5265: 5249: 5247: 5245: 5244: 5241: 5238: 5231: 5229: 5228: 5225: 5222: 5215: 5213: 5212: 5209: 5206: 5199: 5197: 5196: 5193: 5190: 5183: 5181: 5180: 5177: 5174: 5167: 5165: 5164: 5161: 5158: 5151: 5149: 5148: 5145: 5142: 5135: 5133: 5132: 5129: 5126: 5119: 5117: 5116: 5113: 5110: 5103: 5101: 5100: 5097: 5094: 5087: 5085: 5084: 5081: 5078: 5071: 5069: 5068: 5065: 5062: 5046: 5044: 5042: 5041: 5038: 5035: 5028: 5026: 5025: 5022: 5019: 5012: 5010: 5009: 5006: 5003: 4996: 4994: 4993: 4990: 4987: 4980: 4978: 4977: 4974: 4971: 4964: 4962: 4961: 4958: 4955: 4948: 4946: 4945: 4942: 4939: 4932: 4930: 4929: 4926: 4923: 4907: 4905: 4903: 4902: 4899: 4896: 4889: 4887: 4886: 4883: 4880: 4864: 4853: 4836: 4832: 4821: 4817: 4813: 4809: 4805: 4791: 4787: 4780: 4776: 4760: 4759: 4757: 4756: 4751: 4748: 4740: 4731: 4729: 4728: 4723: 4721: 4717: 4715: 4704: 4692: 4684: 4675: 4674: 4672: 4671: 4666: 4663: 4655: 4649: 4647: 4646: 4641: 4639: 4635: 4628: 4620: 4615: 4607: 4604: 4600: 4592: 4584: 4579: 4571: 4551: 4543: 4534: 4532: 4531: 4526: 4524: 4516: 4511: 4506: 4505: 4501: 4493: 4465: 4456: 4454: 4453: 4448: 4446: 4438: 4433: 4428: 4427: 4423: 4415: 4387: 4378: 4377: 4375: 4374: 4371: 4368: 4361: 4359: 4358: 4355: 4352: 4344: 4342: 4341: 4338: 4335: 4328: 4321: 4320: 4318: 4317: 4312: 4309: 4301: 4300: 4298: 4297: 4292: 4289: 4281: 4277: 4266: 4256:. Only positive 4255: 4249: 4247: 4246: 4241: 4239: 4235: 4234: 4232: 4231: 4222: 4221: 4220: 4215: 4211: 4203: 4187: 4186: 4167: 4162: 4160: 4159: 4150: 4149: 4148: 4143: 4139: 4131: 4115: 4114: 4095: 4091: 4087: 4084: 4082: 4081: 4072: 4071: 4070: 4065: 4061: 4053: 4046: 4042: 4035: 4034: 4013: 4008: 4006: 4005: 3996: 3995: 3994: 3989: 3985: 3977: 3961: 3960: 3941: 3921: 3913: 3900: 3898: 3897: 3892: 3890: 3882: 3871: 3863: 3843: 3842: 3840: 3839: 3836: 3833: 3826: 3824: 3823: 3820: 3817: 3810: 3808: 3807: 3804: 3801: 3794: 3792: 3791: 3788: 3785: 3774: 3772: 3771: 3768: 3765: 3758: 3756: 3755: 3752: 3749: 3739: 3737: 3736: 3731: 3729: 3728: 3712: 3710: 3709: 3704: 3702: 3701: 3685: 3683: 3682: 3677: 3675: 3671: 3670: 3669: 3657: 3647: 3643: 3642: 3630: 3619: 3611: 3600: 3583: 3563: 3559: 3555: 3553: 3552: 3547: 3545: 3544: 3535: 3534: 3522: 3521: 3503: 3502: 3486: 3484: 3483: 3478: 3476: 3472: 3468: 3467: 3466: 3457: 3456: 3441: 3440: 3428: 3427: 3412: 3411: 3402: 3401: 3389: 3388: 3370: 3369: 3357: 3356: 3347: 3346: 3334: 3333: 3315: 3314: 3302: 3301: 3292: 3291: 3279: 3278: 3260: 3259: 3239: 3232: 3231: 3219: 3218: 3203: 3202: 3190: 3189: 3142: 3140: 3139: 3134: 3125: 3124: 3100: 3099: 3087: 3086: 3062: 3061: 3043: 3042: 3027: 3026: 3005: 3004: 2992: 2991: 2948: 2946: 2944: 2943: 2940: 2937: 2930: 2928: 2927: 2924: 2921: 2914: 2912: 2911: 2908: 2905: 2898: 2896: 2895: 2892: 2889: 2878: 2876: 2875: 2870: 2859: 2858: 2846: 2845: 2827: 2826: 2808: 2807: 2777: 2772: 2749: 2747: 2746: 2741: 2730: 2729: 2717: 2716: 2692: 2691: 2673: 2672: 2654: 2649: 2620: 2618: 2617: 2612: 2601: 2596: 2585: 2580: 2569: 2564: 2537: 2535: 2534: 2529: 2518: 2507: 2465: 2448: 2416: 2414: 2413: 2408: 2400: 2399: 2375: 2374: 2362: 2361: 2337: 2336: 2318: 2317: 2305: 2304: 2286: 2285: 2273: 2272: 2234: 2232: 2231: 2226: 2215: 2210: 2199: 2194: 2170: 2166: 2155: 2144: 2134: 2132: 2131: 2126: 2081: 2077: 2073: 2071: 2070: 2065: 2057: 2056: 2041: 2040: 2019: 2018: 2006: 2005: 1974: 1941: 1916: 1880: 1876: 1872: 1861: 1857: 1853: 1849: 1845: 1842:with this least 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1813: 1809: 1805: 1794: 1784: 1780: 1748: 1746: 1745: 1742: 1739: 1732: 1730: 1729: 1726: 1723: 1703: 1699: 1692: 1690: 1689: 1686: 1683: 1676: 1674: 1673: 1670: 1667: 1652: 1648: 1644: 1637: 1629: 1614: 1609: 1604: 1599: 1594: 1589: 1584: 1570: 1559: 1556:from generation 1551: 1540: 1525: 1521: 1509: 1498: 1487: 1476: 1465: 1454: 1437: 1426: 1415: 1408: 1399: 1397: 1396: 1391: 1389: 1388: 1378: 1356: 1349: 1334: 1332: 1331: 1326: 1324: 1323: 1313: 1291: 1280: 1270: 1266: 1242:dyadic fractions 1238:finite induction 1215: 1211: 1207: 1192: 1169: 1165: 1161: 1146: 1122: 1112: 1087: 1051: 1047: 1032: 1028: 1024: 1014: 1004: 982: 972: 962: 958: 950:Equivalence rule 925: 921: 917: 913: 905: 879: 875: 868: 864: 860: 848: 844: 799: 792: 784: 777: 776:, ... } = ε 775: 773: 772: 769: 766: 759: 757: 756: 753: 750: 743: 741: 740: 737: 734: 722: 705: 701: 690: 686: 675: 653: 642:dyadic rationals 636: 635: 633: 632: 629: 626: 619: 617: 616: 613: 610: 598: 597: 595: 594: 591: 588: 581: 579: 578: 575: 572: 560: 559: 557: 556: 553: 550: 534: 527: 520: 510: 503: 496: 489: 485: 481: 474: 458: 456: 455: 452: 449: 442: 440: 439: 436: 433: 425:rational numbers 422: 412: 402: 390: 375: 371: 367: 356:, then the pair 355: 351: 347: 343: 339: 335: 331: 321: 311: 307: 295: 277: 258: 246: 234: 230: 197: 192: 186: 126:Research on the 14657: 14656: 14652: 14651: 14650: 14648: 14647: 14646: 14602: 14601: 14600: 14595: 14591:Cours d'Analyse 14569: 14533: 14524:Microcontinuity 14509:Hyperfinite set 14462: 14458:Surreal numbers 14431: 14385: 14376: 14348:Integral symbol 14326: 14321: 14291: 14286: 14263: 14242: 14232: 14205: 14196:Surreal numbers 14186:Ordinal numbers 14131: 14077: 14075: 14072: 14071: 14033: 14000: 13998: 13995: 13994: 13992: 13990:Split-octonions 13961: 13959: 13956: 13955: 13947: 13941: 13923: 13921: 13918: 13917: 13895: 13893: 13890: 13889: 13867: 13865: 13862: 13861: 13858:Complex numbers 13839: 13837: 13834: 13833: 13812: 13761: 13760: 13758: 13755: 13754: 13727: 13725: 13722: 13721: 13694: 13692: 13689: 13688: 13666: 13664: 13661: 13660: 13638: 13636: 13633: 13632: 13629:Natural numbers 13614: 13608: 13578: 13573: 13532: 13501: 13492:Surreal numbers 13466:Ordinal numbers 13395:Actual infinity 13373: 13337: 13286: 13280: 13274: 13219: 13117:Polly Shulman, 13040: 13038:Further reading 13035: 13026: 13024: 13020: 12989: 12980: 12973: 12966: 12952: 12941: 12933: 12929: 12912: 12903: 12896: 12874: 12865: 12828:Ehrlich, Philip 12824: 12811: 12804: 12788: 12775: 12767: 12765: 12744: 12738: 12734: 12702: 12696: 12693: 12685: 12682: 12678: 12668: 12666: 12661:Knuth, Donald. 12659: 12655: 12647: 12645: 12637: 12630: 12620: 12604: 12597: 12593: 12588: 12587: 12582: 12578: 12573: 12569: 12548: 12544: 12539: 12535: 12505: 12501: 12496: 12473: 12466: 12463: 12447: 12431: 12420: 12411: 12338: 12328: 12301: 12293: 12290: 12289: 12270: 12268: 12265: 12264: 12238: 12228: 12209: 12207: 12204: 12203: 12173: 12171: 12168: 12167: 12141: 12139: 12136: 12135: 12111: 12109: 12106: 12105: 12072: 12061: 12056: 12053: 12052: 12041: 11906: 11814: 11733: 11603:is the number − 11545: 11496: 11450: 11160:For any number 11027:if and only if 11011:if and only if 10987:if and only if 10785:) ∧ α < dom( 10601: 10596: 10588: 10580:disjunctive sum 10569:disjunctive sum 10554: 10429: 10418: 10397: 10387: 10386:are games, and 10374:. However, if 10359: 10349: 10322: 10247: 10241: 10198: 10194: 10175: 10168: 10159: 10144: 10141: 10130: 10123: 10110: 10034: 9997: 9994: 9993: 9991: 9964: 9961: 9960: 9958: 9955: 9945: 9936: 9875:and any finite 9854: 9846: 9839: 9831: 9813: 9797: 9789: 9775: 9765: 9764:Similarly, for 9752: 9748: 9740: 9734: 9726: 9713: 9675: 9666: 9658: 9657: 9649: 9646: 9645: 9595: 9586:Similarly, for 9559: 9553: 9536: 9528: 9527: 9525: 9522: 9521: 9500: 9480: 9473: 9466: 9457: 9416: 9412: 9400: 9396: 9388: 9382: 9378: 9363: 9359: 9347: 9343: 9335: 9329: 9325: 9301: 9297: 9291: 9287: 9269: 9265: 9250: 9246: 9240: 9236: 9218: 9214: 9185: 9182: 9181: 9168: 9156: 9143: 9133: 9120: 9115: 9103: 9091: 9062: 9056: 9052: 9050: 9038: 9020: 9017: 9016: 9013: 9011:Basic induction 8990: 8980: 8961: 8953: 8950: 8949: 8924: 8900: 8876: 8874: 8871: 8870: 8851: 8849: 8846: 8845: 8843: 8819: 8815: 8814: 8810: 8804: 8800: 8790: 8783: 8777: 8774: 8773: 8746: 8744: 8741: 8740: 8736:by extension.) 8718: 8710: 8699: 8688: 8677: 8672: 8669: 8668: 8649: 8647: 8644: 8643: 8620: 8618: 8615: 8614: 8595: 8593: 8590: 8589: 8585: 8565: 8554: 8540: 8538: 8535: 8534: 8516: 8515: 8507: 8506: 8504: 8501: 8500: 8467: 8432: 8412: 8409: 8408: 8381: 8380: 8372: 8371: 8369: 8366: 8365: 8342: 8328: 8325: 8324: 8304: 8301: 8282: 8275: 8264: 8257: 8227: 8219: 8211: 8203: 8179: 8149: 8146: 8143: 8142: 8140: 8082: 8066: 8063: 8058: 8057: 8055: 8048: 8045: 8042: 8041: 8039: 8015: 8000: 7993: 7981: 7978: 7973: 7972: 7970: 7969: 7959: 7956: 7951: 7950: 7948: 7934: 7927: 7924: 7919: 7918: 7916: 7902: 7901:is bigger than 7876: 7865: 7835: 7831: 7819: 7813: 7810: 7809: 7801: 7794: 7768: 7758: 7708: 7691: 7688: 7685: 7684: 7682: 7671: 7668: 7663: 7662: 7660: 7659: 7646: 7643: 7640: 7639: 7637: 7626: 7623: 7620: 7619: 7617: 7606: 7603: 7600: 7599: 7597: 7566: 7562: 7555: 7548: 7533: 7518: 7508: 7497: 7493: 7489: 7486: 7478: 7475: 7466: 7463: 7455: 7443: 7437: 7430: 7427: 7421: 7417: 7413: 7406: 7403: 7400: 7399: 7397: 7390: 7387: 7384: 7383: 7381: 7377: 7373: 7366: 7363: 7360: 7359: 7357: 7350: 7347: 7344: 7343: 7341: 7338: 7330: 7326: 7322: 7318: 7314: 7304: 7300: 7293: 7289: 7282: 7275: 7271: 7267: 7264: 7256: 7252: 7248: 7245: 7237: 7233: 7226: 7218: 7212: 7204: 7200: 7193: 7187: 7183: 7179: 7176: 7170: 7166: 7162: 7149: 7145: 7142: 7134: 7130: 7126: 7118: 7115: 7107: 7092: 7082: 7075: 7068: 7065: 7057: 7054: 7046: 7030: 6983: 6966: 6913: 6910: 6909: 6906: 6900: 6891: 6887: 6883: 6870: 6866: 6862: 6858: 6836: 6833: 6832: 6828: 6824: 6820: 6807: 6803: 6799: 6795: 6773: 6770: 6769: 6765: 6761: 6757: 6750: 6746: 6742: 6738: 6734: 6730: 6726: 6719: 6715: 6706: 6702: 6698: 6694: 6690: 6684: 6680: 6676: 6669: 6665: 6656: 6652: 6648: 6644: 6640: 6634: 6630: 6626: 6619: 6615: 6606: 6602: 6598: 6592: 6584: 6569: 6566: 6564: 6549: 6543: 6529: 6526: 6523: 6522: 6520: 6519: 6513: 6504: 6496: 6490: 6481: 6473: 6470: 6462: 6454: 6443: 6436: 6425: 6407: 6398: 6390: 6380: 6376: 6372: 6368: 6365: 6357: 6353: 6349: 6348:(respectively − 6345: 6341: 6337: 6301: 6297: 6256: 6241: 6226: 6213: 6209: 6197: 6193: 6184: 6180: 6171: 6167: 6156: 6153: 6152: 6149: 6141: 6138: 6130: 6123: 6119: 6116: 6108: 6069: 6054: 6039: 6012: 5997: 5990: 5986: 5978: 5975: 5974: 5967: 5959: 5945: 5942: 5939: 5938: 5936: 5898: 5894: 5864: 5860: 5836: 5834: 5831: 5830: 5823: 5820: 5817: 5816: 5814: 5807: 5799: 5781: 5740: 5731: 5727: 5716: 5713: 5712: 5709: 5701: 5698: 5692: 5689: 5681: 5678: 5654: 5652: 5649: 5648: 5630: 5619: 5607: 5600: 5594: 5591: 5585: 5582: 5574: 5571: 5563: 5549: 5548: 5527: 5523: 5507: 5501: 5497: 5494: 5493: 5472: 5468: 5452: 5446: 5442: 5439: 5438: 5422: 5416: 5412: 5408: 5406: 5403: 5402: 5385: 5381: 5369: 5356: 5352: 5350: 5347: 5346: 5342: 5339: 5331: 5317: 5309: 5305: 5297: 5294: 5289: 5288: 5286: 5285: 5275: 5267: 5263: 5256: 5248:< 3 < 4 } 5242: 5239: 5236: 5235: 5233: 5226: 5223: 5220: 5219: 5217: 5210: 5207: 5204: 5203: 5201: 5194: 5191: 5188: 5187: 5185: 5178: 5175: 5172: 5171: 5169: 5162: 5159: 5156: 5155: 5153: 5146: 5143: 5140: 5139: 5137: 5130: 5127: 5124: 5123: 5121: 5114: 5111: 5108: 5107: 5105: 5098: 5095: 5092: 5091: 5089: 5082: 5079: 5076: 5075: 5073: 5066: 5063: 5060: 5059: 5057: 5055: 5049: 5045:< 2 < 3 } 5039: 5036: 5033: 5032: 5030: 5023: 5020: 5017: 5016: 5014: 5007: 5004: 5001: 5000: 4998: 4991: 4988: 4985: 4984: 4982: 4975: 4972: 4969: 4968: 4966: 4959: 4956: 4953: 4952: 4950: 4943: 4940: 4937: 4936: 4934: 4927: 4924: 4921: 4920: 4918: 4916: 4910: 4906:< 1 < 2 } 4900: 4897: 4894: 4893: 4891: 4884: 4881: 4878: 4877: 4875: 4873: 4867: 4862: 4856: 4851: 4845: 4834: 4830: 4819: 4815: 4811: 4807: 4803: 4789: 4785: 4778: 4774: 4767: 4752: 4749: 4746: 4745: 4743: 4742: 4735: 4708: 4703: 4699: 4683: 4681: 4678: 4677: 4667: 4664: 4661: 4660: 4658: 4657: 4653: 4619: 4606: 4583: 4570: 4563: 4560: 4559: 4555: 4542: 4540: 4537: 4536: 4515: 4492: 4488: 4466: 4464: 4462: 4459: 4458: 4437: 4414: 4410: 4388: 4386: 4384: 4381: 4380: 4372: 4369: 4366: 4365: 4363: 4356: 4353: 4350: 4349: 4347: 4346: 4339: 4336: 4333: 4332: 4330: 4323: 4313: 4310: 4307: 4306: 4304: 4303: 4293: 4290: 4287: 4286: 4284: 4283: 4279: 4276: 4268: 4265: 4257: 4253: 4227: 4223: 4216: 4202: 4198: 4197: 4182: 4178: 4168: 4166: 4155: 4151: 4144: 4130: 4126: 4125: 4110: 4106: 4096: 4094: 4077: 4073: 4066: 4052: 4048: 4047: 4030: 4026: 4025: 4021: 4014: 4012: 4001: 3997: 3990: 3976: 3972: 3971: 3956: 3952: 3942: 3940: 3933: 3930: 3929: 3925: 3912: 3910: 3907: 3906: 3881: 3862: 3860: 3857: 3856: 3851: 3837: 3834: 3831: 3830: 3828: 3821: 3818: 3815: 3814: 3812: 3805: 3802: 3799: 3798: 3796: 3789: 3786: 3783: 3782: 3780: 3779: 3769: 3766: 3763: 3762: 3760: 3753: 3750: 3747: 3746: 3744: 3724: 3720: 3718: 3715: 3714: 3697: 3693: 3691: 3688: 3687: 3665: 3661: 3650: 3638: 3634: 3623: 3612: 3604: 3593: 3576: 3575: 3571: 3569: 3566: 3565: 3561: 3557: 3540: 3536: 3530: 3526: 3517: 3513: 3498: 3494: 3492: 3489: 3488: 3474: 3473: 3462: 3458: 3452: 3448: 3436: 3432: 3423: 3419: 3407: 3403: 3397: 3393: 3384: 3380: 3365: 3361: 3352: 3348: 3342: 3338: 3329: 3325: 3310: 3306: 3297: 3293: 3287: 3283: 3274: 3270: 3255: 3251: 3250: 3246: 3237: 3236: 3227: 3223: 3214: 3210: 3198: 3194: 3185: 3181: 3171: 3161: 3159: 3156: 3155: 3148: 3120: 3116: 3095: 3091: 3082: 3078: 3057: 3053: 3038: 3034: 3022: 3018: 3000: 2996: 2987: 2983: 2966: 2963: 2962: 2959: 2941: 2938: 2935: 2934: 2932: 2925: 2922: 2919: 2918: 2916: 2909: 2906: 2903: 2902: 2900: 2893: 2890: 2887: 2886: 2884: 2883: 2854: 2850: 2841: 2837: 2822: 2818: 2803: 2799: 2776: 2771: 2754: 2751: 2750: 2725: 2721: 2712: 2708: 2687: 2683: 2668: 2664: 2653: 2648: 2625: 2622: 2621: 2600: 2595: 2584: 2579: 2568: 2563: 2546: 2543: 2542: 2511: 2500: 2458: 2441: 2424: 2421: 2420: 2395: 2391: 2370: 2366: 2357: 2353: 2332: 2328: 2313: 2309: 2300: 2296: 2281: 2277: 2268: 2264: 2247: 2244: 2243: 2240: 2214: 2209: 2198: 2193: 2176: 2173: 2172: 2168: 2165: 2157: 2154: 2146: 2142: 2087: 2084: 2083: 2079: 2075: 2052: 2048: 2036: 2032: 2014: 2010: 2001: 1997: 1980: 1977: 1976: 1972: 1963: 1951: 1948: 1939: 1930: 1918: 1914: 1905: 1893: 1887: 1878: 1874: 1871: 1863: 1859: 1855: 1851: 1847: 1843: 1839: 1835: 1831: 1827: 1823: 1819: 1815: 1811: 1807: 1804: 1796: 1786: 1782: 1767: 1764: 1743: 1740: 1737: 1736: 1734: 1727: 1724: 1721: 1720: 1718: 1701: 1697: 1687: 1684: 1681: 1680: 1678: 1671: 1668: 1665: 1664: 1662: 1650: 1646: 1642: 1635: 1628: 1622: 1612: 1607: 1602: 1597: 1592: 1587: 1582: 1569: 1561: 1557: 1550: 1542: 1539: 1531: 1530:.) Numbers in 1523: 1520: 1511: 1508: 1500: 1497: 1489: 1488:also appear in 1486: 1478: 1475: 1467: 1464: 1456: 1446: 1435: 1425: 1417: 1413: 1407: 1401: 1384: 1380: 1368: 1362: 1359: 1358: 1351: 1348: 1340: 1319: 1315: 1303: 1297: 1294: 1293: 1290: 1282: 1278: 1268: 1264: 1258: 1254: 1226: 1213: 1209: 1202: 1194: 1191: 1182: 1174: 1167: 1163: 1160: 1148: 1145: 1136: 1128: 1114: 1110: 1101: 1089: 1085: 1076: 1064: 1058: 1049: 1045: 1030: 1026: 1016: 1006: 996: 974: 964: 960: 956: 942:, but of their 923: 919: 915: 911: 895: 886: 877: 873: 866: 862: 850: 846: 842: 827: 806: 794: 787: 782: 770: 767: 764: 763: 761: 754: 751: 748: 747: 745: 738: 735: 732: 731: 729: 727: 717: 703: 700: 692: 688: 685: 677: 673: 664: 655: 651: 630: 627: 624: 623: 621: 614: 611: 608: 607: 605: 603: 592: 589: 586: 585: 583: 576: 573: 570: 569: 567: 565: 554: 551: 548: 547: 545: 543: 532: 525: 518: 508: 501: 494: 487: 483: 479: 464: 453: 450: 447: 446: 444: 437: 434: 431: 430: 428: 414: 404: 392: 380: 373: 369: 357: 353: 349: 345: 341: 337: 333: 323: 313: 309: 305: 302: 293: 286: 279: 276:∪ {0, 1, 2}, ∅) 275: 268: 261: 248: 236: 232: 228: 221: 216: 195: 190: 185: 177: 173:Felix Hausdorff 144:surreal numbers 124: 108:ordinal numbers 99:(including the 37:totally ordered 17: 12: 11: 5: 14655: 14645: 14644: 14639: 14634: 14629: 14624: 14619: 14614: 14597: 14596: 14594: 14593: 14588: 14583: 14577: 14575: 14571: 14570: 14568: 14567: 14565:Leonhard Euler 14562: 14557: 14552: 14547: 14541: 14539: 14538:Mathematicians 14535: 14534: 14532: 14531: 14526: 14521: 14516: 14511: 14506: 14501: 14496: 14491: 14486: 14481: 14476: 14470: 14468: 14464: 14463: 14461: 14460: 14455: 14450: 14445: 14439: 14437: 14436:Formalizations 14433: 14432: 14430: 14429: 14424: 14419: 14414: 14409: 14404: 14399: 14393: 14391: 14387: 14386: 14379: 14377: 14375: 14374: 14369: 14362: 14355: 14350: 14345: 14340: 14334: 14332: 14328: 14327: 14324:Infinitesimals 14320: 14319: 14312: 14305: 14297: 14288: 14287: 14285: 14284: 14274: 14272:Classification 14268: 14265: 14264: 14262: 14261: 14259:Normal numbers 14256: 14251: 14229: 14224: 14219: 14213: 14211: 14207: 14206: 14204: 14203: 14198: 14193: 14188: 14183: 14178: 14173: 14168: 14167: 14166: 14156: 14151: 14145: 14143: 14141:infinitesimals 14133: 14132: 14130: 14129: 14128: 14127: 14122: 14117: 14103: 14098: 14093: 14080: 14065: 14060: 14055: 14050: 14044: 14042: 14035: 14034: 14032: 14031: 14026: 14021: 14016: 14003: 13987: 13982: 13977: 13964: 13951: 13949: 13943: 13942: 13940: 13939: 13926: 13911: 13898: 13883: 13870: 13855: 13842: 13822: 13820: 13814: 13813: 13811: 13810: 13805: 13804: 13803: 13793: 13788: 13783: 13778: 13764: 13748: 13743: 13730: 13715: 13710: 13697: 13682: 13669: 13654: 13641: 13625: 13623: 13616: 13615: 13607: 13606: 13599: 13592: 13584: 13575: 13574: 13572: 13571: 13566: 13561: 13556: 13551: 13546: 13540: 13538: 13537:Mathematicians 13534: 13533: 13531: 13530: 13525: 13520: 13515: 13509: 13507: 13503: 13502: 13500: 13499: 13494: 13489: 13484: 13478: 13473: 13468: 13463: 13458: 13453: 13448: 13443: 13441:Gimel function 13438: 13436:Epsilon number 13433: 13427: 13422: 13417: 13412: 13407: 13402: 13397: 13392: 13387: 13381: 13379: 13375: 13374: 13372: 13371: 13366: 13361: 13356: 13351: 13345: 13343: 13339: 13338: 13336: 13335: 13330: 13325: 13320: 13315: 13310: 13305: 13300: 13294: 13292: 13288: 13287: 13273: 13272: 13265: 13258: 13250: 13244: 13243: 13237: 13231: 13226: 13218: 13217:External links 13215: 13214: 13213: 13185: 13158: 13143: 13128: 13115: 13096:Martin Gardner 13093: 13078: 13063: 13039: 13036: 13034: 13033: 12983:Philip Ehrlich 12971: 12964: 12939: 12927: 12901: 12894: 12863: 12809: 12802: 12773: 12755:(1): 365–386, 12732: 12698: 12689: 12676: 12653: 12628: 12618: 12594: 12592: 12589: 12586: 12585: 12576: 12567: 12565:if one exists. 12542: 12533: 12529:epsilon nought 12498: 12497: 12495: 12492: 12491: 12490: 12485: 12479: 12478: 12462: 12459: 12446: 12443: 12419: 12416: 12410: 12407: 12400: 12399: 12360: 12307: 12304: 12300: 12297: 12276: 12273: 12215: 12212: 12202:be subsets of 12192: 12179: 12176: 12147: 12144: 12129: 12117: 12114: 12085: 12082: 12079: 12075: 12071: 12067: 12064: 12060: 12040: 12037: 11905: 11902: 11894: 11893: 11812: 11674:(0) = +1, and 11639:) = +1, and (− 11593: 11592: 11543: 11449: 11446: 11306: 11305: 11291: 11214: 11213: 11158: 10969: 10968: 10917: 10878: 10773:) = min({ dom( 10763: 10762: 10723: 10705: 10605:sign-expansion 10600: 10597: 10595: 10594:Sign expansion 10592: 10587: 10584: 10565: 10564: 10516: 10515: 10512: 10509: 10506: 10487: 10486: 10483: 10480: 10477: 10474: 10468: 10417: 10414: 10279: 10278: 10259: 10243:Main article: 10240: 10237: 10229:transcendental 10167: 10164: 10140: 10139:Exponentiation 10137: 10136: 10135: 10128: 10121: 10115: 10108: 10102: 10101: 10100: 10067: 10049: 10016: 10013: 10010: 10007: 10004: 10001: 9977: 9974: 9971: 9968: 9954: 9951: 9950: 9949: 9948: 9947: 9941: 9932: 9926: 9916: 9915: 9914: 9888: 9866: 9865: 9864: 9863: 9862: 9850: 9835: 9823: 9810: 9804: 9803: 9802: 9793: 9781: 9762: 9744: 9730: 9718: 9706: 9694: 9691: 9688: 9685: 9681: 9678: 9674: 9669: 9664: 9661: 9656: 9653: 9603: 9602: 9601: 9584: 9566: 9556: 9539: 9534: 9531: 9518: 9499:exp satisfies 9497: 9472: 9469: 9462: 9453: 9436: 9433: 9428: 9425: 9422: 9419: 9415: 9411: 9408: 9403: 9399: 9395: 9391: 9385: 9381: 9377: 9374: 9371: 9366: 9362: 9358: 9355: 9350: 9346: 9342: 9338: 9332: 9328: 9324: 9321: 9318: 9313: 9310: 9307: 9304: 9300: 9294: 9290: 9286: 9283: 9280: 9277: 9272: 9268: 9264: 9261: 9258: 9253: 9249: 9243: 9239: 9235: 9232: 9229: 9226: 9221: 9217: 9213: 9210: 9207: 9204: 9201: 9198: 9195: 9192: 9189: 9176: 9175: 9162: 9150: 9149: 9139: 9109: 9097: 9087: 9068: 9065: 9059: 9055: 9047: 9044: 9041: 9037: 9033: 9030: 9027: 9024: 9012: 9009: 9005:exponentiation 8967: 8964: 8960: 8957: 8947:power function 8923: 8920: 8899: 8896: 8882: 8879: 8857: 8854: 8841: 8822: 8818: 8813: 8807: 8803: 8796: 8793: 8789: 8786: 8782: 8752: 8749: 8724: 8721: 8717: 8714: 8709: 8705: 8702: 8698: 8695: 8692: 8687: 8683: 8680: 8676: 8655: 8652: 8626: 8623: 8601: 8598: 8569: 8564: 8560: 8557: 8553: 8550: 8546: 8543: 8519: 8513: 8510: 8486: 8483: 8480: 8477: 8474: 8470: 8466: 8463: 8460: 8457: 8454: 8451: 8448: 8445: 8442: 8439: 8435: 8431: 8428: 8425: 8422: 8419: 8416: 8384: 8378: 8375: 8348: 8345: 8341: 8338: 8335: 8332: 8300: 8297: 8280: 8273: 8267: 8266: 8262: 8255: 8234: 8233: 8225: 8217: 8209: 8201: 8157: 8156: 8137: 8106: 8105: 8081: 8078: 8004: 8003: 7998: 7991: 7965:is defined by 7860:Note that the 7844: 7841: 7838: 7834: 7828: 7825: 7822: 7818: 7755: 7754: 7705: 7704: 7657: 7530: 7529: 7482: 7474: 7471: 7459: 7425: 7334: 7260: 7241: 7222: 7208: 7191: 7174: 7138: 7122: 7111: 7061: 7050: 7034: 7029: 7026: 7023: 7020: 7017: 7014: 7011: 7008: 7005: 7002: 6999: 6996: 6993: 6990: 6987: 6982: 6979: 6976: 6973: 6970: 6965: 6962: 6959: 6956: 6953: 6950: 6947: 6944: 6941: 6938: 6935: 6932: 6929: 6926: 6923: 6920: 6917: 6904: 6898: 6897: 6896: 6895: 6880: 6846: 6843: 6840: 6817: 6783: 6780: 6777: 6754: 6713: 6688: 6663: 6638: 6613: 6588: 6565: 6560: 6554: 6509: 6500: 6486: 6477: 6466: 6459: 6458: 6452: 6441: 6434: 6423: 6394: 6361: 6321: 6318: 6315: 6312: 6309: 6304: 6300: 6296: 6293: 6290: 6287: 6284: 6281: 6277: 6273: 6270: 6264: 6261: 6255: 6249: 6246: 6240: 6234: 6231: 6225: 6222: 6219: 6216: 6212: 6208: 6205: 6200: 6196: 6192: 6187: 6183: 6179: 6174: 6170: 6166: 6163: 6160: 6145: 6134: 6112: 6094: 6090: 6086: 6083: 6077: 6074: 6068: 6062: 6059: 6053: 6047: 6044: 6038: 6035: 6032: 6029: 6026: 6020: 6017: 6011: 6005: 6002: 5996: 5993: 5989: 5985: 5982: 5963: 5924: 5921: 5918: 5915: 5912: 5909: 5906: 5901: 5897: 5893: 5890: 5887: 5884: 5881: 5878: 5875: 5872: 5867: 5863: 5859: 5856: 5853: 5850: 5844: 5841: 5803: 5788: 5785: 5780: 5777: 5774: 5771: 5768: 5765: 5762: 5759: 5756: 5753: 5750: 5747: 5744: 5739: 5734: 5730: 5726: 5723: 5720: 5705: 5696: 5685: 5677: 5674: 5660: 5657: 5628: 5625:epsilon number 5598: 5589: 5578: 5567: 5547: 5544: 5541: 5538: 5535: 5530: 5526: 5522: 5519: 5516: 5513: 5510: 5508: 5504: 5500: 5496: 5495: 5492: 5489: 5486: 5483: 5480: 5475: 5471: 5467: 5464: 5461: 5458: 5455: 5453: 5449: 5445: 5441: 5440: 5437: 5434: 5431: 5428: 5425: 5423: 5419: 5415: 5411: 5410: 5388: 5384: 5378: 5375: 5372: 5368: 5364: 5359: 5355: 5335: 5271: 5260:natural number 5255: 5252: 5251: 5250: 5053: 5047: 4933:< −1 < − 4914: 4908: 4871: 4865: 4860: 4854: 4849: 4839: 4838: 4823: 4796: 4793: 4782: 4766: 4763: 4761:is undefined. 4720: 4714: 4711: 4707: 4702: 4698: 4695: 4690: 4687: 4638: 4634: 4631: 4626: 4623: 4618: 4613: 4610: 4603: 4598: 4595: 4590: 4587: 4582: 4577: 4574: 4569: 4566: 4562: 4558: 4554: 4549: 4546: 4522: 4519: 4514: 4509: 4504: 4499: 4496: 4491: 4487: 4484: 4481: 4478: 4475: 4472: 4469: 4444: 4441: 4436: 4431: 4426: 4421: 4418: 4413: 4409: 4406: 4403: 4400: 4397: 4394: 4391: 4272: 4261: 4238: 4230: 4226: 4219: 4214: 4209: 4206: 4201: 4196: 4193: 4190: 4185: 4181: 4177: 4174: 4171: 4165: 4158: 4154: 4147: 4142: 4137: 4134: 4129: 4124: 4121: 4118: 4113: 4109: 4105: 4102: 4099: 4090: 4080: 4076: 4069: 4064: 4059: 4056: 4051: 4045: 4041: 4038: 4033: 4029: 4024: 4020: 4017: 4011: 4004: 4000: 3993: 3988: 3983: 3980: 3975: 3970: 3967: 3964: 3959: 3955: 3951: 3948: 3945: 3939: 3936: 3932: 3928: 3924: 3919: 3916: 3888: 3885: 3880: 3877: 3874: 3869: 3866: 3850: 3847: 3846: 3845: 3727: 3723: 3700: 3696: 3674: 3668: 3664: 3660: 3656: 3653: 3646: 3641: 3637: 3633: 3629: 3626: 3622: 3618: 3615: 3610: 3607: 3603: 3599: 3596: 3592: 3589: 3586: 3582: 3579: 3574: 3543: 3539: 3533: 3529: 3525: 3520: 3516: 3512: 3509: 3506: 3501: 3497: 3471: 3465: 3461: 3455: 3451: 3447: 3444: 3439: 3435: 3431: 3426: 3422: 3418: 3415: 3410: 3406: 3400: 3396: 3392: 3387: 3383: 3379: 3376: 3373: 3368: 3364: 3360: 3355: 3351: 3345: 3341: 3337: 3332: 3328: 3324: 3321: 3318: 3313: 3309: 3305: 3300: 3296: 3290: 3286: 3282: 3277: 3273: 3269: 3266: 3263: 3258: 3254: 3249: 3245: 3242: 3240: 3238: 3235: 3230: 3226: 3222: 3217: 3213: 3209: 3206: 3201: 3197: 3193: 3188: 3184: 3180: 3177: 3174: 3172: 3170: 3167: 3164: 3163: 3147: 3146:Multiplication 3144: 3132: 3128: 3123: 3119: 3115: 3112: 3109: 3106: 3103: 3098: 3094: 3090: 3085: 3081: 3077: 3074: 3071: 3068: 3065: 3060: 3056: 3052: 3049: 3046: 3041: 3037: 3033: 3030: 3025: 3021: 3017: 3014: 3011: 3008: 3003: 2999: 2995: 2990: 2986: 2982: 2979: 2976: 2973: 2970: 2958: 2955: 2951: 2950: 2868: 2865: 2862: 2857: 2853: 2849: 2844: 2840: 2836: 2833: 2830: 2825: 2821: 2817: 2814: 2811: 2806: 2802: 2798: 2795: 2792: 2789: 2786: 2783: 2780: 2775: 2770: 2767: 2764: 2761: 2758: 2739: 2736: 2733: 2728: 2724: 2720: 2715: 2711: 2707: 2704: 2701: 2698: 2695: 2690: 2686: 2682: 2679: 2676: 2671: 2667: 2663: 2660: 2657: 2652: 2647: 2644: 2641: 2638: 2635: 2632: 2629: 2610: 2607: 2604: 2599: 2594: 2591: 2588: 2583: 2578: 2575: 2572: 2567: 2562: 2559: 2556: 2553: 2550: 2527: 2524: 2521: 2517: 2514: 2510: 2506: 2503: 2499: 2496: 2493: 2490: 2487: 2484: 2481: 2477: 2474: 2471: 2468: 2464: 2461: 2457: 2454: 2451: 2447: 2444: 2440: 2437: 2434: 2431: 2428: 2406: 2403: 2398: 2394: 2390: 2387: 2384: 2381: 2378: 2373: 2369: 2365: 2360: 2356: 2352: 2349: 2346: 2343: 2340: 2335: 2331: 2327: 2324: 2321: 2316: 2312: 2308: 2303: 2299: 2295: 2292: 2289: 2284: 2280: 2276: 2271: 2267: 2263: 2260: 2257: 2254: 2251: 2239: 2236: 2224: 2221: 2218: 2213: 2208: 2205: 2202: 2197: 2192: 2189: 2186: 2183: 2180: 2161: 2150: 2124: 2121: 2118: 2115: 2112: 2109: 2106: 2103: 2100: 2097: 2094: 2091: 2063: 2060: 2055: 2051: 2047: 2044: 2039: 2035: 2031: 2028: 2025: 2022: 2017: 2013: 2009: 2004: 2000: 1996: 1993: 1990: 1987: 1984: 1975:is defined by 1968: 1959: 1947: 1944: 1935: 1926: 1910: 1901: 1886: 1883: 1877:in generation 1867: 1800: 1763: 1760: 1751: 1750: 1749:< 1 < 2. 1706:complete forms 1658: 1657: 1654: 1632: 1626: 1616: 1615: 1610: 1605: 1600: 1595: 1590: 1585: 1571:is called its 1565: 1546: 1535: 1515: 1504: 1493: 1482: 1471: 1460: 1421: 1405: 1387: 1383: 1377: 1374: 1371: 1367: 1344: 1337: 1336: 1322: 1318: 1312: 1309: 1306: 1302: 1286: 1276:ordinal number 1272: 1262: 1253: 1252:Induction rule 1250: 1225: 1222: 1218: 1217: 1198: 1187: 1178: 1171: 1156: 1141: 1132: 1106: 1097: 1081: 1072: 1057: 1054: 985: 984: 936:surreal number 932: 931: 928:order relation 885: 882: 845:and right set 826: 823: 805: 802: 800:and so forth. 779: 778: 724: 723: 696: 681: 669: 660: 638: 637: 600: 599: 562: 561: 536: 535: 529: 528: 522: 521: 512: 511: 505: 504: 498: 497: 301: 298: 291: 284: 273: 266: 220: 217: 215: 212: 181: 123: 120: 56:absolute value 33:surreal number 15: 9: 6: 4: 3: 2: 14654: 14643: 14640: 14638: 14635: 14633: 14630: 14628: 14625: 14623: 14620: 14618: 14615: 14613: 14610: 14609: 14607: 14592: 14589: 14587: 14584: 14582: 14579: 14578: 14576: 14572: 14566: 14563: 14561: 14558: 14556: 14553: 14551: 14548: 14546: 14543: 14542: 14540: 14536: 14530: 14527: 14525: 14522: 14520: 14517: 14515: 14512: 14510: 14507: 14505: 14502: 14500: 14497: 14495: 14492: 14490: 14487: 14485: 14482: 14480: 14477: 14475: 14472: 14471: 14469: 14465: 14459: 14456: 14454: 14451: 14449: 14446: 14444: 14443:Differentials 14441: 14440: 14438: 14434: 14428: 14425: 14423: 14420: 14418: 14415: 14413: 14410: 14408: 14405: 14403: 14400: 14398: 14395: 14394: 14392: 14388: 14383: 14373: 14370: 14368: 14367: 14363: 14361: 14360: 14356: 14354: 14351: 14349: 14346: 14344: 14341: 14339: 14336: 14335: 14333: 14329: 14325: 14318: 14313: 14311: 14306: 14304: 14299: 14298: 14295: 14283: 14275: 14273: 14270: 14269: 14266: 14260: 14257: 14255: 14252: 14249: 14245: 14239: 14235: 14230: 14228: 14225: 14223: 14222:Fuzzy numbers 14220: 14218: 14215: 14214: 14212: 14208: 14202: 14199: 14197: 14194: 14192: 14189: 14187: 14184: 14182: 14179: 14177: 14174: 14172: 14169: 14165: 14162: 14161: 14160: 14157: 14155: 14152: 14150: 14147: 14146: 14144: 14142: 14138: 14134: 14126: 14123: 14121: 14118: 14116: 14113: 14112: 14111: 14107: 14104: 14102: 14099: 14097: 14094: 14069: 14066: 14064: 14061: 14059: 14056: 14054: 14051: 14049: 14046: 14045: 14043: 14041: 14036: 14030: 14027: 14025: 14024:Biquaternions 14022: 14020: 14017: 13991: 13988: 13986: 13983: 13981: 13978: 13953: 13952: 13950: 13944: 13915: 13912: 13887: 13884: 13859: 13856: 13831: 13827: 13824: 13823: 13821: 13819: 13815: 13809: 13806: 13802: 13799: 13798: 13797: 13794: 13792: 13789: 13787: 13784: 13782: 13779: 13752: 13749: 13747: 13744: 13719: 13716: 13714: 13711: 13686: 13683: 13658: 13655: 13630: 13627: 13626: 13624: 13622: 13617: 13612: 13605: 13600: 13598: 13593: 13591: 13586: 13585: 13582: 13570: 13567: 13565: 13562: 13560: 13557: 13555: 13552: 13550: 13549:David Hilbert 13547: 13545: 13542: 13541: 13539: 13535: 13529: 13526: 13524: 13521: 13519: 13516: 13514: 13511: 13510: 13508: 13504: 13498: 13495: 13493: 13490: 13488: 13485: 13482: 13479: 13477: 13474: 13472: 13469: 13467: 13464: 13462: 13461:Infinitesimal 13459: 13457: 13454: 13452: 13449: 13447: 13446:Hilbert space 13444: 13442: 13439: 13437: 13434: 13431: 13428: 13426: 13423: 13421: 13418: 13416: 13413: 13411: 13408: 13406: 13403: 13401: 13398: 13396: 13393: 13391: 13388: 13386: 13383: 13382: 13380: 13376: 13370: 13367: 13365: 13362: 13360: 13357: 13355: 13352: 13350: 13347: 13346: 13344: 13340: 13334: 13331: 13329: 13326: 13324: 13321: 13319: 13316: 13314: 13311: 13309: 13306: 13304: 13301: 13299: 13296: 13295: 13293: 13289: 13283: 13278: 13271: 13266: 13264: 13259: 13257: 13252: 13251: 13248: 13241: 13238: 13235: 13232: 13230: 13227: 13224: 13221: 13220: 13211: 13205: 13201: 13197: 13193: 13192: 13186: 13183: 13182:0-7456-3878-3 13179: 13176:(paperback), 13175: 13174:0-7456-3879-1 13171: 13167: 13163: 13159: 13156: 13155:0-521-31205-1 13152: 13148: 13144: 13141: 13140:0-444-70226-1 13137: 13133: 13129: 13126: 13125: 13120: 13116: 13113: 13109: 13108:0-7167-1987-8 13105: 13101: 13097: 13094: 13091: 13090:1-56881-130-6 13087: 13083: 13079: 13076: 13075:1-56881-127-6 13072: 13068: 13064: 13061: 13057: 13056:0-201-03812-9 13053: 13049: 13045: 13042: 13041: 13023:on 2017-10-07 13019: 13015: 13011: 13007: 13003: 12999: 12995: 12988: 12984: 12978: 12976: 12967: 12965:0-444-70226-1 12961: 12957: 12950: 12948: 12946: 12944: 12936: 12931: 12922: 12917: 12910: 12908: 12906: 12897: 12895:9780521312059 12891: 12887: 12883: 12879: 12872: 12870: 12868: 12859: 12855: 12850: 12845: 12841: 12837: 12833: 12829: 12822: 12820: 12818: 12816: 12814: 12805: 12803:9781568811277 12799: 12795: 12794: 12786: 12784: 12782: 12780: 12778: 12763: 12758: 12754: 12750: 12743: 12736: 12729: 12725: 12720: 12715: 12711: 12707: 12701: 12692: 12688: 12680: 12664: 12657: 12644: 12643: 12635: 12633: 12625: 12621: 12619:9781461466369 12615: 12611: 12610: 12602: 12600: 12595: 12580: 12571: 12564: 12560: 12556: 12552: 12546: 12537: 12530: 12526: 12522: 12518: 12513: 12509: 12503: 12499: 12489: 12486: 12484: 12481: 12480: 12476: 12470: 12465: 12458: 12456: 12452: 12442: 12438: 12434: 12428: 12425: 12415: 12406: 12403: 12397: 12393: 12389: 12385: 12381: 12377: 12373: 12369: 12365: 12361: 12358: 12354: 12350: 12345: 12341: 12335: 12331: 12326: 12322: 12298: 12295: 12262: 12258: 12254: 12250: 12245: 12241: 12235: 12231: 12201: 12197: 12193: 12165: 12161: 12133: 12130: 12103: 12099: 12098: 12097: 12080: 12077: 12073: 12069: 12049: 12047: 12036: 12034: 12030: 12026: 12022: 12018: 12014: 12010: 12006: 12002: 11998: 11994: 11990: 11986: 11982: 11978: 11974: 11969: 11967: 11963: 11959: 11955: 11951: 11947: 11943: 11939: 11935: 11931: 11927: 11923: 11919: 11915: 11911: 11901: 11899: 11889: 11885: 11881: 11877: 11873: 11869: 11865: 11861: 11857: 11853: 11849: 11845: 11841: 11837: 11833: 11829: 11825: 11821: 11817: 11813: 11808: 11804: 11800: 11796: 11792: 11788: 11784: 11780: 11776: 11772: 11768: 11764: 11760: 11756: 11752: 11748: 11744: 11740: 11736: 11732: 11731: 11730: 11728: 11724: 11720: 11716: 11712: 11708: 11704: 11700: 11696: 11691: 11689: 11685: 11681: 11677: 11673: 11669: 11665: 11661: 11656: 11654: 11650: 11646: 11642: 11638: 11634: 11630: 11626: 11622: 11618: 11614: 11610: 11606: 11602: 11598: 11588: 11584: 11580: 11576: 11572: 11568: 11564: 11560: 11556: 11552: 11548: 11544: 11539: 11535: 11531: 11527: 11523: 11519: 11515: 11511: 11507: 11503: 11499: 11495: 11494: 11493: 11491: 11487: 11483: 11479: 11475: 11471: 11467: 11463: 11459: 11455: 11445: 11443: 11439: 11435: 11431: 11427: 11423: 11419: 11415: 11411: 11407: 11403: 11399: 11395: 11391: 11387: 11383: 11379: 11375: 11371: 11367: 11363: 11359: 11355: 11351: 11347: 11343: 11339: 11333: 11329: 11327: 11323: 11319: 11315: 11311: 11303: 11299: 11295: 11292: 11289: 11285: 11281: 11278: 11277: 11276: 11274: 11270: 11266: 11262: 11258: 11255:For a number 11253: 11251: 11247: 11243: 11239: 11235: 11231: 11227: 11223: 11219: 11216:Furthermore, 11211: 11207: 11203: 11199: 11195: 11191: 11187: 11183: 11179: 11175: 11171: 11167: 11163: 11159: 11156: 11152: 11148: 11144: 11140: 11136: 11132: 11128: 11124: 11123: 11122: 11120: 11116: 11112: 11108: 11104: 11100: 11096: 11092: 11088: 11083: 11081: 11077: 11073: 11069: 11065: 11061: 11057: 11053: 11049: 11045: 11041: 11036: 11034: 11030: 11026: 11022: 11018: 11014: 11010: 11006: 11002: 10998: 10994: 10990: 10986: 10982: 10978: 10974: 10966: 10962: 10958: 10954: 10950: 10946: 10942: 10938: 10934: 10930: 10926: 10922: 10918: 10915: 10911: 10907: 10903: 10899: 10895: 10891: 10887: 10883: 10879: 10876: 10872: 10868: 10864: 10860: 10856: 10852: 10848: 10844: 10840: 10839: 10838: 10836: 10832: 10828: 10824: 10820: 10816: 10812: 10808: 10804: 10800: 10796: 10792: 10788: 10784: 10780: 10776: 10772: 10768: 10760: 10756: 10753:)) = − 1 and 10752: 10748: 10744: 10740: 10736: 10732: 10728: 10724: 10721: 10717: 10713: 10709: 10706: 10703: 10699: 10695: 10691: 10688: 10687: 10686: 10684: 10680: 10675: 10673: 10669: 10665: 10661: 10657: 10653: 10649: 10645: 10644:proper subset 10641: 10637: 10633: 10628: 10626: 10622: 10618: 10614: 10610: 10609:sign-sequence 10606: 10591: 10583: 10581: 10577: 10572: 10570: 10561: 10557: 10552: 10548: 10544: 10543: 10542: 10538: 10536: 10532: 10528: 10524: 10519: 10513: 10510: 10507: 10504: 10503: 10502: 10500: 10495: 10491: 10484: 10481: 10478: 10475: 10472: 10471:Deterministic 10469: 10466: 10462: 10458: 10457: 10456: 10453: 10451: 10447: 10443: 10437: 10433: 10427: 10423: 10413: 10410: 10407: 10403: 10400: 10394: 10390: 10385: 10381: 10377: 10372: 10369: 10365: 10362: 10356: 10352: 10347: 10343: 10339: 10334: 10332: 10326: 10320: 10319: 10314: 10313: 10308: 10307:partial order 10304: 10300: 10295: 10293: 10289: 10282: 10276: 10272: 10268: 10264: 10260: 10257: 10256: 10255: 10253: 10246: 10236: 10234: 10230: 10227: 10223: 10219: 10215: 10211: 10207: 10204: 10192: 10188: 10182: 10178: 10173: 10163: 10155: 10151: 10147: 10134: 10127: 10120: 10116: 10114: 10107: 10103: 10098: 10094: 10090: 10089: 10088: 10084: 10080: 10076: 10072: 10068: 10066: 10062: 10058: 10054: 10050: 10048: 10044: 10040: 10039: 10038: 10032: 10014: 10011: 10005: 9999: 9972: 9966: 9944: 9940: 9935: 9931: 9927: 9924: 9920: 9919: 9917: 9913: 9909: 9905: 9901: 9897: 9893: 9889: 9886: 9882: 9878: 9874: 9870: 9869: 9867: 9859: 9858: 9853: 9849: 9842: 9838: 9834: 9830: 9826: 9821: 9817: 9811: 9808: 9807: 9805: 9800: 9796: 9792: 9788: 9784: 9779: 9772: 9768: 9763: 9760: 9756: 9747: 9743: 9737: 9733: 9729: 9725: 9721: 9716: 9711: 9707: 9692: 9686: 9683: 9667: 9654: 9651: 9643: 9639: 9635: 9632:has the form 9631: 9628:> 0), exp 9627: 9623: 9620:has the form 9619: 9615: 9614: 9612: 9608: 9604: 9598: 9593: 9589: 9585: 9582: 9578: 9577: 9575: 9571: 9567: 9563: 9557: 9537: 9519: 9516: 9512: 9508: 9504: 9498: 9495: 9491: 9488:⇒ 0 < exp 9487: 9483: 9478: 9477: 9476: 9468: 9465: 9461: 9456: 9452: 9447: 9434: 9426: 9423: 9420: 9417: 9409: 9406: 9401: 9397: 9389: 9383: 9379: 9375: 9372: 9369: 9364: 9356: 9353: 9348: 9344: 9336: 9330: 9326: 9322: 9319: 9316: 9311: 9308: 9305: 9302: 9292: 9288: 9284: 9281: 9275: 9270: 9266: 9262: 9259: 9256: 9251: 9241: 9237: 9233: 9230: 9224: 9219: 9215: 9211: 9208: 9205: 9202: 9196: 9193: 9190: 9187: 9179: 9172: 9166: 9160: 9155: 9154: 9153: 9147: 9142: 9137: 9132: 9131: 9130: 9127: 9123: 9117: 9113: 9107: 9101: 9095: 9090: 9085: 9066: 9063: 9057: 9053: 9045: 9042: 9039: 9035: 9031: 9028: 9025: 9022: 9008: 9006: 9001: 8997: 8993: 8987: 8983: 8958: 8955: 8948: 8944: 8939: 8937: 8933: 8929: 8919: 8917: 8914:) (with base 8913: 8909: 8905: 8895: 8840: 8820: 8816: 8811: 8805: 8801: 8787: 8784: 8780: 8771: 8767: 8737: 8715: 8707: 8693: 8685: 8641: 8583: 8562: 8548: 8497: 8481: 8478: 8475: 8472: 8464: 8461: 8455: 8452: 8449: 8446: 8443: 8440: 8437: 8429: 8426: 8420: 8417: 8406: 8403: 8401: 8363: 8362:Dedekind cuts 8339: 8336: 8333: 8330: 8322: 8318: 8312: 8308: 8296: 8294: 8290: 8285: 8279: 8272: 8261: 8254: 8250: 8247: 8246: 8245: 8243: 8239: 8231: 8223: 8215: 8207: 8206: 8205: 8199: 8195: 8191: 8186: 8182: 8177: 8173: 8169: 8165: 8160: 8138: 8135: 8134: 8133: 8131: 8127: 8123: 8119: 8115: 8111: 8103: 8099: 8095: 8094: 8093: 8091: 8087: 8077: 8075: 8061: 8037: 8031: 8027: 8023: 8019: 8013: 8009: 7997: 7990: 7976: 7968: 7967: 7966: 7954: 7946: 7941: 7937: 7922: 7914: 7909: 7905: 7900: 7895: 7894:of ordinals. 7893: 7888: 7884: 7880: 7874: 7869: 7863: 7858: 7842: 7839: 7836: 7832: 7826: 7823: 7820: 7816: 7807: 7802:2 = { 1 | } 7797: 7792: 7788: 7784: 7780: 7775: 7771: 7765: 7761: 7752: 7748: 7744: 7740: 7736: 7732: 7728: 7724: 7723: 7722: 7720: 7715: 7711: 7700: 7680: 7666: 7658: 7655: 7635: 7615: 7595: 7591: 7587: 7583: 7579: 7575: 7574: 7573: 7569: 7563:−1 = { | 0 } 7558: 7551: 7546: 7542: 7536: 7525: 7521: 7517: 7516: 7515: 7511: 7504: 7500: 7485: 7481: 7470: 7462: 7458: 7451: 7447: 7440: 7436: 7424: 7337: 7333: 7317:, along with 7311: 7307: 7297: 7286: 7279: 7263: 7259: 7244: 7240: 7231: 7228:has the same 7225: 7221: 7215: 7211: 7207: 7198: 7190: 7173: 7159: 7155: 7152: 7141: 7137: 7125: 7121: 7114: 7110: 7105: 7101: 7100:Dedekind cuts 7096: 7089: 7085: 7079: 7072: 7064: 7060: 7053: 7049: 7027: 7024: 7021: 7018: 7015: 7012: 7009: 7006: 7003: 7000: 6997: 6994: 6988: 6980: 6977: 6971: 6963: 6960: 6957: 6954: 6951: 6948: 6945: 6942: 6939: 6936: 6933: 6930: 6924: 6921: 6918: 6915: 6903: 6881: 6877: 6873: 6844: 6841: 6838: 6818: 6814: 6810: 6781: 6778: 6775: 6755: 6724: 6723: 6714: 6710: 6689: 6672: 6664: 6660: 6639: 6622: 6614: 6609: 6597: 6596: 6595: 6591: 6587: 6580: 6576: 6572: 6563: 6559: 6553: 6546: 6540: 6532: 6516: 6512: 6508: 6503: 6499: 6493: 6489: 6485: 6480: 6476: 6469: 6465: 6451: 6447: 6440: 6433: 6429: 6422: 6418: 6414: 6410: 6406: 6405: 6404: 6401: 6397: 6393: 6387: 6383: 6364: 6360: 6335: 6334:infinitesimal 6316: 6313: 6310: 6307: 6302: 6298: 6294: 6291: 6288: 6285: 6279: 6275: 6271: 6268: 6262: 6259: 6253: 6247: 6244: 6238: 6232: 6229: 6223: 6220: 6217: 6214: 6210: 6206: 6198: 6194: 6190: 6185: 6181: 6177: 6172: 6168: 6161: 6158: 6148: 6144: 6137: 6133: 6127: 6115: 6111: 6105: 6092: 6088: 6084: 6081: 6075: 6072: 6066: 6060: 6057: 6051: 6045: 6042: 6036: 6033: 6030: 6027: 6024: 6018: 6015: 6009: 6003: 6000: 5994: 5991: 5987: 5983: 5980: 5972: 5966: 5962: 5957: 5952: 5922: 5916: 5913: 5910: 5907: 5904: 5899: 5895: 5891: 5888: 5885: 5882: 5879: 5876: 5873: 5870: 5865: 5861: 5857: 5854: 5848: 5842: 5839: 5829:is given by: 5812: 5806: 5802: 5786: 5778: 5775: 5772: 5769: 5766: 5763: 5760: 5757: 5754: 5751: 5745: 5737: 5732: 5728: 5721: 5718: 5708: 5704: 5695: 5688: 5684: 5673: 5646: 5642: 5641:ordered field 5638: 5632: 5626: 5622: 5614: 5610: 5603: 5597: 5588: 5581: 5577: 5570: 5566: 5542: 5539: 5536: 5533: 5528: 5524: 5520: 5517: 5511: 5509: 5502: 5498: 5487: 5484: 5481: 5478: 5473: 5469: 5465: 5462: 5456: 5454: 5447: 5443: 5432: 5426: 5424: 5417: 5413: 5386: 5382: 5376: 5373: 5370: 5366: 5362: 5357: 5353: 5338: 5334: 5328: 5325: 5321: 5315: 5292: 5284: 5280: 5274: 5270: 5261: 5052: 5048: 4913: 4909: 4870: 4866: 4859: 4855: 4848: 4844: 4843: 4842: 4828: 4824: 4801: 4797: 4794: 4783: 4772: 4771: 4770: 4762: 4755: 4738: 4732: 4718: 4712: 4709: 4705: 4700: 4696: 4693: 4688: 4685: 4670: 4652:For negative 4650: 4636: 4632: 4629: 4624: 4621: 4616: 4611: 4608: 4601: 4596: 4593: 4588: 4585: 4580: 4575: 4572: 4567: 4564: 4556: 4552: 4547: 4544: 4520: 4517: 4512: 4507: 4502: 4497: 4494: 4489: 4482: 4479: 4476: 4470: 4467: 4442: 4439: 4434: 4429: 4424: 4419: 4416: 4411: 4404: 4401: 4398: 4392: 4389: 4326: 4316: 4296: 4275: 4271: 4264: 4260: 4252:for positive 4250: 4236: 4228: 4224: 4217: 4212: 4207: 4204: 4199: 4191: 4188: 4183: 4179: 4172: 4169: 4163: 4156: 4152: 4145: 4140: 4135: 4132: 4127: 4119: 4116: 4111: 4107: 4100: 4097: 4088: 4078: 4074: 4067: 4062: 4057: 4054: 4049: 4043: 4039: 4036: 4031: 4027: 4022: 4018: 4015: 4009: 4002: 3998: 3991: 3986: 3981: 3978: 3973: 3965: 3962: 3957: 3953: 3946: 3943: 3937: 3934: 3926: 3922: 3917: 3914: 3904: 3901: 3886: 3883: 3878: 3875: 3872: 3867: 3864: 3854: 3778: 3777: 3776: 3741: 3725: 3721: 3698: 3694: 3672: 3666: 3662: 3658: 3654: 3651: 3644: 3639: 3635: 3631: 3627: 3624: 3620: 3616: 3613: 3608: 3605: 3601: 3597: 3594: 3590: 3587: 3584: 3580: 3577: 3572: 3541: 3537: 3531: 3527: 3523: 3518: 3514: 3510: 3507: 3504: 3499: 3495: 3469: 3463: 3459: 3453: 3449: 3445: 3442: 3437: 3433: 3429: 3424: 3420: 3416: 3413: 3408: 3404: 3398: 3394: 3390: 3385: 3381: 3377: 3374: 3371: 3366: 3362: 3358: 3353: 3349: 3343: 3339: 3335: 3330: 3326: 3322: 3319: 3316: 3311: 3307: 3303: 3298: 3294: 3288: 3284: 3280: 3275: 3271: 3267: 3264: 3261: 3256: 3252: 3247: 3243: 3241: 3228: 3224: 3220: 3215: 3211: 3199: 3195: 3191: 3186: 3182: 3175: 3173: 3168: 3165: 3153: 3143: 3130: 3121: 3117: 3113: 3110: 3107: 3104: 3101: 3096: 3092: 3088: 3083: 3079: 3075: 3072: 3069: 3066: 3063: 3058: 3054: 3047: 3039: 3035: 3031: 3028: 3023: 3019: 3015: 3009: 3001: 2997: 2993: 2988: 2984: 2977: 2974: 2971: 2968: 2954: 2882: 2881: 2880: 2879:For example: 2866: 2863: 2855: 2851: 2847: 2842: 2838: 2831: 2823: 2819: 2815: 2812: 2809: 2804: 2800: 2796: 2793: 2787: 2784: 2781: 2773: 2765: 2762: 2759: 2756: 2737: 2734: 2726: 2722: 2718: 2713: 2709: 2702: 2696: 2693: 2688: 2684: 2680: 2677: 2674: 2669: 2665: 2658: 2650: 2642: 2639: 2636: 2633: 2630: 2627: 2608: 2605: 2597: 2589: 2581: 2573: 2565: 2557: 2554: 2551: 2548: 2539: 2522: 2519: 2515: 2512: 2508: 2504: 2501: 2497: 2494: 2488: 2485: 2482: 2479: 2475: 2469: 2466: 2462: 2459: 2455: 2452: 2449: 2445: 2442: 2435: 2432: 2429: 2426: 2418: 2404: 2396: 2392: 2388: 2385: 2382: 2379: 2376: 2371: 2367: 2363: 2358: 2354: 2350: 2347: 2344: 2341: 2338: 2333: 2329: 2322: 2314: 2310: 2306: 2301: 2297: 2290: 2282: 2278: 2274: 2269: 2265: 2258: 2255: 2252: 2249: 2235: 2222: 2219: 2211: 2203: 2195: 2187: 2184: 2181: 2178: 2164: 2160: 2153: 2149: 2140: 2135: 2122: 2116: 2113: 2110: 2107: 2104: 2101: 2095: 2092: 2089: 2061: 2053: 2049: 2045: 2042: 2037: 2033: 2029: 2023: 2015: 2011: 2007: 2002: 1998: 1991: 1988: 1985: 1982: 1971: 1967: 1962: 1958: 1954: 1943: 1938: 1934: 1929: 1925: 1921: 1913: 1909: 1904: 1900: 1896: 1892: 1882: 1870: 1866: 1803: 1799: 1793: 1789: 1778: 1774: 1770: 1759: 1757: 1716: 1715: 1714: 1711: 1707: 1694: 1655: 1641: 1633: 1625: 1621: 1620: 1619: 1611: 1606: 1601: 1596: 1591: 1586: 1581: 1580: 1579: 1576: 1574: 1568: 1564: 1555: 1549: 1545: 1538: 1534: 1529: 1528:limit ordinal 1518: 1514: 1507: 1503: 1496: 1492: 1485: 1481: 1474: 1470: 1463: 1459: 1453: 1449: 1443: 1441: 1432: 1430: 1424: 1420: 1410: 1404: 1385: 1381: 1375: 1372: 1369: 1365: 1354: 1347: 1343: 1320: 1316: 1310: 1307: 1304: 1300: 1289: 1285: 1277: 1273: 1261: 1256: 1255: 1249: 1247: 1243: 1239: 1235: 1231: 1221: 1206: 1201: 1197: 1190: 1186: 1181: 1177: 1172: 1159: 1155: 1151: 1144: 1140: 1135: 1131: 1126: 1125: 1124: 1121: 1117: 1109: 1105: 1100: 1096: 1092: 1084: 1080: 1075: 1071: 1067: 1061: 1053: 1042: 1040: 1036: 1023: 1019: 1013: 1009: 1003: 999: 994: 993:antisymmetric 990: 981: 977: 971: 967: 954: 953: 952: 951: 947: 945: 941: 937: 929: 909: 903: 899: 893: 892: 891: 890: 881: 874:{ { } | { } } 870: 858: 854: 840: 836: 832: 822: 819: 815: 811: 801: 797: 791: 726: 725: 721: 716: 715: 714: 711: 709: 699: 695: 684: 680: 672: 668: 663: 659: 650: 645: 643: 602: 601: 564: 563: 542: 541: 540: 531: 530: 524: 523: 517: 516: 515: 507: 506: 500: 499: 493: 492: 491: 476: 472: 468: 462: 426: 421: 417: 411: 407: 400: 396: 388: 384: 377: 365: 361: 330: 326: 320: 316: 297: 294:, 0, 1, 2 | } 290: 283: 272: 265: 256: 252: 244: 240: 226: 211: 208: 204: 199: 189:for ordinals 188: 184: 180: 174: 170: 166: 162: 157: 155: 154: 149: 145: 141: 138:'s 1974 book 137: 133: 129: 119: 117: 113: 109: 106: 102: 98: 94: 90: 86: 82: 81:ordered field 77: 75: 74: 70:'s 1974 book 69: 65: 61: 57: 53: 49: 45: 41: 38: 34: 30: 21: 14499:Internal set 14484:Hyperinteger 14457: 14453:Dual numbers 14364: 14357: 14243: 14233: 14195: 14048:Dual numbers 14040:hypercomplex 13830:Real numbers 13544:Georg Cantor 13518:Möbius plane 13491: 13456:Infinite set 13400:Aleph number 13190: 13184:(hardcover). 13165: 13162:Alain Badiou 13146: 13131: 13122: 13111: 13099: 13081: 13066: 13047: 13044:Donald Knuth 13025:. Retrieved 13018:the original 12997: 12993: 12955: 12930: 12877: 12839: 12835: 12792: 12766:, retrieved 12752: 12748: 12735: 12709: 12705: 12699: 12690: 12686: 12679: 12667:. Retrieved 12656: 12646:, retrieved 12641: 12623: 12608: 12579: 12570: 12562: 12558: 12554: 12550: 12545: 12536: 12502: 12448: 12436: 12432: 12429: 12421: 12412: 12404: 12401: 12395: 12391: 12387: 12383: 12379: 12375: 12371: 12367: 12363: 12356: 12352: 12348: 12343: 12339: 12333: 12329: 12324: 12320: 12260: 12256: 12252: 12248: 12243: 12239: 12233: 12229: 12199: 12195: 12163: 12131: 12050: 12042: 12032: 12028: 12024: 12020: 12016: 12012: 12008: 12004: 12000: 11996: 11992: 11988: 11984: 11980: 11976: 11972: 11970: 11965: 11961: 11957: 11953: 11949: 11945: 11941: 11937: 11933: 11929: 11925: 11921: 11917: 11913: 11909: 11907: 11897: 11895: 11887: 11883: 11879: 11875: 11871: 11867: 11863: 11859: 11855: 11851: 11847: 11843: 11839: 11835: 11831: 11827: 11823: 11819: 11815: 11806: 11802: 11798: 11794: 11790: 11786: 11782: 11778: 11774: 11770: 11766: 11762: 11758: 11754: 11750: 11746: 11742: 11738: 11734: 11726: 11722: 11718: 11714: 11710: 11706: 11702: 11698: 11694: 11693:The product 11692: 11687: 11683: 11675: 11671: 11667: 11659: 11657: 11652: 11648: 11644: 11640: 11636: 11632: 11628: 11624: 11620: 11616: 11615:), and, for 11612: 11608: 11604: 11600: 11596: 11594: 11586: 11582: 11578: 11574: 11570: 11566: 11562: 11558: 11554: 11550: 11546: 11537: 11533: 11529: 11525: 11521: 11517: 11513: 11509: 11505: 11501: 11497: 11489: 11485: 11481: 11477: 11473: 11469: 11465: 11461: 11457: 11453: 11451: 11441: 11437: 11433: 11429: 11425: 11421: 11417: 11413: 11409: 11405: 11401: 11397: 11393: 11389: 11385: 11381: 11377: 11373: 11369: 11365: 11361: 11357: 11353: 11349: 11345: 11341: 11337: 11334: 11330: 11325: 11321: 11317: 11313: 11309: 11307: 11301: 11297: 11293: 11287: 11283: 11279: 11272: 11268: 11264: 11260: 11256: 11254: 11249: 11245: 11241: 11237: 11233: 11229: 11225: 11221: 11217: 11215: 11209: 11205: 11201: 11197: 11193: 11189: 11185: 11181: 11177: 11173: 11169: 11165: 11161: 11154: 11150: 11146: 11142: 11138: 11134: 11130: 11126: 11118: 11114: 11110: 11106: 11102: 11098: 11094: 11090: 11086: 11084: 11080:linear order 11071: 11067: 11063: 11059: 11055: 11051: 11047: 11043: 11037: 11032: 11028: 11024: 11020: 11016: 11012: 11008: 11004: 11000: 10996: 10992: 10988: 10984: 10980: 10976: 10972: 10971:For numbers 10970: 10964: 10960: 10956: 10952: 10948: 10944: 10940: 10936: 10932: 10928: 10924: 10920: 10913: 10909: 10905: 10901: 10897: 10893: 10889: 10885: 10881: 10874: 10870: 10866: 10862: 10858: 10854: 10850: 10846: 10842: 10834: 10830: 10826: 10822: 10818: 10814: 10810: 10806: 10802: 10798: 10794: 10790: 10786: 10782: 10778: 10774: 10770: 10766: 10764: 10758: 10754: 10750: 10746: 10742: 10738: 10734: 10730: 10726: 10719: 10715: 10711: 10707: 10701: 10697: 10693: 10689: 10682: 10678: 10676: 10671: 10667: 10663: 10659: 10655: 10651: 10647: 10639: 10635: 10631: 10629: 10608: 10604: 10602: 10589: 10573: 10566: 10559: 10555: 10550: 10546: 10539: 10522: 10520: 10517: 10498: 10496: 10492: 10488: 10464: 10460: 10454: 10441: 10435: 10431: 10425: 10419: 10408: 10405: 10401: 10398: 10392: 10388: 10383: 10379: 10375: 10370: 10367: 10363: 10360: 10354: 10350: 10345: 10341: 10337: 10335: 10327: 10316: 10310: 10291: 10287: 10283: 10280: 10277:} is a game. 10274: 10270: 10266: 10262: 10251: 10248: 10222:proper class 10190: 10186: 10180: 10176: 10171: 10169: 10153: 10149: 10145: 10142: 10132: 10125: 10118: 10112: 10105: 10096: 10092: 10086: 10082: 10078: 10074: 10070: 10064: 10060: 10056: 10052: 10046: 10042: 10030: 9956: 9942: 9938: 9933: 9929: 9907: 9903: 9899: 9895: 9894:and surreal 9891: 9884: 9880: 9876: 9872: 9861:exponential. 9851: 9847: 9840: 9836: 9832: 9828: 9824: 9819: 9815: 9798: 9794: 9790: 9786: 9782: 9777: 9770: 9766: 9758: 9754: 9745: 9741: 9735: 9731: 9727: 9723: 9719: 9714: 9709: 9641: 9637: 9633: 9629: 9625: 9621: 9617: 9610: 9606: 9596: 9591: 9587: 9580: 9569: 9561: 9514: 9510: 9506: 9502: 9493: 9489: 9485: 9481: 9474: 9463: 9459: 9454: 9450: 9448: 9180: 9177: 9170: 9164: 9158: 9151: 9145: 9140: 9135: 9125: 9121: 9118: 9111: 9105: 9099: 9093: 9088: 9083: 9014: 8999: 8995: 8991: 8985: 8981: 8942: 8940: 8935: 8931: 8925: 8915: 8911: 8901: 8838: 8738: 8582:esoteric pun 8498: 8407: 8404: 8320: 8316: 8310: 8306: 8302: 8286: 8277: 8270: 8269:where every 8268: 8259: 8252: 8248: 8241: 8235: 8229: 8221: 8213: 8197: 8193: 8189: 8184: 8180: 8175: 8171: 8167: 8163: 8161: 8158: 8129: 8125: 8121: 8117: 8113: 8109: 8107: 8101: 8097: 8089: 8083: 8073: 8059: 8035: 8029: 8025: 8021: 8017: 8011: 8007: 8005: 7995: 7988: 7974: 7952: 7947:. That is, 7944: 7939: 7935: 7920: 7912: 7907: 7903: 7898: 7896: 7886: 7882: 7878: 7872: 7867: 7862:conventional 7861: 7859: 7805: 7795: 7790: 7786: 7782: 7778: 7773: 7769: 7763: 7759: 7756: 7750: 7746: 7742: 7738: 7734: 7730: 7726: 7718: 7713: 7709: 7706: 7698: 7678: 7664: 7653: 7633: 7613: 7593: 7589: 7585: 7581: 7577: 7567: 7556: 7549: 7544: 7540: 7534: 7531: 7523: 7519: 7509: 7502: 7498: 7483: 7479: 7476: 7460: 7456: 7449: 7445: 7438: 7422: 7335: 7331: 7309: 7305: 7295: 7284: 7277: 7261: 7257: 7242: 7238: 7223: 7219: 7216: 7209: 7205: 7196: 7188: 7171: 7157: 7153: 7150: 7139: 7135: 7123: 7119: 7112: 7108: 7097: 7087: 7083: 7077: 7070: 7062: 7058: 7051: 7047: 6901: 6899: 6875: 6871: 6812: 6808: 6708: 6670: 6658: 6620: 6607: 6589: 6585: 6578: 6574: 6570: 6567: 6561: 6557: 6556:Contents of 6544: 6538: 6530: 6514: 6510: 6506: 6501: 6497: 6491: 6487: 6483: 6478: 6474: 6467: 6463: 6460: 6449: 6445: 6438: 6431: 6427: 6420: 6416: 6412: 6408: 6402: 6395: 6391: 6385: 6381: 6362: 6358: 6146: 6142: 6135: 6131: 6125: 6113: 6109: 6106: 5971:real numbers 5964: 5960: 5953: 5804: 5800: 5706: 5702: 5693: 5686: 5682: 5679: 5637:proper class 5633: 5612: 5608: 5604: 5595: 5586: 5579: 5575: 5568: 5564: 5336: 5332: 5329: 5323: 5319: 5290: 5272: 5268: 5257: 5232:< 2 < 5184:< 1 < 5072:< 0 < 5050: 5029:< 1 < 4981:< 0 < 4911: 4890:< 0 < 4868: 4857: 4846: 4840: 4799: 4768: 4753: 4736: 4733: 4676:is given by 4668: 4651: 4351:1 + (2 − 3)0 4324: 4314: 4294: 4273: 4269: 4262: 4258: 4251: 3905: 3902: 3855: 3852: 3742: 3149: 2960: 2952: 2540: 2419: 2241: 2162: 2158: 2151: 2147: 2138: 2136: 1969: 1965: 1960: 1956: 1952: 1949: 1936: 1932: 1927: 1923: 1919: 1911: 1907: 1902: 1898: 1894: 1890: 1888: 1868: 1864: 1801: 1797: 1791: 1787: 1776: 1772: 1768: 1765: 1755: 1752: 1733:< 0 < 1709: 1705: 1695: 1659: 1639: 1623: 1617: 1577: 1572: 1566: 1562: 1553: 1547: 1543: 1536: 1532: 1516: 1512: 1505: 1501: 1494: 1490: 1483: 1479: 1472: 1468: 1461: 1457: 1451: 1447: 1444: 1433: 1429:well-ordered 1422: 1418: 1411: 1402: 1352: 1345: 1341: 1338: 1287: 1283: 1259: 1237: 1227: 1219: 1204: 1199: 1195: 1188: 1184: 1179: 1175: 1173:There is no 1157: 1153: 1149: 1142: 1138: 1133: 1129: 1127:There is no 1119: 1115: 1107: 1103: 1098: 1094: 1090: 1082: 1078: 1073: 1069: 1065: 1062: 1059: 1043: 1038: 1034: 1021: 1017: 1011: 1007: 1001: 997: 986: 979: 975: 969: 965: 949: 948: 943: 939: 935: 933: 907: 901: 897: 888: 887: 871: 856: 852: 838: 834: 830: 828: 807: 804:Construction 795: 789: 780: 719: 712: 708:Dedekind cut 697: 693: 682: 678: 670: 666: 661: 657: 646: 639: 544:{ 0 | 1 } = 537: 513: 477: 470: 466: 419: 415: 409: 405: 398: 394: 386: 382: 378: 363: 359: 328: 324: 318: 314: 303: 288: 281: 270: 263: 254: 250: 242: 238: 225:ordered pair 222: 200: 182: 178: 158: 151: 147: 143: 139: 136:Donald Knuth 125: 78: 72: 71: 68:Donald Knuth 44:real numbers 40:proper class 35:system is a 32: 26: 14359:The Analyst 14210:Other types 14029:Bioctonions 13886:Quaternions 13405:Beth number 13062:(archived). 13000:(1): 1–45. 12921:1307.7392v3 12712:: 341–352, 12424:Hahn series 12418:Hahn series 12102:total order 11164:such that ∀ 11093:such that ∀ 10939:) < dom( 10927:) < dom( 10888:) < dom( 10861:) < dom( 10658:) < dom( 10599:Definitions 10576:Go endgames 10303:total order 10233:isomorphism 9887:is infinite 8928:powers of ω 8586:α = { α | } 8293:Hahn series 8086:archimedean 7753:+4, ... | } 7656:, ... } and 7325:). To map 7321:itself, to 7288:(including 7274:(including 7230:cardinality 5341:for finite 4835:1 = { 0 | } 4765:Consistency 4327:= 3 = { 2 | 2957:Subtraction 849:is written 649:real number 509:{ 2 | } = 3 502:{ 1 | } = 2 495:{ 0 | } = 1 214:Description 165:Hahn series 163:introduced 105:transfinite 29:mathematics 14606:Categories 14338:Adequality 14164:Projective 14137:Infinities 13506:Geometries 13364:Set theory 13027:2017-06-08 12768:2019-03-05 12665:. Stanford 12648:2008-01-24 12591:References 12451:hyperreals 12374:) for all 12319:such that 12100:< is a 11709:) and dom( 11690:(0) = −1. 11647:) = +1 if 11631:) = −1 if 11472:) and dom( 11121:such that 11076:trichotomy 11040:transitive 10955:)) = −1 ∧ 10729:such that 10623:and whose 10331:fuzzy game 10210:isomorphic 9739:where all 7435:Cantor set 7148:such that 6568:Given any 5958:appear in 5618:powers of 1885:Arithmetic 1640:other than 1445:For every 1274:Given any 1193:such that 1147:such that 128:Go endgame 116:isomorphic 60:Go endgame 14574:Textbooks 14519:Overspill 14248:solenoids 14068:Sedenions 13914:Octonions 13487:Supertask 12858:0016-2736 12299:∈ 12084:⟩ 12059:⟨ 12051:A triple 12023:) : 11999:) : 11987:}, where 11960:) : 11940:) : 11928:), where 11729:), where 11619:< dom( 11492:), where 11428:) = − or 10077:) = exp ( 9693:β 9690:↦ 9687:α 9673:→ 9554:log = exp 9492:< exp 9407:− 9376:⁡ 9354:− 9323:⁡ 9317:∣ 9285:− 9276:⋅ 9263:⁡ 9234:− 9225:⋅ 9212:⁡ 9191:⁡ 9169:< exp 9144:< exp 9129:are then 9043:≥ 9036:∑ 9026:⁡ 8959:∈ 8821:α 8812:ω 8806:α 8788:∈ 8785:α 8781:∑ 8766:open sets 8708:∣ 8686:∣ 8563:∣ 8465:∈ 8459:∀ 8450:∣ 8430:∈ 8424:∃ 8334:∪ 8096:ω = { 0, 7897:Just as 2 7885:+ 1 > 7837:ω 7827:ω 7817:⋃ 7414:{ 0 } = 1 7378:{ | } = 0 7161:for some 7028:∣ 7025:ω 7019:… 6981:∣ 6964:∣ 6916:ω 6842:∈ 6779:∈ 6303:∗ 6295:∈ 6289:∣ 6272:… 6218:∣ 6191:∣ 6178:∪ 6173:− 6159:ε 6085:… 6031:∣ 6028:… 5981:π 5900:∗ 5892:∈ 5886:∣ 5866:∗ 5858:∈ 5779:∣ 5776:… 5738:∣ 5733:∗ 5719:ω 5562:of which 5529:∗ 5521:∈ 5503:− 5474:∗ 5466:∈ 5374:∈ 5367:⋃ 5358:∗ 5258:For each 4831:0 = { | } 4710:− 4697:− 4633:… 4597:… 4480:− 4402:− 4189:− 4117:− 4037:− 3963:− 3879:⋅ 3659:∈ 3632:∈ 3602:− 3524:− 3446:− 3391:− 3359:∣ 3336:− 3281:− 3221:∣ 3192:∣ 3114:− 3102:− 3089:∣ 3076:− 3064:− 3032:− 3029:∣ 3016:− 2994:∣ 2972:− 2848:∣ 2810:∣ 2774:∣ 2719:∣ 2681:∣ 2651:∣ 2598:∣ 2582:∣ 2566:∣ 2520:∈ 2467:∈ 2364:∣ 2307:∣ 2275:∣ 2212:∣ 2196:∣ 2188:− 2179:− 2114:∈ 2102:− 2090:− 2046:− 2043:∣ 2030:− 2008:∣ 1992:− 1983:− 1554:inherited 1366:⋃ 1301:⋃ 1230:recursive 1224:Induction 839:right set 798:− 1 728:{ 0 | 1, 161:Hans Hahn 46:but also 14622:Infinity 13657:Integers 13619:Sets of 13385:0.999... 13277:Infinity 13149:, 1986, 13134:, 1987, 13124:Discover 13114:article. 13050:, 1974, 13014:18683932 12985:(2012). 12461:See also 12337:and all 12011:) } and 11866: : 11854:) } ∪ { 11830: : 11785: : 11773:) } ∪ { 11749: : 11680:negative 11664:positive 11655:) = −1. 11611:) = dom( 11577: : 11569:) } ∪ { 11557: : 11528: : 11520:) } ∪ { 11508: : 11452:The sum 10967:)) = +1. 10916:)) = −1; 10900:) = dom( 10877:)) = +1; 10849:) = dom( 10817:) = dom( 10813:) = dom( 10761:)) = +1. 10722:)) = −1; 10704:)) = +1; 10625:codomain 10613:function 10535:star (*) 10523:confused 10323:{1 | −1} 10185:, where 10059:and log 9953:Examples 9509:) = exp 8667:we have 8265:ω + ..., 8178:so that 8164:simplest 8136:ω ω = ω, 8024: : 7697:= { 0 | 7217:The set 5676:Infinity 5314:integers 5304:, where 3849:Division 3655:′ 3628:′ 3617:′ 3609:′ 3598:′ 3581:′ 2516:′ 2505:′ 2463:′ 2446:′ 2238:Addition 1946:Negation 1573:birthday 1240:are the 1005:(i. e., 991:must be 861:. When 837:and its 835:left set 620:| 1 } = 420:R′ 410:L′ 399:R′ 395:L′ 227:of sets 219:Notation 48:infinite 14642:Numbers 14331:History 14238:numbers 14070: ( 13916: ( 13888: ( 13860: ( 13832: ( 13753: ( 13751:Periods 13720: ( 13687: ( 13659: ( 13631: ( 13613:systems 13303:Apeiron 13291:History 13204:3204653 12728:0146089 12386:, then 11920:}) = σ( 11308:then σ( 11019:. Also 10777:), dom( 10654:if dom( 10621:ordinal 10358:, then 10212:to the 10027:⁠ 9992:⁠ 9988:⁠ 9959:⁠ 9906:) > 9822:·(1 + Σ 9751:, then 9471:Results 8904:Kruskal 8640:cofinal 8224:) + log 8216:) = log 8153:⁠ 8141:⁠ 8070:⁠ 8056:⁠ 8052:⁠ 8040:⁠ 7985:⁠ 7971:⁠ 7963:⁠ 7949:⁠ 7931:⁠ 7917:⁠ 7871:equals 7695:⁠ 7683:⁠ 7675:⁠ 7661:⁠ 7650:⁠ 7638:⁠ 7630:⁠ 7618:⁠ 7610:⁠ 7598:⁠ 7501:+1 = { 7410:⁠ 7398:⁠ 7394:⁠ 7382:⁠ 7370:⁠ 7358:⁠ 7354:⁠ 7342:⁠ 6869:equals 6806:equals 6705:equals 6655:equals 6535:⁠ 6521:⁠ 6340:. The 5949:⁠ 5937:⁠ 5827:⁠ 5815:⁠ 5680:Define 5616:(using 5593:), but 5301:⁠ 5287:⁠ 5246:⁠ 5234:⁠ 5230:⁠ 5218:⁠ 5214:⁠ 5202:⁠ 5198:⁠ 5186:⁠ 5182:⁠ 5170:⁠ 5166:⁠ 5154:⁠ 5150:⁠ 5138:⁠ 5134:⁠ 5122:⁠ 5118:⁠ 5106:⁠ 5102:⁠ 5090:⁠ 5086:⁠ 5074:⁠ 5070:⁠ 5058:⁠ 5043:⁠ 5031:⁠ 5027:⁠ 5015:⁠ 5011:⁠ 4999:⁠ 4995:⁠ 4983:⁠ 4979:⁠ 4967:⁠ 4963:⁠ 4951:⁠ 4947:⁠ 4935:⁠ 4931:⁠ 4919:⁠ 4904:⁠ 4892:⁠ 4888:⁠ 4876:⁠ 4852:= { 0 } 4800:numbers 4758:⁠ 4744:⁠ 4741:, then 4673:⁠ 4659:⁠ 4376:⁠ 4364:⁠ 4360:⁠ 4348:⁠ 4343:⁠ 4331:⁠ 4319:⁠ 4305:⁠ 4299:⁠ 4285:⁠ 3841:⁠ 3829:⁠ 3825:⁠ 3813:⁠ 3809:⁠ 3797:⁠ 3793:⁠ 3781:⁠ 3773:⁠ 3761:⁠ 3757:⁠ 3745:⁠ 2945:⁠ 2933:⁠ 2929:⁠ 2917:⁠ 2913:⁠ 2901:⁠ 2897:⁠ 2885:⁠ 2139:numbers 1766:A form 1747:⁠ 1735:⁠ 1731:⁠ 1719:⁠ 1691:⁠ 1679:⁠ 1675:⁠ 1663:⁠ 1265:= { 0 } 1039:numbers 908:numeric 894:A form 774:⁠ 762:⁠ 758:⁠ 746:⁠ 742:⁠ 730:⁠ 634:⁠ 622:⁠ 618:⁠ 606:⁠ 596:⁠ 584:⁠ 580:⁠ 568:⁠ 558:⁠ 546:⁠ 457:⁠ 445:⁠ 441:⁠ 429:⁠ 148:numbers 14038:Other 13611:Number 13202:  13180:  13172:  13153:  13138:  13106:  13088:  13073:  13054:  13012:  12962:  12892:  12856:  12800:  12726:  12669:25 May 12616:  12439:) = −1 11979:) = { 11948:} and 11686:) and 11670:) and 11372:∈ dom 11356:∈ dom 11348:∈ dom 11340:∈ dom 11300:) = { 11286:) = { 11003:, and 10931:) ∧ δ( 10892:) ∧ δ( 10853:) ∧ δ( 10793:(α) ≠ 10666:(α) = 10662:) and 10619:is an 10617:domain 10615:whose 10382:, and 10344:, and 10152:· log 10148:= exp( 10073:· log 9902:, exp( 9879:, exp( 9855:< 0 9845:, for 9749:> 0 9636:where 9609:, exp 9513:· exp 8323:, and 8108:where 7994:| ω − 7592:| 1 + 4965:< − 4949:< − 3903:where 3648:  2417:where 1355:< 0 781:where 676:where 566:{ 0 | 171:, and 95:, the 91:, the 31:, the 14494:Monad 14246:-adic 14236:-adic 13993:Over 13954:Over 13948:types 13946:Split 13021:(PDF) 13010:S2CID 12990:(PDF) 12916:arXiv 12745:(PDF) 12512:field 12494:Notes 12355:< 12351:< 12251:< 12104:over 12035:) }. 11713:) by 11623:), (− 11476:) by 11416:< 11324:)) = 11275:) by 11192:< 11180:) ∧ ∀ 11176:< 11153:< 11141:) ∧ ∀ 11137:< 11113:< 11070:> 11054:< 11015:< 11007:> 10991:< 10833:< 10757:(dom( 10749:(dom( 10718:(dom( 10700:(dom( 10681:< 10642:is a 10527:fuzzy 10465:Right 10446:Chess 10318:fuzzy 10315:, or 10299:field 10252:games 10239:Games 10220:by a 10206:field 10069:exp ( 9898:> 9579:When 9484:< 9124:< 8941:When 8837:with 8120:< 7376:onto 7372:) of 7329:onto 7266:onto 5322:< 5216:< 5200:< 5168:< 5152:< 5136:< 5120:< 5104:< 5088:< 5013:< 4997:< 4827:field 4822:; and 1891:forms 1790:< 1710:every 1677:and − 1526:is a 1450:< 1436:0 ≤ 0 1350:with 1269:{ | } 1056:Order 1050:{ | } 1046:{ | } 1035:forms 940:forms 878:{ | } 825:Forms 818:pairs 691:and 480:{ | } 187:-sets 14282:List 14139:and 13178:ISBN 13170:ISBN 13151:ISBN 13136:ISBN 13104:ISBN 13086:ISBN 13071:ISBN 13052:ISBN 12960:ISBN 12890:ISBN 12854:ISSN 12798:ISBN 12704:.", 12671:2020 12614:ISBN 12553:and 12394:) ≤ 12237:and 12198:and 12194:Let 12160:onto 12074:< 12015:= { 11991:= { 11952:= { 11932:= { 11898:i.e. 11818:= { 11737:= { 11701:and 11597:i.e. 11549:= { 11500:= { 11484:= σ( 11464:and 11380:and 11236:and 11224:and 11089:and 11046:and 10975:and 10943:) ∧ 10904:) ∧ 10865:) ∧ 10825:and 10789:) ∧ 10714:and 10696:and 10652:i.e. 10549:and 10463:and 10461:Left 10442:game 10426:Game 10312:zero 10265:and 10189:and 10117:log 10104:exp 10099:here 10085:) = 10051:exp 10041:exp 9928:For 9827:< 9785:< 9776:log 9753:exp 9722:< 9568:For 9501:exp( 9458:and 9157:exp 9152:and 9134:exp 8926:The 8910:exp( 8479:> 8444:< 8258:ω + 8139:ω = 8112:and 8104:ω }, 8100:ω | 7987:= { 7877:1 + 7866:1 + 7824:< 7800:and 7785:and 7749:+3, 7745:+2, 7741:+1, 7737:= { 7588:= { 7561:and 7294:1 − 7283:1 − 6827:and 6764:and 6733:and 6718:and 6601:and 6573:= { 6415:= { 6367:are 6314:> 6122:and 6118:are 5914:> 5880:< 5540:< 5485:> 5318:0 ≤ 5316:and 5312:are 5308:and 5277:are 4818:and 4810:and 3827:} = 3713:and 3560:and 2156:and 1955:= { 1922:= { 1917:and 1897:= { 1850:and 1818:and 1771:= { 1440:ring 1373:< 1308:< 1093:= { 1088:and 1068:= { 1029:and 1015:and 973:and 959:and 914:and 865:and 831:form 582:} = 514:and 486:and 443:and 413:and 391:and 344:and 336:and 308:and 231:and 50:and 13121:, 13002:doi 12882:doi 12844:doi 12840:167 12757:doi 12753:287 12714:doi 12710:103 12453:in 11968:}. 11912:({ 11890:) } 11878:), 11842:), 11809:) } 11797:), 11761:), 11678:is 11662:is 11589:) } 11540:) } 11420:if 11368:if 11252:). 11204:or 11196:), 10959:(δ( 10947:(δ( 10908:(δ( 10869:(δ( 10674:). 10646:of 10638:if 10607:or 10448:or 10336:If 10325:). 10261:If 10224:of 9780:= Σ 9717:= Σ 9708:If 9616:If 9599:– 1 9467:). 9373:exp 9320:exp 9260:exp 9209:exp 9188:exp 9167:+ 1 9023:exp 8894:). 8642:in 8638:is 8208:log 8076:2. 7570:+ 1 7552:− 1 7537:− 1 7505:| } 7454:in 7251:of 7133:of 7102:of 6673:≤ 0 6623:≥ 0 6610:= 0 6583:in 6016:201 5645:set 4739:= 0 4734:If 3759:is 1854:; 1427:is 987:An 946:). 906:is 816:of 812:as 793:or 322:or 130:by 76:. 62:by 27:In 14608:: 13828:: 13200:MR 13198:. 13164:, 13098:, 13008:. 12998:18 12996:. 12992:. 12974:^ 12942:^ 12904:^ 12888:. 12866:^ 12852:. 12838:. 12834:. 12812:^ 12776:^ 12751:, 12747:, 12724:MR 12722:, 12708:, 12631:^ 12622:. 12612:. 12598:^ 12457:. 12382:, 12378:∈ 12347:, 12342:∈ 12332:∈ 12259:, 12247:, 12242:∈ 12232:∈ 12191:). 12027:∈ 12003:∈ 11983:| 11964:∈ 11944:∈ 11916:| 11882:∈ 11870:∈ 11864:uv 11862:− 11860:xv 11858:+ 11856:uy 11846:∈ 11834:∈ 11828:uv 11826:− 11824:xv 11822:+ 11820:uy 11801:∈ 11789:∈ 11783:uv 11781:− 11779:xv 11777:+ 11775:uy 11765:∈ 11753:∈ 11747:uv 11745:− 11743:xv 11741:+ 11739:uy 11717:= 11715:xy 11695:xy 11643:)( 11627:)( 11581:∈ 11573:+ 11561:∈ 11553:+ 11532:∈ 11524:+ 11512:∈ 11504:+ 11480:+ 11456:+ 11400:∩ 11396:= 11388:= 11344:(∀ 11328:. 11316:), 11304:}, 11290:}; 11200:= 11184:∈ 11168:∈ 11157:), 11145:∈ 11129:∈ 11105:∈ 11097:∈ 11066:, 11062:= 11058:, 11035:. 11031:≤ 11023:≥ 10999:= 10995:∨ 10983:≤ 10979:, 10919:δ( 10880:δ( 10841:δ( 10829:, 10801:= 10745:, 10737:, 10650:, 10558:+ 10537:. 10452:. 10450:Go 10434:| 10430:{ 10422:Go 10404:= 10391:= 10378:, 10366:= 10353:= 10340:, 10290:| 10286:{ 10273:| 10199:−1 10179:+ 10170:A 10131:/ 10124:= 10111:= 10081:· 10063:= 10055:= 10045:= 9883:)/ 9818:)· 9769:= 9757:= 9161:· 9138:· 9114:+1 9102:+1 8998:· 8994:= 8984:↦ 8979:, 8402:. 8309:| 8305:{ 8295:. 8251:= 8232:). 8214:xy 8185:rω 8183:− 8028:∈ 8020:− 8016:{ 8010:− 7938:− 7906:+ 7881:= 7772:+ 7762:+ 7733:+ 7729:= 7721:: 7712:+ 7681:· 7677:= 7652:+ 7636:, 7632:+ 7616:, 7612:+ 7596:, 7584:+ 7580:= 7572:: 7514:: 7512:+1 7469:. 7448:| 7444:{ 7396:, 7356:, 7156:= 7095:. 7086:± 6874:− 6811:+ 6577:| 6552:. 6537:= 6498:ωS 6475:ωS 6448:· 6444:+ 6437:+ 6430:· 6426:| 6419:· 6411:· 6400:. 6384:± 6151:: 6076:16 6073:51 6058:13 6019:64 6001:25 5711:: 5672:. 5611:= 5327:. 4656:, 4589:16 4362:= 3795:⋅ 3775:: 2931:| 2899:+ 2538:. 2223:0. 2082:: 1964:| 1931:| 1906:| 1881:. 1775:| 1653:). 1519:−1 1416:, 1248:. 1203:≤ 1183:∈ 1152:≤ 1137:∈ 1118:≤ 1113:, 1102:| 1077:| 1020:≤ 1010:≤ 1000:= 978:≤ 968:≤ 900:| 896:{ 880:. 855:| 851:{ 829:A 760:, 744:, 674:}, 665:| 656:{ 604:{ 469:| 465:{ 418:≠ 408:≠ 397:| 393:{ 385:| 381:{ 376:. 362:| 358:{ 327:≤ 317:≤ 312:, 296:. 287:, 280:{ 269:∪ 253:| 249:{ 241:, 156:. 14316:e 14309:t 14302:v 14250:) 14244:p 14240:( 14234:p 14108:/ 14092:) 14079:S 14015:: 14002:C 13976:: 13963:R 13938:) 13925:O 13910:) 13897:H 13882:) 13869:C 13854:) 13841:R 13777:) 13763:P 13742:) 13729:A 13709:) 13696:Q 13681:) 13668:Z 13653:) 13640:N 13603:e 13596:t 13589:v 13285:) 13282:∞ 13279:( 13269:e 13262:t 13255:v 13206:. 13157:. 13142:. 13092:. 13077:. 13030:. 13004:: 12968:. 12924:. 12918:: 12898:. 12884:: 12860:. 12846:: 12806:. 12759:: 12716:: 12700:α 12697:ℵ 12691:α 12687:η 12673:. 12563:R 12559:L 12555:R 12551:L 12531:. 12437:ω 12435:( 12433:ν 12396:α 12392:z 12390:( 12388:b 12384:B 12380:A 12376:x 12372:x 12370:( 12368:b 12364:α 12357:y 12353:z 12349:x 12344:B 12340:y 12334:A 12330:x 12325:z 12323:( 12321:b 12306:o 12303:N 12296:z 12275:o 12272:N 12261:B 12257:A 12253:y 12249:x 12244:B 12240:y 12234:A 12230:x 12214:o 12211:N 12200:B 12196:A 12178:o 12175:N 12164:b 12146:o 12143:N 12132:b 12116:o 12113:N 12081:b 12078:, 12070:, 12066:o 12063:N 12033:x 12031:( 12029:R 12025:y 12021:y 12019:( 12017:g 12013:R 12009:x 12007:( 12005:L 12001:y 11997:y 11995:( 11993:g 11989:L 11985:R 11981:L 11977:x 11975:( 11973:g 11966:R 11962:x 11958:x 11956:( 11954:f 11950:S 11946:L 11942:x 11938:x 11936:( 11934:f 11930:M 11926:S 11924:, 11922:M 11918:R 11914:L 11910:f 11892:. 11888:y 11886:( 11884:L 11880:v 11876:x 11874:( 11872:R 11868:u 11852:y 11850:( 11848:R 11844:v 11840:x 11838:( 11836:L 11832:u 11816:R 11811:, 11807:y 11805:( 11803:R 11799:v 11795:x 11793:( 11791:R 11787:u 11771:y 11769:( 11767:L 11763:v 11759:x 11757:( 11755:L 11751:u 11735:L 11727:R 11725:, 11723:L 11721:( 11719:σ 11711:y 11707:x 11703:y 11699:x 11688:x 11684:x 11676:x 11672:x 11668:x 11660:x 11653:α 11651:( 11649:x 11645:α 11641:x 11637:α 11635:( 11633:x 11629:α 11625:x 11621:x 11617:α 11613:x 11609:x 11605:x 11601:x 11591:. 11587:y 11585:( 11583:R 11579:v 11575:v 11571:x 11567:x 11565:( 11563:R 11559:u 11555:y 11551:u 11547:R 11542:, 11538:y 11536:( 11534:L 11530:v 11526:v 11522:x 11518:x 11516:( 11514:L 11510:u 11506:y 11502:u 11498:L 11490:R 11488:, 11486:L 11482:y 11478:x 11474:y 11470:x 11466:y 11462:x 11458:y 11454:x 11442:f 11438:f 11434:z 11432:( 11430:y 11426:z 11424:( 11422:x 11418:y 11414:x 11410:y 11406:x 11402:y 11398:x 11394:z 11390:y 11386:x 11382:y 11378:x 11374:y 11370:x 11366:y 11362:x 11358:f 11354:h 11352:( 11350:g 11346:h 11342:f 11338:g 11336:∀ 11326:x 11322:x 11320:( 11318:R 11314:x 11312:( 11310:L 11302:x 11298:x 11296:( 11294:R 11288:x 11284:x 11282:( 11280:L 11273:x 11271:( 11269:R 11265:x 11263:( 11261:L 11257:x 11250:R 11248:, 11246:L 11242:z 11238:R 11234:L 11230:z 11226:R 11222:L 11218:z 11212:. 11210:w 11206:z 11202:z 11198:w 11194:y 11190:w 11188:( 11186:R 11182:y 11178:w 11174:x 11172:( 11170:L 11166:x 11162:w 11155:y 11151:z 11149:( 11147:R 11143:y 11139:z 11135:x 11133:( 11131:L 11127:x 11125:∀ 11119:z 11115:y 11111:x 11109:( 11107:R 11103:y 11101:∀ 11099:L 11095:x 11091:R 11087:L 11072:y 11068:x 11064:y 11060:x 11056:y 11052:x 11048:y 11044:x 11033:x 11029:y 11025:y 11021:x 11017:x 11013:y 11009:y 11005:x 11001:y 10997:x 10993:y 10989:x 10985:y 10981:x 10977:y 10973:x 10965:y 10963:, 10961:x 10957:y 10953:y 10951:, 10949:x 10945:x 10941:y 10937:y 10935:, 10933:x 10929:x 10925:y 10923:, 10921:x 10914:y 10912:, 10910:x 10906:x 10902:y 10898:y 10896:, 10894:x 10890:x 10886:y 10884:, 10882:x 10875:y 10873:, 10871:x 10867:y 10863:y 10859:y 10857:, 10855:x 10851:x 10847:y 10845:, 10843:x 10835:y 10831:x 10827:y 10823:x 10819:y 10815:x 10811:y 10809:, 10807:x 10803:y 10799:x 10795:y 10791:x 10787:y 10783:x 10779:y 10775:x 10771:y 10769:, 10767:x 10759:z 10755:y 10751:z 10747:x 10743:y 10739:z 10735:x 10731:z 10727:z 10720:y 10716:x 10712:x 10708:y 10702:x 10698:y 10694:y 10690:x 10683:y 10679:x 10672:x 10668:y 10664:x 10660:y 10656:x 10648:y 10640:x 10636:y 10632:x 10563:. 10560:y 10556:x 10551:y 10547:x 10499:x 10467:) 10438:} 10436:R 10432:L 10409:z 10406:y 10402:z 10399:x 10393:y 10389:x 10384:z 10380:y 10376:x 10371:z 10368:y 10364:z 10361:x 10355:y 10351:x 10346:z 10342:y 10338:x 10294:} 10292:0 10288:0 10275:R 10271:L 10267:R 10263:L 10195:i 10191:b 10187:a 10183:i 10181:b 10177:a 10156:) 10154:x 10150:y 10146:x 10133:ω 10129:0 10126:ε 10122:0 10119:ε 10113:ω 10109:0 10106:ε 10097:ω 10093:ω 10087:ω 10083:ω 10079:ω 10075:ω 10071:ω 10065:ω 10061:ω 10057:ω 10053:ω 10047:ω 10043:ω 10035:ω 10033:( 10031:ω 10015:a 10012:= 10009:) 10006:a 10003:( 10000:g 9976:) 9973:a 9970:( 9967:g 9943:β 9939:ε 9934:β 9930:ε 9908:x 9904:x 9900:n 9896:x 9892:n 9885:x 9881:x 9877:n 9873:x 9852:α 9848:a 9843:) 9841:ω 9837:α 9833:s 9829:β 9825:α 9820:r 9816:ω 9814:( 9799:ω 9795:α 9791:r 9787:β 9783:α 9778:x 9771:ω 9767:x 9759:ω 9755:x 9746:α 9742:a 9736:ω 9732:α 9728:r 9724:β 9720:α 9715:x 9710:x 9684:: 9680:o 9677:N 9668:+ 9663:o 9660:N 9655:: 9652:g 9642:α 9638:β 9634:ω 9630:x 9626:α 9624:( 9622:ω 9618:x 9611:x 9607:x 9597:x 9592:x 9588:x 9581:x 9570:x 9565:) 9562:e 9538:+ 9533:o 9530:N 9515:y 9511:x 9507:y 9505:+ 9503:x 9494:y 9490:x 9486:y 9482:x 9464:R 9460:z 9455:L 9451:z 9435:. 9432:} 9427:1 9424:+ 9421:n 9418:2 9414:] 9410:z 9402:L 9398:z 9394:[ 9390:/ 9384:L 9380:z 9370:, 9365:n 9361:] 9357:z 9349:R 9345:z 9341:[ 9337:/ 9331:R 9327:z 9312:1 9309:+ 9306:n 9303:2 9299:] 9293:R 9289:z 9282:z 9279:[ 9271:R 9267:z 9257:, 9252:n 9248:] 9242:L 9238:z 9231:z 9228:[ 9220:L 9216:z 9206:, 9203:0 9200:{ 9197:= 9194:z 9173:, 9171:x 9165:n 9163:2 9159:y 9146:y 9141:n 9136:x 9126:y 9122:x 9112:n 9110:2 9106:x 9100:n 9098:2 9094:x 9089:n 9084:x 9067:! 9064:n 9058:n 9054:x 9046:0 9040:n 9032:= 9029:x 9000:x 8996:x 8992:x 8986:x 8982:x 8966:o 8963:N 8956:x 8943:y 8936:ω 8932:e 8916:e 8912:x 8881:n 8878:O 8856:o 8853:N 8842:α 8839:a 8817:a 8802:r 8795:o 8792:N 8751:o 8748:N 8723:n 8720:O 8716:= 8713:} 8704:n 8701:O 8697:{ 8694:= 8691:} 8682:o 8679:N 8675:{ 8654:o 8651:N 8625:n 8622:O 8600:n 8597:O 8568:} 8559:o 8556:N 8552:{ 8549:= 8545:n 8542:O 8518:D 8512:o 8509:N 8485:} 8482:n 8476:x 8473:: 8469:N 8462:n 8456:: 8453:x 8447:n 8441:x 8438:: 8434:N 8427:n 8421:: 8418:x 8415:{ 8383:D 8377:o 8374:N 8347:o 8344:N 8340:= 8337:R 8331:L 8321:R 8317:L 8313:} 8311:R 8307:L 8281:α 8278:y 8274:α 8271:r 8263:1 8260:r 8256:0 8253:r 8249:x 8242:x 8230:y 8228:( 8226:ω 8222:x 8220:( 8218:ω 8212:( 8210:ω 8202:ω 8198:x 8194:y 8190:x 8181:x 8176:y 8172:r 8168:x 8155:, 8150:ω 8147:/ 8144:1 8130:r 8126:r 8122:y 8118:x 8114:s 8110:r 8102:s 8098:r 8090:x 8074:ω 8067:2 8064:/ 8060:ω 8049:2 8046:/ 8043:1 8036:ω 8032:} 8030:Y 8026:y 8022:y 8018:x 8012:Y 8008:x 8001:} 7999:∗ 7996:S 7992:∗ 7989:S 7982:2 7979:/ 7975:ω 7960:2 7957:/ 7953:ω 7945:n 7940:n 7936:ω 7928:2 7925:/ 7921:ω 7913:n 7908:n 7904:ω 7899:ω 7887:ω 7883:ω 7879:ω 7873:ω 7868:ω 7843:k 7840:+ 7833:S 7821:k 7806:ω 7796:ω 7791:ω 7787:ω 7783:ω 7779:ω 7774:ω 7770:ω 7764:ω 7760:ω 7751:ω 7747:ω 7743:ω 7739:ω 7735:ω 7731:ω 7727:ω 7725:2 7719:k 7714:k 7710:ω 7703:. 7701:} 7699:ε 7692:2 7689:/ 7686:1 7679:ε 7672:2 7669:/ 7665:ε 7654:ε 7647:8 7644:/ 7641:1 7634:ε 7627:4 7624:/ 7621:1 7614:ε 7607:2 7604:/ 7601:1 7594:ε 7590:ε 7586:ε 7582:ε 7578:ε 7576:2 7568:ω 7557:ω 7550:ω 7545:ω 7541:ω 7535:ω 7528:. 7526:} 7524:ω 7520:ω 7510:ω 7503:ω 7499:ω 7494:α 7490:α 7484:ω 7480:S 7467:ω 7461:ω 7457:S 7452:} 7450:R 7446:L 7439:2 7431:I 7426:∗ 7423:S 7418:I 7407:9 7404:/ 7401:8 7391:9 7388:/ 7385:7 7374:I 7367:3 7364:/ 7361:2 7351:3 7348:/ 7345:1 7336:ω 7332:S 7327:I 7323:y 7319:y 7315:y 7310:ε 7308:± 7306:y 7301:I 7296:ε 7290:ω 7285:ε 7278:ω 7276:− 7272:ε 7268:I 7262:ω 7258:S 7253:R 7249:I 7243:ω 7239:S 7234:R 7224:ω 7220:S 7210:ω 7206:S 7201:Q 7192:∗ 7189:S 7184:Q 7180:Q 7175:∗ 7172:S 7167:b 7163:a 7158:a 7154:b 7151:x 7146:x 7140:ω 7136:S 7131:Q 7124:ω 7120:S 7113:ω 7109:S 7093:y 7088:ε 7084:y 7078:ε 7076:± 7071:ω 7069:± 7063:ω 7059:S 7052:ω 7048:S 7033:} 7022:, 7016:, 7013:4 7010:, 7007:3 7004:, 7001:2 6998:, 6995:1 6992:{ 6989:= 6986:} 6978:0 6975:{ 6972:+ 6969:} 6961:. 6958:. 6955:. 6952:, 6949:4 6946:, 6943:3 6940:, 6937:2 6934:, 6931:1 6928:{ 6925:= 6922:1 6919:+ 6905:ω 6902:S 6892:x 6888:L 6884:R 6879:; 6876:ε 6872:y 6867:x 6863:R 6859:L 6845:R 6839:y 6829:R 6825:L 6821:y 6816:; 6813:ε 6809:y 6804:x 6800:R 6796:L 6782:L 6776:y 6766:R 6762:L 6758:y 6753:; 6751:y 6747:x 6743:R 6739:L 6735:R 6731:L 6727:y 6720:R 6716:L 6712:; 6709:ω 6707:− 6703:x 6699:R 6695:n 6691:L 6687:; 6685:n 6681:x 6677:R 6671:n 6666:L 6662:; 6659:ω 6657:+ 6653:x 6649:L 6645:n 6641:R 6637:; 6635:n 6631:x 6627:L 6621:n 6616:R 6612:; 6608:x 6603:R 6599:L 6590:ω 6586:S 6581:} 6579:R 6575:L 6571:x 6562:ω 6558:S 6550:ε 6545:ω 6539:ω 6531:ε 6527:/ 6524:1 6515:ε 6511:ω 6507:S 6505:· 6502:ω 6492:ε 6488:ω 6484:S 6482:· 6479:ω 6468:ω 6464:S 6457:. 6455:} 6453:∗ 6450:S 6446:ε 6442:∗ 6439:S 6435:+ 6432:S 6428:ω 6424:+ 6421:S 6417:ε 6413:ε 6409:ω 6396:ω 6392:S 6386:ε 6382:y 6377:y 6373:ε 6369:ε 6363:ω 6359:S 6354:ω 6350:ε 6346:ε 6342:ω 6338:ε 6320:} 6317:0 6311:y 6308:: 6299:S 6292:y 6286:0 6283:{ 6280:= 6276:} 6269:, 6263:8 6260:1 6254:, 6248:4 6245:1 6239:, 6233:2 6230:1 6224:, 6221:1 6215:0 6211:{ 6207:= 6204:} 6199:+ 6195:S 6186:0 6182:S 6169:S 6165:{ 6162:= 6147:ω 6143:S 6136:ω 6132:S 6126:ω 6124:− 6120:ω 6114:ω 6110:S 6093:. 6089:} 6082:, 6067:, 6061:4 6052:, 6046:2 6043:7 6037:, 6034:4 6025:, 6010:, 6004:8 5995:, 5992:3 5988:{ 5984:= 5965:ω 5961:S 5946:3 5943:/ 5940:1 5923:. 5920:} 5917:1 5911:y 5908:3 5905:: 5896:S 5889:y 5883:1 5877:y 5874:3 5871:: 5862:S 5855:y 5852:{ 5849:= 5843:3 5840:1 5824:3 5821:/ 5818:1 5805:ω 5801:S 5787:. 5784:} 5773:, 5770:4 5767:, 5764:3 5761:, 5758:2 5755:, 5752:1 5749:{ 5746:= 5743:} 5729:S 5725:{ 5722:= 5707:ω 5703:S 5697:∗ 5694:S 5687:ω 5683:S 5659:o 5656:N 5629:α 5627:ε 5620:ω 5613:ω 5609:β 5599:∗ 5596:S 5590:0 5587:S 5580:n 5576:S 5569:∗ 5565:S 5546:} 5543:0 5537:x 5534:: 5525:S 5518:x 5515:{ 5512:= 5499:S 5491:} 5488:0 5482:x 5479:: 5470:S 5463:x 5460:{ 5457:= 5448:+ 5444:S 5436:} 5433:0 5430:{ 5427:= 5418:0 5414:S 5387:n 5383:S 5377:N 5371:n 5363:= 5354:S 5343:n 5337:n 5333:S 5324:n 5320:b 5310:b 5306:a 5298:2 5295:/ 5291:a 5273:n 5269:S 5264:n 5243:2 5240:/ 5237:5 5227:4 5224:/ 5221:7 5211:2 5208:/ 5205:3 5195:4 5192:/ 5189:5 5179:8 5176:/ 5173:7 5163:4 5160:/ 5157:3 5147:8 5144:/ 5141:5 5131:2 5128:/ 5125:1 5115:8 5112:/ 5109:3 5099:4 5096:/ 5093:1 5083:8 5080:/ 5077:1 5067:8 5064:/ 5061:1 5054:4 5051:S 5040:2 5037:/ 5034:3 5024:4 5021:/ 5018:3 5008:2 5005:/ 5002:1 4992:4 4989:/ 4986:1 4976:4 4973:/ 4970:1 4960:2 4957:/ 4954:1 4944:4 4941:/ 4938:3 4928:2 4925:/ 4922:3 4915:3 4912:S 4901:2 4898:/ 4895:1 4885:2 4882:/ 4879:1 4872:2 4869:S 4861:1 4858:S 4850:0 4847:S 4837:. 4820:y 4816:x 4812:y 4808:x 4804:x 4792:; 4790:n 4786:n 4781:; 4779:n 4775:n 4754:y 4750:/ 4747:1 4737:y 4719:) 4713:y 4706:1 4701:( 4694:= 4689:y 4686:1 4669:y 4665:/ 4662:1 4654:y 4637:} 4630:, 4625:8 4622:3 4617:, 4612:2 4609:1 4602:| 4594:, 4586:5 4581:, 4576:4 4573:1 4568:, 4565:0 4557:{ 4553:= 4548:3 4545:1 4521:8 4518:3 4513:= 4508:2 4503:) 4498:4 4495:1 4490:( 4486:) 4483:3 4477:2 4474:( 4471:+ 4468:1 4443:4 4440:1 4435:= 4430:2 4425:) 4420:2 4417:1 4412:( 4408:) 4405:3 4399:2 4396:( 4393:+ 4390:1 4373:2 4370:/ 4367:1 4357:2 4354:/ 4340:3 4337:/ 4334:1 4325:y 4315:y 4311:/ 4308:1 4295:y 4291:/ 4288:1 4280:y 4274:R 4270:y 4263:L 4259:y 4254:y 4237:} 4229:R 4225:y 4218:R 4213:) 4208:y 4205:1 4200:( 4195:) 4192:y 4184:R 4180:y 4176:( 4173:+ 4170:1 4164:, 4157:L 4153:y 4146:L 4141:) 4136:y 4133:1 4128:( 4123:) 4120:y 4112:L 4108:y 4104:( 4101:+ 4098:1 4089:| 4079:L 4075:y 4068:R 4063:) 4058:y 4055:1 4050:( 4044:) 4040:y 4032:L 4028:y 4023:( 4019:+ 4016:1 4010:, 4003:R 3999:y 3992:L 3987:) 3982:y 3979:1 3974:( 3969:) 3966:y 3958:R 3954:y 3950:( 3947:+ 3944:1 3938:, 3935:0 3927:{ 3923:= 3918:y 3915:1 3887:y 3884:1 3876:x 3873:= 3868:y 3865:x 3844:. 3838:4 3835:/ 3832:1 3822:2 3819:/ 3816:1 3806:2 3803:/ 3800:1 3790:2 3787:/ 3784:1 3770:4 3767:/ 3764:1 3754:2 3751:/ 3748:1 3726:R 3722:Y 3699:R 3695:X 3673:} 3667:R 3663:Y 3652:y 3645:, 3640:R 3636:X 3625:x 3621:: 3614:y 3606:x 3595:y 3591:x 3588:+ 3585:y 3578:x 3573:{ 3562:y 3558:x 3542:R 3538:Y 3532:R 3528:X 3519:R 3515:Y 3511:x 3508:+ 3505:y 3500:R 3496:X 3470:} 3464:L 3460:Y 3454:R 3450:X 3443:y 3438:R 3434:X 3430:+ 3425:L 3421:Y 3417:x 3414:, 3409:R 3405:Y 3399:L 3395:X 3386:R 3382:Y 3378:x 3375:+ 3372:y 3367:L 3363:X 3354:R 3350:Y 3344:R 3340:X 3331:R 3327:Y 3323:x 3320:+ 3317:y 3312:R 3308:X 3304:, 3299:L 3295:Y 3289:L 3285:X 3276:L 3272:Y 3268:x 3265:+ 3262:y 3257:L 3253:X 3248:{ 3244:= 3234:} 3229:R 3225:Y 3216:L 3212:Y 3208:{ 3205:} 3200:R 3196:X 3187:L 3183:X 3179:{ 3176:= 3169:y 3166:x 3131:. 3127:} 3122:L 3118:Y 3111:x 3108:, 3105:y 3097:R 3093:X 3084:R 3080:Y 3073:x 3070:, 3067:y 3059:L 3055:X 3051:{ 3048:= 3045:} 3040:L 3036:Y 3024:R 3020:Y 3013:{ 3010:+ 3007:} 3002:R 2998:X 2989:L 2985:X 2981:{ 2978:= 2975:y 2969:x 2949:, 2947:} 2942:2 2939:/ 2936:3 2926:2 2923:/ 2920:1 2910:2 2907:/ 2904:1 2894:2 2891:/ 2888:1 2867:y 2864:= 2861:} 2856:R 2852:Y 2843:L 2839:Y 2835:{ 2832:= 2829:} 2824:R 2820:Y 2816:+ 2813:0 2805:L 2801:Y 2797:+ 2794:0 2791:{ 2788:= 2785:y 2782:+ 2779:} 2769:{ 2766:= 2763:y 2760:+ 2757:0 2738:x 2735:= 2732:} 2727:R 2723:X 2714:L 2710:X 2706:{ 2703:= 2700:} 2697:0 2694:+ 2689:R 2685:X 2678:0 2675:+ 2670:L 2666:X 2662:{ 2659:= 2656:} 2646:{ 2643:+ 2640:x 2637:= 2634:0 2631:+ 2628:x 2609:0 2606:= 2603:} 2593:{ 2590:= 2587:} 2577:{ 2574:+ 2571:} 2561:{ 2558:= 2555:0 2552:+ 2549:0 2526:} 2523:Y 2513:y 2509:: 2502:y 2498:+ 2495:x 2492:{ 2489:= 2486:Y 2483:+ 2480:x 2476:, 2473:} 2470:X 2460:x 2456:: 2453:y 2450:+ 2443:x 2439:{ 2436:= 2433:y 2430:+ 2427:X 2405:, 2402:} 2397:R 2393:Y 2389:+ 2386:x 2383:, 2380:y 2377:+ 2372:R 2368:X 2359:L 2355:Y 2351:+ 2348:x 2345:, 2342:y 2339:+ 2334:L 2330:X 2326:{ 2323:= 2320:} 2315:R 2311:Y 2302:L 2298:Y 2294:{ 2291:+ 2288:} 2283:R 2279:X 2270:L 2266:X 2262:{ 2259:= 2256:y 2253:+ 2250:x 2220:= 2217:} 2207:{ 2204:= 2201:} 2191:{ 2185:= 2182:0 2169:x 2163:R 2159:X 2152:L 2148:X 2143:x 2123:. 2120:} 2117:S 2111:s 2108:: 2105:s 2099:{ 2096:= 2093:S 2080:S 2076:S 2062:, 2059:} 2054:L 2050:X 2038:R 2034:X 2027:{ 2024:= 2021:} 2016:R 2012:X 2003:L 1999:X 1995:{ 1989:= 1986:x 1973:} 1970:R 1966:X 1961:L 1957:X 1953:x 1940:} 1937:R 1933:Y 1928:L 1924:Y 1920:y 1915:} 1912:R 1908:X 1903:L 1899:X 1895:x 1879:i 1875:c 1869:n 1865:S 1860:c 1856:x 1852:R 1848:L 1844:i 1840:c 1836:i 1832:n 1828:x 1824:x 1820:R 1816:L 1812:R 1808:L 1802:i 1798:S 1792:n 1788:i 1783:n 1779:} 1777:R 1773:L 1769:x 1744:2 1741:/ 1738:1 1728:2 1725:/ 1722:1 1704:- 1702:n 1698:n 1688:2 1685:/ 1682:1 1672:2 1669:/ 1666:1 1651:x 1647:x 1643:x 1636:x 1627:2 1624:S 1567:α 1563:S 1558:i 1548:i 1544:S 1537:n 1533:S 1524:n 1517:n 1513:S 1506:i 1502:S 1495:n 1491:S 1484:i 1480:S 1473:n 1469:S 1462:i 1458:S 1452:n 1448:i 1423:n 1419:S 1414:n 1406:0 1403:S 1386:i 1382:S 1376:0 1370:i 1353:i 1346:i 1342:S 1335:. 1321:i 1317:S 1311:n 1305:i 1288:n 1284:S 1279:n 1271:. 1263:0 1260:S 1216:. 1214:x 1210:y 1205:x 1200:R 1196:y 1189:R 1185:Y 1180:R 1176:y 1170:. 1168:y 1164:x 1158:L 1154:x 1150:y 1143:L 1139:X 1134:L 1130:x 1120:y 1116:x 1111:} 1108:R 1104:Y 1099:L 1095:Y 1091:y 1086:} 1083:R 1079:X 1074:L 1070:X 1066:x 1031:y 1027:x 1022:x 1018:y 1012:y 1008:x 1002:y 998:x 983:. 980:x 976:y 970:y 966:x 961:y 957:x 924:L 920:R 916:R 912:L 904:} 902:R 898:L 867:R 863:L 859:} 857:R 853:L 847:R 843:L 796:ω 790:ω 788:2 783:ω 771:8 768:/ 765:1 755:4 752:/ 749:1 739:2 736:/ 733:1 720:ω 704:a 698:a 694:R 689:a 683:a 679:L 671:a 667:R 662:a 658:L 652:a 631:4 628:/ 625:3 615:2 612:/ 609:1 593:4 590:/ 587:1 577:2 574:/ 571:1 555:2 552:/ 549:1 488:R 484:L 473:} 471:R 467:L 454:4 451:/ 448:2 438:2 435:/ 432:1 416:R 406:L 401:} 389:} 387:R 383:L 374:R 370:L 366:} 364:R 360:L 354:R 350:L 346:R 342:L 338:b 334:a 329:a 325:b 319:b 315:a 310:b 306:a 292:2 289:L 285:1 282:L 274:2 271:L 267:1 264:L 262:( 257:} 255:R 251:L 245:) 243:R 239:L 237:( 233:R 229:L 196:α 191:α 183:α 179:η

Index


mathematics
totally ordered
proper class
real numbers
infinite
infinitesimal numbers
absolute value
Go endgame
John Horton Conway
Donald Knuth
ordered field
von Neumann–Bernays–Gödel set theory
rational functions
Levi-Civita field
superreal numbers
hyperreal numbers
transfinite
ordinal numbers
natural operations
isomorphic
Go endgame
John Horton Conway
Donald Knuth
On Numbers and Games
Hans Hahn
Hahn series
formal power series
Felix Hausdorff
ηα-sets

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.