Knowledge

Von Neumann algebra

Source 📝

6536: 1030:. For example, all finite-dimensional projections (or subspaces) are finite (since isometries between Hilbert spaces leave the dimension fixed), but the identity operator on an infinite-dimensional Hilbert space is not finite in the von Neumann algebra of all bounded operators on it, since it is isometrically isomorphic to a proper subset of itself. However it is possible for infinite dimensional subspaces to be finite. 462:
together with a Hilbert space and a suitable faithful unital action on the Hilbert space. The concrete and abstract definitions of a von Neumann algebra are similar to the concrete and abstract definitions of a C*-algebra, which can be defined either as norm-closed *-algebras of operators on a Hilbert space, or as
1419:. (The Connes spectrum is a closed subgroup of the positive reals, so these are the only possibilities.) The only trace on type III factors takes value ∞ on all non-zero positive elements, and any two non-zero projections are equivalent. At one time type III factors were considered to be intractable objects, but 2367:
The Hilbert space tensor product of two Hilbert spaces is the completion of their algebraic tensor product. One can define a tensor product of von Neumann algebras (a completion of the algebraic tensor product of the algebras considered as rings), which is again a von Neumann algebra, and act on the
461:
of some other Banach space called the predual. The predual of a von Neumann algebra is in fact unique up to isomorphism. Some authors use "von Neumann algebra" for the algebras together with a Hilbert space action, and "W*-algebra" for the abstract concept, so a von Neumann algebra is a W*-algebra
2368:
tensor product of the corresponding Hilbert spaces. The tensor product of two finite algebras is finite, and the tensor product of an infinite algebra and a non-zero algebra is infinite. The type of the tensor product of two von Neumann algebras (I, II, or III) is the maximum of their types. The
1745:
Any factor has a trace such that the trace of a non-zero projection is non-zero and the trace of a projection is infinite if and only if the projection is infinite. Such a trace is unique up to rescaling. For factors that are separable or finite, two projections are equivalent if and only if they
1099:
showed that every factor has one of 3 types as described below. The type classification can be extended to von Neumann algebras that are not factors, and a von Neumann algebra is of type X if it can be decomposed as a direct integral of type X factors; for example, every commutative von Neumann
2607: 1190:, isomorphism classes of factors of type I correspond exactly to the cardinal numbers. Since many authors consider von Neumann algebras only on separable Hilbert spaces, it is customary to call the bounded operators on a Hilbert space of finite dimension 2979:. This is analogous to the two approaches to measure and integration, where one has the choice to construct measures of sets first and define integrals later, or construct integrals first and define set measures as integrals of characteristic functions. 2728:. Popa's work on fundamental groups of non-amenable factors represents another significant advance. The theory of factors "beyond the hyperfinite" is rapidly expanding at present, with many new and surprising results; it has close links with 2481:(ITPFI stands for "infinite tensor product of finite type I factors"). The type of the infinite tensor product can vary dramatically as the states are changed; for example, the infinite tensor product of an infinite number of type I 1092:
of factors. This decomposition is essentially unique. Thus, the problem of classifying isomorphism classes of von Neumann algebras on separable Hilbert spaces can be reduced to that of classifying isomorphism classes of factors.
2695:
Von Neumann algebras of type I are always amenable, but for the other types there are an uncountable number of different non-amenable factors, which seem very hard to classify, or even distinguish from each other. Nevertheless,
2468:
showed that one should choose a state on each of the von Neumann algebras, use this to define a state on the algebraic tensor product, which can be used to produce a Hilbert space and a (reasonably small) von Neumann algebra.
1331:
factor is defined to be the fundamental group of its tensor product with the infinite (separable) factor of type I. For many years it was an open problem to find a type II factor whose fundamental group was not the group of
571:
of two von Neumann algebras acting on two Hilbert spaces is defined to be the von Neumann algebra generated by their algebraic tensor product, considered as operators on the Hilbert space tensor product of the Hilbert
2441: 1299:
has a semifinite trace, unique up to rescaling, and the set of traces of projections is . The set of real numbers λ such that there is an automorphism rescaling the trace by a factor of λ is called the
2507: 2683:
properties of Γ can be formulated entirely in terms of bimodules and therefore make sense for the von Neumann algebra itself. For example, Connes and Jones gave a definition of an analogue of
540: 5943: 1848:
Given an abstract separable factor, one can ask for a classification of its modules, meaning the separable Hilbert spaces that it acts on. The answer is given as follows: every such module
244: 588:: every finitely generated submodule of a projective module is itself projective. There have been several attempts to axiomatize the underlying rings of von Neumann algebras, including 5726: 148: 5816: 200: 2096:: this means the algebra contains an ascending sequence of finite dimensional subalgebras with dense union. (Warning: some authors use "hyperfinite" to mean "AFD and finite".) 5853: 1885:
if it has a cyclic separating vector. Each factor has a standard representation, which is unique up to isomorphism. The standard representation has an antilinear involution
272: 5892: 5660: 2866:
through right multiplication. One can show that this is the von Neumann algebra generated by the operators corresponding to multiplication from the left with an element
6019: 2247:
calling this a classification is a little misleading, as it is known that there is no easy way to classify the corresponding ergodic flows.) The ones of type I and II
1495:. (Here "normal" means that it preserves suprema when applied to increasing nets of self adjoint operators; or equivalently to increasing sequences of projections.) 2636:
with module actions of two commuting von Neumann algebras. Bimodules have a much richer structure than that of modules. Any bimodule over two factors always gives a
1375:
found an uncountable family of such groups with non-isomorphic von Neumann group algebras, thus showing the existence of uncountably many different separable type II
4196: 969: 292: 1053:-closure of the subspace generated by the indicator functions. Similarly, a von Neumann algebra is generated by its projections; this is a consequence of the 4770: 6425: 6050: 5104: 4298: 5749: 2900:
of a von Neumann algebra by a discrete (or more generally locally compact) group can be defined, and is a von Neumann algebra. Special cases are the
2464:
The tensor product of an infinite number of von Neumann algebras, if done naively, is usually a ridiculously large non-separable algebra. Instead
395:
of bounded operators (on a Hilbert space) containing the identity. In this definition the weak (operator) topology can be replaced by many other
3931: 2893:
The tensor product of two von Neumann algebras, or of a countable number with states, is a von Neumann algebra as described in the section above.
1746:
have the same trace. The type of a factor can be read off from the possible values of this trace over the projections of the factor, as follows:
6261: 5226: 4758: 2034:-dimension can be anything in . There is in general no canonical way to normalize it; the factor may have outer automorphisms multiplying the 1407:, where λ is a real number in the interval . More precisely, if the Connes spectrum (of its modular group) is 1 then the factor is of type III 6088: 6045: 1664:|). The Banach space of trace class operators is itself the dual of the C*-algebra of compact operators (which is not a von Neumann algebra). 801:
if there is a partial isometry mapping the first isomorphically onto the other that is an element of the von Neumann algebra (informally, if
2640:
since one of the factors is always contained in the commutant of the other. There is also a subtle relative tensor product operation due to
2378: 979:
are partially ordered by inclusion, and this induces a partial order ≀ of projections. There is also a natural partial order on the set of
3953: 486:
Some of the terminology in von Neumann algebra theory can be confusing, and the terms often have different meanings outside the subject.
3022: 1371:
factor is the von Neumann group algebra of a countable infinite discrete group such that every non-trivial conjugacy class is infinite.
6251: 5159: 2976: 2890:
is a union of finite subgroups (for example, the group of all permutations of the integers fixing all but a finite number of elements).
3936: 3709: 1149:
otherwise. Factors of types I and II may be either finite or properly infinite, but factors of type III are always properly infinite.
3958: 3317:. This paper gives their basic properties and the division into types I, II, and III, and in particular finds factors not of type I. 6378: 6233: 5131: 4468: 2602:{\displaystyle x\mapsto {\rm {Tr}}{\begin{pmatrix}{1 \over \lambda +1}&0\\0&{\lambda \over \lambda +1}\\\end{pmatrix}}x.} 6209: 4765: 4597: 4361: 4283: 3946: 1483:
acts on, as this determines the ultraweak topology. However the predual can also be defined without using the Hilbert space that
5478: 4176: 1674: 1836:) is a normal state. This construction can be reversed to give an action on a Hilbert space from a normal state: this is the 445:
The first two definitions describe a von Neumann algebra concretely as a set of operators acting on some given Hilbert space.
5420: 4029: 3827: 1461:
is (as a Banach space) the dual of its predual. The predual is unique in the sense that any other Banach space whose dual is
5236: 4024: 670:
Due to this analogy, the theory of von Neumann algebras has been called noncommutative measure theory, while the theory of
435: 94: 5319: 1874:-dimension is additive, and a module is isomorphic to a subspace of another module if and only if it has smaller or equal 505: 4786: 1265: 6101: 1552: 1524:
is nonconstructive and uses the axiom of choice in an essential way; it is very hard to exhibit explicit elements of
6190: 6081: 4960: 4743: 4485: 4181: 3632:. This shows that some apparently topological properties in von Neumann algebras can be defined purely algebraically. 3485: 3449: 3428: 3282: 3179: 3160: 3098: 511: 5908: 3377:. This studies when factors are isomorphic, and in particular shows that all approximately finite factors of type II 564:
by a set of bounded operators on a Hilbert space is the smallest von Neumann algebra containing all those operators.
212: 6460: 5555: 4878: 4721: 3999: 1866:) (not its dimension as a complex vector space) such that modules are isomorphic if and only if they have the same 1411:, if the Connes spectrum is all integral powers of λ for 0 < Î» < 1, then the type is III 6105: 5408: 5344: 4895: 3968: 2190:: any completely positive linear map from any self adjoint closed subspace containing 1 of any unital C*-algebra 987:
is a factor, ≀ is a total order on equivalence classes of projections, described in the section on traces below.
5189: 1423:
has led to a good structure theory. In particular, any type III factor can be written in a canonical way as the
5682: 5600: 5403: 5082: 4861: 3882: 3766: 115: 2923:
can be defined. These examples generalise von Neumann group algebras and the group-measure space construction.
1104:. Every von Neumann algebra can be written uniquely as a sum of von Neumann algebras of types I, II, and III. 1054: 6565: 6256: 5779: 5441: 5219: 5174: 5164: 4433: 4191: 3702: 3469: 2770: 2107: 1284:; there are an uncountable number of other factors of these types that are the subject of intensive study. 6539: 6312: 6246: 6074: 5276: 5266: 5194: 5121: 4997: 4666: 4500: 4438: 3817: 2336: 2324: 1257: 5271: 2975:
provides an alternative axiomatization to probability theory. In this case the method goes by the name of
422:
The second definition is that a von Neumann algebra is a subalgebra of the bounded operators closed under
310:, in a series of papers written in the 1930s and 1940s (F.J. Murray & J. von Neumann  6276: 5614: 5604: 5204: 4590: 4354: 4328: 4248: 3802: 3464: 3459: 2049:-dimension can be 0 or ∞. Any two non-zero modules are isomorphic, and all non-zero modules are standard. 1711: 617: 167: 6521: 6475: 6399: 6281: 5973: 5775: 5437: 5251: 5144: 5139: 5034: 5007: 4972: 4824: 4717: 4541: 4454: 4303: 4201: 4081: 3002: 2758: 1420: 498: 203: 1399:. Since the identity operator is always infinite in those factors, they were sometimes called type III 6570: 6516: 6332: 5831: 5731: 5425: 5398: 5381: 5199: 5044: 4713: 4308: 4171: 4004: 3989: 3797: 3761: 3494:
von Neumann, J. (1930), "Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren",
2774: 2700:
has shown that the class of non-amenable factors coming from the group-measure space construction is
2684: 1391:
factors are factors that do not contain any nonzero finite projections at all. In their first paper
1341: 423: 4495: 3388:(1967), "Representations of Uniformly Hyperfinite Algebras and Their Associated von Neumann Rings", 253: 6560: 6368: 6266: 6169: 5948: 5241: 5231: 5149: 5087: 5014: 4968: 4883: 4708: 4561: 4490: 3900: 3890: 3771: 3695: 605: 577: 400: 2780:
The bounded operators on any Hilbert space form a von Neumann algebra, indeed a factor, of type I.
6465: 6241: 5870: 5633: 5214: 5154: 4263: 4238: 4056: 4045: 3756: 3348:. This is a continuation of the previous paper, that studies properties of the trace of a factor. 3198: 2953: 2725: 2352: 2351:. Type III factors occur in the remaining cases where there is no invariant measure, but only an 1200:, and the bounded operators on a separable infinite-dimensional Hilbert space, a factor of type I 948:
generally hold if one were to require unitary equivalence in the definition of ~, i.e. if we say
675: 158: 47: 5982: 494:
is a von Neumann algebra with trivial center, i.e. a center consisting only of scalar operators.
6496: 6440: 6404: 5256: 5169: 4950: 4866: 4702: 4696: 4583: 4459: 4428: 4347: 4114: 4104: 4099: 3807: 2784: 2733: 2664: 2660: 2210:
There is no generally accepted term for the class of algebras above; Connes has suggested that
389: 59: 5496: 1706:
is a weight with ω(1) finite (or rather the extension of ω to the whole algebra by linearity).
1479:
The definition of the predual given above seems to depend on the choice of Hilbert space that
1248:. If the identity operator in a type II factor is finite, the factor is said to be of type II 6203: 6040: 6035: 5510: 5458: 5415: 5339: 5292: 5029: 4691: 4658: 4631: 4510: 4464: 4407: 3859: 3277:, Proc. Sympos. Pure Math., vol. 50, Providence, RI.: Amer. Math. Soc., pp. 57–60, 2961: 2957: 2945: 2937: 2882:
is infinite (for example, a non-abelian free group), and is the hyperfinite factor of type II
2697: 2680: 2320: 2312: 2273: 1692: 1476:
showed that the existence of a predual characterizes von Neumann algebras among C* algebras.
303: 98: 6199: 5329: 3574:. This discusses infinite tensor products of Hilbert spaces and the algebras acting on them. 2769:) is not a von Neumann algebra; for example, the σ-algebra of measurable sets might be the 2473:
studied the case where all the factors are finite matrix algebras; these factors are called
6479: 5978: 5184: 5179: 4890: 4774: 4680: 4393: 4273: 4252: 4166: 4051: 4014: 3503: 3226: 3083: 2941: 2916: 806: 449:
showed that von Neumann algebras can also be defined abstractly as C*-algebras that have a
404: 82: 6066: 1395:
were unable to decide whether or not they existed; the first examples were later found by
8: 6445: 6097: 5821: 5622: 5579: 5393: 5116: 4846: 4653: 4389: 3812: 1061: 774: 601: 585: 154: 151: 24: 5767: 3507: 3230: 2749:
The essentially bounded functions on a σ-finite measure space form a commutative (type I
6470: 6337: 6055: 5966: 5589: 5559: 5376: 5334: 4941: 4851: 4796: 4643: 4206: 4135: 4066: 3910: 3872: 3653: 3624: 3595: 3548: 3519: 3405: 3369: 3340: 3309: 3262: 3216: 3149: 3136: 2724:
factors, a result first proved by Leeming Ge for free group factors using Voiculescu's
2217:
The amenable factors have been classified: there is a unique one of each of the types I
1353: 508:
of finite factors (meaning the von Neumann algebra has a faithful normal tracial state
408: 277: 5897: 5867: 5828: 274:
is a von Neumann algebra, non-commutative if the Hilbert space has dimension at least
6450: 5736: 5209: 4990: 4933: 4913: 4515: 4412: 4384: 4313: 4288: 3973: 3895: 3675: 3523: 3481: 3445: 3437: 3424: 3278: 3175: 3156: 3094: 3048: 2773:
on an uncountable set. A fundamental approximation theorem can be represented by the
1186:
bounded operators on some Hilbert space; since there is one Hilbert space for every
1107:
There are several other ways to divide factors into classes that are sometimes used:
396: 90: 63: 3661:. This discusses how to write a von Neumann algebra as a sum or integral of factors. 860:
The equivalence relation ~ thus defined is additive in the following sense: Suppose
738:. Informally these are the closed subspaces that can be described using elements of 6455: 6373: 6342: 6322: 6307: 6302: 6297: 5366: 5361: 5349: 5261: 5246: 5109: 5049: 5024: 4955: 4945: 4808: 4525: 4402: 4318: 4019: 3867: 3822: 3746: 3645: 3616: 3587: 3540: 3511: 3397: 3385: 3361: 3330: 3301: 3254: 3128: 3070: 3044: 2965: 2949: 2905: 2729: 2709: 2277: 1901: 1837: 1352:
showed that the fundamental group can be trivial for certain groups, including the
1077: 818: 463: 247: 102: 74: 6134: 4753: 3106: 2932:
Von Neumann algebras have found applications in diverse areas of mathematics like
1340:
then showed that the von Neumann group algebra of a countable discrete group with
1088:
showed, every von Neumann algebra on a separable Hilbert space is isomorphic to a
833:
and is an element of the von Neumann algebra. Another way of stating this is that
6317: 6271: 6219: 6214: 6185: 5386: 5371: 5297: 5099: 5092: 5059: 5019: 4985: 4977: 4905: 4873: 4738: 4670: 4505: 4293: 4278: 4186: 4149: 4145: 4109: 4071: 4009: 3994: 3963: 3905: 3864: 3851: 3776: 3718: 3687: 3416: 3080: 2997: 2897: 2616:
are isomorphic to Araki–Woods factors, but there are uncountably many of type III
2285: 2268: 2007:-dimension can be anything in . It is normalized so that the standard module has 1912:-dimension 1, while for infinite factors the standard module is the module with 1424: 1187: 1089: 638: 635: 554: 78: 6144: 3561: 1453:, which is the Banach space of all ultraweakly continuous linear functionals on 411:
operator topologies. The *-algebras of bounded operators that are closed in the
6506: 6358: 6159: 5956: 5904: 5564: 5430: 5077: 5067: 4686: 4638: 4243: 4222: 4140: 4130: 3941: 3848: 3781: 3741: 3075: 2737: 2705: 1403:
in the past, but recently that notation has been superseded by the notation III
1333: 817:
if the corresponding subspaces are equivalent, or in other words if there is a
345:
Introductory accounts of von Neumann algebras are given in the online notes of
86: 1679:
Weights and their special cases states and traces are discussed in detail in (
1292:
has a unique finite tracial state, and the set of traces of projections is .
1033:
Orthogonal projections are noncommutative analogues of indicator functions in
6554: 6511: 6435: 6164: 6149: 6139: 5961: 5574: 5528: 5463: 5314: 5309: 5302: 4923: 4856: 4829: 4648: 4621: 4398: 4370: 2663:
of Γ, then, regarding Γ as the diagonal subgroup of Γ × Γ, the corresponding
2645: 2328: 2305: 1976:-dimension can be any of 0, 1, 2, 3, ..., ∞. The standard representation of 1611: 627: 412: 162: 157:
on the real line is a commutative von Neumann algebra, whose elements act as
51: 20: 3607:
von Neumann, J. (1943), "On Some Algebraical Properties of Operator Rings",
2704:
from the class coming from group von Neumann algebras of free groups. Later
2172:: this means that there is a projection of norm 1 from bounded operators on 1820:
If a von Neumann algebra acts on a Hilbert space containing a norm 1 vector
6501: 6154: 6124: 5473: 5468: 4928: 4918: 4791: 4781: 4626: 4606: 4061: 3915: 3856: 3189:
Les algÚbres d'opérateurs dans l'espace hilbertien: algÚbres de von Neumann
2713: 2641: 2485:
factors can have any type depending on the choice of states. In particular
1337: 581: 580:
about the topology on a von Neumann algebra, we can consider it a (unital)
454: 608:. (The von Neumann algebra itself is in general not von Neumann regular.) 546:
von Neumann algebras are the direct integral of properly infinite factors.
6430: 6420: 6327: 6129: 5762: 5678: 5584: 5569: 5549: 5523: 5488: 5039: 5002: 4675: 4520: 4258: 3843: 3679: 3238: 2988: 2933: 2061:
and others proved that the following conditions on a von Neumann algebra
1653: 1544: 1344:(the trivial representation is isolated in the dual space), such as SL(3, 623: 593: 589: 31: 3531:
von Neumann, J. (1936), "On a Certain Topology for Rings of Operators",
2814:. Equivalent subrepresentations correspond to equivalent projections in 2720:
factors, i.e. ones that cannot be factored as tensor products of type II
710:; they are exactly the operators which give an orthogonal projection of 6363: 6195: 5518: 5499: ((cs, lcs)-closed, (cs, bcs)-complete, (lower) ideally convex, (H 5483: 5324: 5072: 4834: 3751: 3657: 3628: 3599: 3552: 3515: 3409: 3373: 3344: 3313: 3266: 3140: 2972: 2757:
functions. For certain non-σ-finite measure spaces, usually considered
1535:. For example, exotic positive linear forms on the von Neumann algebra 1415:, and if the Connes spectrum is all positive reals then the type is III 1349: 671: 631: 549:
A von Neumann algebra that acts on a separable Hilbert space is called
458: 416: 67: 55: 4575: 2436:{\displaystyle (M\otimes N)^{\prime }=M^{\prime }\otimes N^{\prime },} 5594: 4839: 4803: 3736: 3722: 2637: 2454: 2158:
is a weak pointwise limit of completely positive maps of finite rank.
2038:-dimension by constants. The standard representation is the one with 597: 431: 427: 392: 43: 3649: 3620: 3591: 3544: 3401: 3365: 3335: 3305: 3258: 3132: 1182:. Any factor of type I is isomorphic to the von Neumann algebra of 5860: 5744: 5670: 5630: 5533: 5356: 4323: 4268: 3636:
von Neumann, J. (1949), "On Rings of Operators. Reduction Theory",
2920: 1487:
acts on, by defining it to be the space generated by all positive
805:"knows" that the subspaces are isomorphic). This induces a natural 642: 3352:
Murray, F.J.; von Neumann, J. (1943), "On rings of operators IV",
3321:
Murray, F.J.; von Neumann, J. (1937), "On rings of operators II",
3221: 2806:, whose projections correspond exactly to the closed subspaces of 2489:
found an uncountable family of non-isomorphic hyperfinite type III
2284:
transformation. In fact they are precisely the factors arising as
983:
of projections, induced by the partial order ≀ of projections. If
972:
gives a sufficient condition for Murray-von Neumann equivalence.
5665: 4748: 4339: 2281: 749:
It can be shown that the closure of the image of any operator in
450: 3035:
Connes, A (May 1978). "On the cohomology of operator algebras".
1080:
consists only of multiples of the identity operator is called a
3292:
Murray, F.J.; von Neumann, J. (1936), "On rings of operators",
3061:
Araki, H.; Woods, E. J. (1968), "A classification of factors",
2651:
Bimodules are also important for the von Neumann group algebra
730:. This establishes a 1:1 correspondence between projections of 3288:
A historical account of the discovery of von Neumann algebras.
1509:(which consists of all norm-continuous linear functionals on 1224:
can be "halved" in the sense that there are two projections
419:, so in particular any von Neumann algebra is a C*-algebra. 385:
There are three common ways to define von Neumann algebras.
6096: 2648:, reconciles these two seemingly different points of view. 2114:
with values in a normal dual Banach bimodule are all inner.
1691:ω on a von Neumann algebra is a linear map from the set of 1216:
if there are no minimal projections but there are non-zero
714:
onto some closed subspace. A subspace of the Hilbert space
108:
Two basic examples of von Neumann algebras are as follows:
3119:
Connes, A. (1976), "Classification of Injective Factors",
2362: 641:. Every commutative von Neumann algebra is isomorphic to 453:; in other words the von Neumann algebra, considered as a 1908:-dimension is normalized so that the standard module has 1900:. For finite factors the standard module is given by the 373:
gives an encyclopedic account of the theory. The book by
3671:. Reprints von Neumann's papers on von Neumann algebras. 19:"operator ring" redirects here. Not to be confused with 3273:
Murray, F. J. (2006), "The rings of operators papers",
1618:
on the closed subspace of bounded continuous functions
306:
developed the basic theory, under the original name of
2675:) is naturally a bimodule for two commuting copies of 2532: 1288:
proved the fundamental result that a factor of type II
1276:. These are the unique hyperfinite factors of types II 761:. Also, the closure of the image under an operator of 655:, ÎŒ) and conversely, for every σ-finite measure space 442:) says that the first two definitions are equivalent. 5985: 5911: 5873: 5834: 5782: 5685: 5636: 3578:
von Neumann, J. (1940), "On rings of operators III",
2644:
on bimodules. The theory of subfactors, initiated by
2510: 2381: 2132:
the weak operator closed convex hull of the elements
1348:), has a countable fundamental group. Subsequently, 1233: 1217: 514: 280: 256: 215: 170: 118: 3275:
The legacy of John von Neumann (Hempstead, NY, 1988)
2993:
Pages displaying wikidata descriptions as a fallback
2612:
All hyperfinite von Neumann algebras not of type III
1904:applied to the unique normal tracial state and the 780: 611: 388:The first and most common way is to define them as 73:Von Neumann algebras were originally introduced by 6426:Spectral theory of ordinary differential equations 6013: 5937: 5886: 5847: 5810: 5720: 5654: 4299:Spectral theory of ordinary differential equations 3717: 3603:. This shows the existence of factors of type III. 3148: 3005: â€“ Mathematical method in functional analysis 2601: 2435: 2266:All amenable factors can be constructed using the 2243:correspond to certain ergodic flows. (For type III 2198:can be extended to a completely positive map from 1256:. The best understood factors of type II are the 785:The basic theory of projections was worked out by 534: 286: 266: 238: 194: 142: 4197:Schröder–Bernstein theorems for operator algebras 3351: 3320: 3291: 2252: 1547:; they correspond to exotic *-homomorphisms into 1392: 1285: 1273: 1096: 970:Schröder–Bernstein theorems for operator algebras 786: 319: 315: 311: 16:*-algebra of bounded operators on a Hilbert space 6552: 2991: â€“ algebraic generalization of a W*-algebra 2497:, by taking an infinite tensor product of type I 2053: 3667:Collected Works, Volume III: Rings of Operators 535:{\displaystyle \tau :M\rightarrow \mathbb {C} } 5938:{\displaystyle S\left(\mathbb {R} ^{n}\right)} 1668: 239:{\displaystyle {\mathcal {B}}({\mathcal {H}})} 6082: 6046:Mathematical formulation of quantum mechanics 4591: 4355: 3703: 3527:. The original paper on von Neumann algebras. 3329:(2), American Mathematical Society: 208–248, 3193:, the first book about von Neumann algebras.) 1923:-dimensions of modules are given as follows: 3665:von Neumann, John (1961), Taub, A.H. (ed.), 2255:, and the remaining ones were classified by 2239:, for 0 < λ ≀ 1, and the ones of type III 3664: 3635: 3606: 3577: 3559: 3530: 3493: 2846:is the algebra of all bounded operators on 2623: 2465: 1513:) but is generally smaller. The proof that 1396: 1085: 1055:spectral theorem for self-adjoint operators 773:. (These results are a consequence of the 584:, or just a ring. Von Neumann algebras are 439: 339: 335: 331: 327: 323: 299: 298:Von Neumann algebras were first studied by 6089: 6075: 4598: 4584: 4362: 4348: 3710: 3696: 3674: 3213:W*-algebras and noncommutative integration 3060: 2878:) if every non-trivial conjugacy class of 2795:then the bounded operators commuting with 2708:proved that group von Neumann algebras of 2470: 1648:) of bounded operators on a Hilbert space 1060:The projections of a finite factor form a 426:(the *-operation) and equal to its double 350: 5921: 5721:{\displaystyle B_{p,q}^{s}(\mathbb {R} )} 5711: 3334: 3220: 3088: 3074: 2915:The von Neumann algebras of a measurable 1629:) cannot be represented as a function in 1315:and an infinite type I factor has type II 1311:The tensor product of a factor of type II 726:if it is the image of some projection in 630:is analogous to that between commutative 528: 362: 185: 143:{\displaystyle L^{\infty }(\mathbb {R} )} 133: 6379:Group algebra of a locally compact group 3556:. This defines the ultrastrong topology. 3475: 3436: 3210: 2347:) measure, invariant under an action of 1843: 1680: 1252:; otherwise, it is said to be of type II 370: 358: 105:definition as an algebra of symmetries. 5811:{\displaystyle L^{\lambda ,p}(\Omega )} 4605: 3186: 3169: 2690: 2632:(or correspondence) is a Hilbert space 2501:factors, each with the state given by: 2370:commutation theorem for tensor products 2363:Tensor products of von Neumann algebras 1640:The predual of the von Neumann algebra 1586:) of integrable functions. The dual of 1566:The predual of the von Neumann algebra 1319:, and conversely any factor of type II 1170:such that there is no other projection 990:A projection (or subspace belonging to 434:of some subalgebra closed under *. The 354: 338:), reprinted in the collected works of 6553: 6051:Ordinary Differential Equations (ODEs) 5165:Banach–Steinhaus (Uniform boundedness) 3478:Theory of Operator Algebras I, II, III 3457: 3384: 3272: 3237: 3146: 3118: 3034: 2687:for von Neumann algebras in this way. 2486: 2263:case which was completed by Haagerup. 2256: 2058: 1675:Noncommutative measure and integration 1574:) of essentially bounded functions on 1372: 679: 553:. Note that such algebras are rarely 374: 6070: 4579: 4343: 4030:Spectral theory of normal C*-algebras 3828:Spectral theory of normal C*-algebras 3691: 3415: 3196: 1473: 1220:. This implies that every projection 604:of a finite von Neumann algebra is a 446: 366: 346: 101:definition is equivalent to a purely 4025:Spectral theory of compact operators 2753:) von Neumann algebra acting on the 2493:factors for 0 < λ < 1, called 1961:-dimension 1 (and complex dimension 1715:is a weight with ω(1) = 1. 436:von Neumann double commutant theorem 2150:: this means the identity map from 2136:contains an element commuting with 1741:is a trace with ω(1) = 1. 1382: 694:in a von Neumann algebra for which 195:{\displaystyle L^{2}(\mathbb {R} )} 161:by pointwise multiplication on the 13: 5879: 5840: 5802: 5646: 4369: 4177:Cohen–Hewitt factorization theorem 3063:Publ. Res. Inst. Math. Sci. Ser. A 2977:Gelfand–Naimark–Segal construction 2655:of a discrete group Γ. Indeed, if 2522: 2519: 2425: 2412: 2399: 2170:Hakeda–Tomiyama extension property 1957:, ..., ∞. The standard module has 1323:can be constructed like this. The 1207: 1145:if the projection 1 is finite and 753:and the kernel of any operator in 259: 228: 218: 124: 14: 6582: 5543:Subsets / set operations 5320:Differentiation in FrĂ©chet spaces 4486:Compact operator on Hilbert space 4182:Extensions of symmetric operators 3207:; incomplete notes from a course. 2304:). Type I factors occur when the 1505:is a closed subspace of the dual 1162:if there is a minimal projection 1153: 6535: 6534: 6461:Topological quantum field theory 4000:Positive operator-valued measure 2902:group-measure space construction 2315:and the action transitive. When 2296:on abelian von Neumann algebras 2269:group-measure space construction 2090:approximately finite dimensional 1656:operators with the trace norm || 781:Comparison theory of projections 612:Commutative von Neumann algebras 377:discusses more advanced topics. 5848:{\displaystyle \ell ^{\infty }} 4284:Rayleigh–Faber–Krahn inequality 2927: 2858:) commuting with the action of 2253:Murray & von Neumann (1943) 1602:) For example, a functional on 1393:Murray & von Neumann (1936) 1286:Murray & von Neumann (1937) 1274:Murray & von Neumann (1936) 1097:Murray & von Neumann (1936) 787:Murray & von Neumann (1936) 6008: 5989: 5805: 5799: 5715: 5707: 5649: 5643: 5237:Lomonosov's invariant subspace 5160:Banach–Schauder (open mapping) 3037:Journal of Functional Analysis 3028: 3023:An Introduction To II1 Factors 3016: 2835:is also a von Neumann algebra. 2514: 2395: 2382: 2015:-dimension is also called the 1806:(usually normalized to be 1). 1795:(usually normalized to be 1). 1434: 829:isometrically to the image of 685: 524: 481: 380: 267:{\displaystyle {\mathcal {H}}} 233: 223: 189: 181: 137: 129: 1: 6257:Uniform boundedness principle 4192:Limiting absorption principle 3562:"On infinite direct products" 3009: 2771:countable-cocountable algebra 2331:. Type II factors occur when 2214:should be the standard term. 2065:on a separable Hilbert space 2054:Amenable von Neumann algebras 1520:is (usually) not the same as 1465:is canonically isomorphic to 1431:factor and the real numbers. 1234:Murray–von Neumann equivalent 789:. Two subspaces belonging to 765:of any subspace belonging to 734:and subspaces that belong to 5122:Singular value decomposition 3818:Singular value decomposition 3241:(1969), "Uncountably many II 3049:10.1016/0022-1236(78)90088-5 2874:. It is a factor (of type II 1772:(usually normalized to be 1/ 1134:if it has type I or II, and 667:) is a von Neumann algebra. 77:, motivated by his study of 7: 5887:{\displaystyle L^{\infty }} 5655:{\displaystyle ba(\Sigma )} 5524:Radially convex/Star-shaped 4249:Hearing the shape of a drum 3932:Decomposition of a spectrum 3465:Encyclopedia of Mathematics 3421:C*-algebras and W*-algebras 2982: 2799:form a von Neumann algebra 2743: 2355:: these factors are called 2288:by free ergodic actions of 2124:: for any bounded operator 1941:-dimension can be any of 0/ 1791:, ....,∞ for some positive 1669:Weights, states, and traces 1652:is the Banach space of all 1553:Stone–Čech compactification 1127:) if it has type II or III. 975:The subspaces belonging to 809:on projections by defining 618:Abelian von Neumann algebra 369:. The three volume work by 204:square-integrable functions 10: 6587: 6400:Invariant subspace problem 6014:{\displaystyle W(X,L^{p})} 4455:Hilbert projection theorem 3837:Special Elements/Operators 3681:Operators on Hilbert space 1704:positive linear functional 1672: 1594:) is strictly larger than 1212:A factor is said to be of 1158:A factor is said to be of 1067: 1002:if there is no projection 849:for some partial isometry 651:) for some measure space ( 615: 322:; J. von Neumann  66:. It is a special type of 18: 6530: 6489: 6413: 6392: 6351: 6290: 6232: 6178: 6120: 6113: 6028: 5613: 5560:Algebraic interior (core) 5542: 5451: 5285: 5175:Cauchy–Schwarz inequality 5130: 5058: 4904: 4818:Function space Topologies 4817: 4731: 4614: 4534: 4478: 4447: 4434:Cauchy–Schwarz inequality 4421: 4377: 4309:Superstrong approximation 4231: 4215: 4172:Banach algebra cohomology 4159: 4123: 4092: 4038: 4005:Projection-valued measure 3990:Borel functional calculus 3982: 3924: 3881: 3836: 3790: 3762:Projection-valued measure 3729: 2840:von Neumann group algebra 2775:Kaplansky density theorem 2259:, except for the type III 1119:) if it has type I, and 626:von Neumann algebras and 622:The relationship between 6369:Spectrum of a C*-algebra 3901:Spectrum of a C*-algebra 3772:Spectrum of a C*-algebra 3560:von Neumann, J. (1938), 3151:Non-commutative geometry 3076:10.2977/prims/1195195263 2681:representation theoretic 2624:Bimodules and subfactors 2471:Araki & Woods (1968) 1457:. As the name suggests, 1439:Any von Neumann algebra 1026:) that is equivalent to 722:the von Neumann algebra 606:von Neumann regular ring 560:The von Neumann algebra 159:multiplication operators 95:double commutant theorem 6466:Noncommutative geometry 4329:Wiener–Khinchin theorem 4264:Kuznetsov trace formula 4239:Almost Mathieu operator 4057:Banach function algebra 4046:Amenable Banach algebra 3803:Gelfand–Naimark theorem 3757:Noncommutative topology 3323:Trans. Amer. Math. Soc. 3211:Kostecki, R.P. (2013), 2954:noncommutative geometry 2821:. The double commutant 2353:invariant measure class 1916:-dimension equal to ∞. 1367:An example of a type II 825:that maps the image of 676:noncommutative topology 6522:Tomita–Takesaki theory 6497:Approximation property 6441:Calculus of variations 6015: 5939: 5888: 5849: 5812: 5722: 5656: 4825:Banach–Mazur compactum 4615:Types of Banach spaces 4304:Sturm–Liouville theory 4202:Sherman–Takeda theorem 4082:Tomita–Takesaki theory 3857:Hermitian/Self-adjoint 3808:Gelfand representation 3458:Shtern, A.I. (2001) , 3197:Jones, V.F.R. (2003), 3089:Blackadar, B. (2005), 3003:Tomita–Takesaki theory 2785:unitary representation 2734:geometric group theory 2685:Kazhdan's property (T) 2665:induced representation 2661:unitary representation 2603: 2437: 2106:: this means that the 1824:, then the functional 1491:linear functionals on 1421:Tomita–Takesaki theory 1342:Kazhdan's property (T) 1072:A von Neumann algebra 536: 430:, or equivalently the 288: 268: 240: 196: 144: 60:weak operator topology 6517:Banach–Mazur distance 6480:Generalized functions 6041:Finite element method 6036:Differential operator 6016: 5940: 5889: 5850: 5813: 5723: 5657: 5497:Convex series related 5293:Abstract Wiener space 5220:hyperplane separation 4775:Minkowski functionals 4659:Polarization identity 4465:Polarization identity 4408:Orthogonal complement 3798:Gelfand–Mazur theorem 3638:Annals of Mathematics 3609:Annals of Mathematics 3580:Annals of Mathematics 3533:Annals of Mathematics 3476:Takesaki, M. (1979), 3460:"von Neumann algebra" 3390:Annals of Mathematics 3354:Annals of Mathematics 3294:Annals of Mathematics 3247:Annals of Mathematics 3121:Annals of Mathematics 2962:differential geometry 2958:representation theory 2946:local quantum physics 2938:statistical mechanics 2604: 2438: 1844:Modules over a factor 1802:: for some positive 1673:Further information: 557:in the norm topology. 537: 289: 269: 241: 197: 145: 83:group representations 6566:Von Neumann algebras 6262:Kakutani fixed-point 6247:Riesz representation 5983: 5909: 5871: 5832: 5780: 5683: 5634: 5623:Absolute continuity 5277:Schauder fixed-point 5267:Riesz representation 5227:Kakutani fixed-point 5195:Freudenthal spectral 4681:L-semi-inner product 4439:Riesz representation 4394:L-semi-inner product 4274:Proto-value function 4253:Dirichlet eigenvalue 4167:Abstract index group 4052:Approximate identity 4015:Rigged Hilbert space 3891:Krein–Rutman theorem 3737:Involution/*-algebra 3669:, NY: Pergamon Press 3200:von Neumann algebras 3187:Dixmier, J. (1957), 3172:Von Neumann algebras 3170:Dixmier, J. (1981), 3108:corrected manuscript 2942:quantum field theory 2917:equivalence relation 2842:of a discrete group 2691:Non-amenable factors 2508: 2379: 2094:approximately finite 1578:is the Banach space 1166:, i.e. a projection 1138:if it has type III. 813:to be equivalent to 807:equivalence relation 674:is sometimes called 602:affiliated operators 512: 504:is one which is the 278: 254: 213: 168: 155:measurable functions 116: 6446:Functional calculus 6405:Mahler's conjecture 6384:Von Neumann algebra 6098:Functional analysis 5706: 5444:measurable function 5394:Functional calculus 5257:Parseval's identity 5170:Bessel's inequality 5117:Polar decomposition 4896:Uniform convergence 4654:Inner product space 4460:Parseval's identity 4429:Bessel's inequality 4077:Von Neumann algebra 3813:Polar decomposition 3508:1930MatAn.102..685E 3231:2013arXiv1307.4818P 3147:Connes, A. (1994), 2791:on a Hilbert space 2251:were classified by 1881:A module is called 1840:for normal states. 1722:is a weight with ω( 1695:(those of the form 1610:) that extends the 1295:A factor of type II 1266:hyperfinite type II 1258:hyperfinite type II 1141:A factor is called 1130:A factor is called 1111:A factor is called 1062:continuous geometry 981:equivalence classes 944:. Additivity would 775:polar decomposition 502:von Neumann algebra 250:on a Hilbert space 152:essentially bounded 36:von Neumann algebra 25:operator assistance 6471:Riemann hypothesis 6170:Topological vector 6056:Validated numerics 6011: 5967:Sobolev inequality 5935: 5884: 5845: 5808: 5737:Bounded variation 5718: 5686: 5671:Banach coordinate 5652: 5590:Minkowski addition 5252:M. Riesz extension 4732:Banach spaces are: 4207:Unbounded operator 4136:Essential spectrum 4115:Schur–Horn theorem 4105:Bauer–Fike theorem 4100:Alon–Boppana bound 4093:Finite-Dimensional 4067:Nuclear C*-algebra 3911:Spectral asymmetry 3516:10.1007/BF01782352 3191:, Gauthier-Villars 3185:(A translation of 3155:, Academic Press, 2730:rigidity phenomena 2599: 2587: 2466:von Neumann (1938) 2433: 2011:-dimension 1. The 1768:for some positive 1397:von Neumann (1940) 1354:semidirect product 1218:finite projections 1194:a factor of type I 1100:algebra has type I 1086:von Neumann (1949) 795:Murray–von Neumann 532: 340:von Neumann (1961) 308:rings of operators 300:von Neumann (1930) 284: 264: 236: 192: 140: 6548: 6547: 6451:Integral operator 6228: 6227: 6064: 6063: 5776:Morrey–Campanato 5758:compact Hausdorff 5605:Relative interior 5459:Absolutely convex 5426:Projection-valued 5035:Strictly singular 4961:on Hilbert spaces 4722:of Hilbert spaces 4573: 4572: 4516:Sesquilinear form 4469:Parallelogram law 4413:Orthonormal basis 4337: 4336: 4314:Transfer operator 4289:Spectral geometry 3974:Spectral abscissa 3954:Approximate point 3896:Normal eigenvalue 3676:Wassermann, A. J. 3640:, Second Series, 3611:, Second Series, 3582:, Second Series, 3535:, Second Series, 3392:, Second Series, 3386:Powers, Robert T. 3356:, Second Series, 3296:, Second Series, 3249:, Second Series, 3123:, Second Series, 3091:Operator algebras 2966:dynamical systems 2919:and a measurable 2710:hyperbolic groups 2583: 2551: 2343:) or infinite (II 2017:coupling constant 1693:positive elements 1551:and describe the 1545:free ultrafilters 1325:fundamental group 1302:fundamental group 1147:properly infinite 1123:(or occasionally 1115:(or occasionally 1000:finite projection 964:for some unitary 952:is equivalent to 837:is equivalent to 544:properly infinite 464:Banach *-algebras 397:common topologies 353:and the books by 351:Wassermann (1991) 287:{\displaystyle 2} 248:bounded operators 91:quantum mechanics 64:identity operator 62:and contains the 48:bounded operators 6578: 6571:John von Neumann 6538: 6537: 6456:Jones polynomial 6374:Operator algebra 6118: 6117: 6091: 6084: 6077: 6068: 6067: 6020: 6018: 6017: 6012: 6007: 6006: 5974:Triebel–Lizorkin 5944: 5942: 5941: 5936: 5934: 5930: 5929: 5924: 5893: 5891: 5890: 5885: 5883: 5882: 5854: 5852: 5851: 5846: 5844: 5843: 5817: 5815: 5814: 5809: 5798: 5797: 5727: 5725: 5724: 5719: 5714: 5705: 5700: 5661: 5659: 5658: 5653: 5514: 5492: 5474:Balanced/Circled 5272:Robinson-Ursescu 5190:Eberlein–Ơmulian 5110:Spectral theorem 4906:Linear operators 4703:Uniformly smooth 4600: 4593: 4586: 4577: 4576: 4403:Prehilbert space 4364: 4357: 4350: 4341: 4340: 4319:Transform theory 4039:Special algebras 4020:Spectral theorem 3983:Spectral Theorem 3823:Spectral theorem 3712: 3705: 3698: 3689: 3688: 3684: 3670: 3660: 3631: 3602: 3573: 3555: 3526: 3490: 3472: 3454: 3433: 3412: 3376: 3347: 3338: 3316: 3287: 3269: 3233: 3224: 3206: 3205: 3192: 3184: 3165: 3154: 3143: 3115: 3113: 3103: 3079: 3078: 3053: 3052: 3032: 3026: 3020: 2994: 2950:free probability 2830: 2826: 2819: 2810:invariant under 2804: 2608: 2606: 2605: 2600: 2592: 2591: 2584: 2582: 2568: 2552: 2550: 2536: 2526: 2525: 2451: 2442: 2440: 2439: 2434: 2429: 2428: 2416: 2415: 2403: 2402: 2286:crossed products 1996:-dimension is ∞. 1902:GNS construction 1898: 1870:-dimension. The 1852:can be given an 1838:GNS construction 1816:Type III: {0,∞}. 1726:) = Ï‰( 1528:that are not in 1383:Type III factors 998:is said to be a 819:partial isometry 769:also belongs to 659:, the *-algebra 639:Hausdorff spaces 541: 539: 538: 533: 531: 440:von Neumann 1930 363:Blackadar (2005) 302:in 1929; he and 293: 291: 290: 285: 273: 271: 270: 265: 263: 262: 245: 243: 242: 237: 232: 231: 222: 221: 201: 199: 198: 193: 188: 180: 179: 149: 147: 146: 141: 136: 128: 127: 79:single operators 75:John von Neumann 6586: 6585: 6581: 6580: 6579: 6577: 6576: 6575: 6561:Operator theory 6551: 6550: 6549: 6544: 6526: 6490:Advanced topics 6485: 6409: 6388: 6347: 6313:Hilbert–Schmidt 6286: 6277:Gelfand–Naimark 6224: 6174: 6109: 6095: 6065: 6060: 6024: 6002: 5998: 5984: 5981: 5980: 5979:Wiener amalgam 5949:Segal–Bargmann 5925: 5920: 5919: 5915: 5910: 5907: 5906: 5878: 5874: 5872: 5869: 5868: 5839: 5835: 5833: 5830: 5829: 5787: 5783: 5781: 5778: 5777: 5732:Birnbaum–Orlicz 5710: 5701: 5690: 5684: 5681: 5680: 5635: 5632: 5631: 5609: 5565:Bounding points 5538: 5512: 5490: 5447: 5298:Banach manifold 5281: 5205:Gelfand–Naimark 5126: 5100:Spectral theory 5068:Banach algebras 5060:Operator theory 5054: 5015:Pseudo-monotone 4998:Hilbert–Schmidt 4978:Densely defined 4900: 4813: 4727: 4610: 4604: 4574: 4569: 4562:Segal–Bargmann 4530: 4501:Hilbert–Schmidt 4491:Densely defined 4474: 4443: 4417: 4373: 4368: 4338: 4333: 4294:Spectral method 4279:Ramanujan graph 4227: 4211: 4187:Fredholm theory 4155: 4150:Shilov boundary 4146:Structure space 4124:Generalizations 4119: 4110:Numerical range 4088: 4072:Uniform algebra 4034: 4010:Riesz projector 3995:Min-max theorem 3978: 3964:Direct integral 3920: 3906:Spectral radius 3877: 3832: 3786: 3777:Spectral radius 3725: 3719:Spectral theory 3716: 3650:10.2307/1969463 3621:10.2307/1969106 3592:10.2307/1968823 3545:10.2307/1968692 3488: 3452: 3438:Schwartz, Jacob 3431: 3402:10.2307/1970364 3381:are isomorphic. 3380: 3366:10.2307/1969107 3336:10.2307/1989620 3306:10.2307/1968693 3285: 3259:10.2307/1970730 3244: 3203: 3182: 3163: 3133:10.2307/1971057 3111: 3105: 3101: 3057: 3056: 3033: 3029: 3021: 3017: 3012: 2998:Central carrier 2992: 2985: 2930: 2910:Krieger factors 2898:crossed product 2886:if in addition 2885: 2877: 2828: 2824: 2817: 2802: 2783:If we have any 2752: 2746: 2723: 2719: 2693: 2626: 2619: 2615: 2586: 2585: 2572: 2567: 2565: 2559: 2558: 2553: 2540: 2535: 2528: 2527: 2518: 2517: 2509: 2506: 2505: 2500: 2492: 2484: 2449: 2424: 2420: 2411: 2407: 2398: 2394: 2380: 2377: 2376: 2365: 2357:Krieger factors 2346: 2342: 2262: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2222: 2120:has Schwartz's 2056: 2029: 2002: 1971: 1932: 1896: 1861: 1846: 1812: 1801: 1782: 1755: 1677: 1671: 1624: 1617: 1543:) are given by 1534: 1519: 1504: 1471: 1452: 1437: 1430: 1425:crossed product 1418: 1414: 1410: 1406: 1402: 1385: 1378: 1370: 1330: 1322: 1318: 1314: 1307: 1298: 1291: 1283: 1279: 1269: 1261: 1255: 1251: 1210: 1208:Type II factors 1203: 1199: 1188:cardinal number 1156: 1136:purely infinite 1103: 1090:direct integral 1070: 1052: 943: 936: 929: 922: 915: 908: 901: 894: 887: 880: 873: 866: 783: 746:"knows" about. 688: 636:locally compact 620: 614: 542:). Similarly, 527: 513: 510: 509: 506:direct integral 484: 383: 371:Takesaki (1979) 359:Schwartz (1967) 279: 276: 275: 258: 257: 255: 252: 251: 227: 226: 217: 216: 214: 211: 210: 184: 175: 171: 169: 166: 165: 132: 123: 119: 117: 114: 113: 97:shows that the 28: 17: 12: 11: 5: 6584: 6574: 6573: 6568: 6563: 6546: 6545: 6543: 6542: 6531: 6528: 6527: 6525: 6524: 6519: 6514: 6509: 6507:Choquet theory 6504: 6499: 6493: 6491: 6487: 6486: 6484: 6483: 6473: 6468: 6463: 6458: 6453: 6448: 6443: 6438: 6433: 6428: 6423: 6417: 6415: 6411: 6410: 6408: 6407: 6402: 6396: 6394: 6390: 6389: 6387: 6386: 6381: 6376: 6371: 6366: 6361: 6359:Banach algebra 6355: 6353: 6349: 6348: 6346: 6345: 6340: 6335: 6330: 6325: 6320: 6315: 6310: 6305: 6300: 6294: 6292: 6288: 6287: 6285: 6284: 6282:Banach–Alaoglu 6279: 6274: 6269: 6264: 6259: 6254: 6249: 6244: 6238: 6236: 6230: 6229: 6226: 6225: 6223: 6222: 6217: 6212: 6210:Locally convex 6207: 6193: 6188: 6182: 6180: 6176: 6175: 6173: 6172: 6167: 6162: 6157: 6152: 6147: 6142: 6137: 6132: 6127: 6121: 6115: 6111: 6110: 6094: 6093: 6086: 6079: 6071: 6062: 6061: 6059: 6058: 6053: 6048: 6043: 6038: 6032: 6030: 6026: 6025: 6023: 6022: 6010: 6005: 6001: 5997: 5994: 5991: 5988: 5976: 5971: 5970: 5969: 5959: 5957:Sequence space 5954: 5946: 5933: 5928: 5923: 5918: 5914: 5902: 5901: 5900: 5895: 5881: 5877: 5858: 5857: 5856: 5842: 5838: 5819: 5807: 5804: 5801: 5796: 5793: 5790: 5786: 5773: 5765: 5760: 5747: 5742: 5734: 5729: 5717: 5713: 5709: 5704: 5699: 5696: 5693: 5689: 5676: 5668: 5663: 5651: 5648: 5645: 5642: 5639: 5628: 5619: 5617: 5611: 5610: 5608: 5607: 5597: 5592: 5587: 5582: 5577: 5572: 5567: 5562: 5552: 5546: 5544: 5540: 5539: 5537: 5536: 5531: 5526: 5521: 5516: 5508: 5494: 5486: 5481: 5476: 5471: 5466: 5461: 5455: 5453: 5449: 5448: 5446: 5445: 5435: 5434: 5433: 5428: 5423: 5413: 5412: 5411: 5406: 5401: 5391: 5390: 5389: 5384: 5379: 5374: 5372:Gelfand–Pettis 5369: 5364: 5354: 5353: 5352: 5347: 5342: 5337: 5332: 5322: 5317: 5312: 5307: 5306: 5305: 5295: 5289: 5287: 5283: 5282: 5280: 5279: 5274: 5269: 5264: 5259: 5254: 5249: 5244: 5239: 5234: 5229: 5224: 5223: 5222: 5212: 5207: 5202: 5197: 5192: 5187: 5182: 5177: 5172: 5167: 5162: 5157: 5152: 5147: 5145:Banach–Alaoglu 5142: 5140:Anderson–Kadec 5136: 5134: 5128: 5127: 5125: 5124: 5119: 5114: 5113: 5112: 5107: 5097: 5096: 5095: 5090: 5080: 5078:Operator space 5075: 5070: 5064: 5062: 5056: 5055: 5053: 5052: 5047: 5042: 5037: 5032: 5027: 5022: 5017: 5012: 5011: 5010: 5000: 4995: 4994: 4993: 4988: 4980: 4975: 4965: 4964: 4963: 4953: 4948: 4938: 4937: 4936: 4931: 4926: 4916: 4910: 4908: 4902: 4901: 4899: 4898: 4893: 4888: 4887: 4886: 4881: 4871: 4870: 4869: 4864: 4854: 4849: 4844: 4843: 4842: 4832: 4827: 4821: 4819: 4815: 4814: 4812: 4811: 4806: 4801: 4800: 4799: 4789: 4784: 4779: 4778: 4777: 4766:Locally convex 4763: 4762: 4761: 4751: 4746: 4741: 4735: 4733: 4729: 4728: 4726: 4725: 4718:Tensor product 4711: 4705: 4700: 4694: 4689: 4683: 4678: 4673: 4663: 4662: 4661: 4656: 4646: 4641: 4639:Banach lattice 4636: 4635: 4634: 4624: 4618: 4616: 4612: 4611: 4603: 4602: 4595: 4588: 4580: 4571: 4570: 4568: 4567: 4559: 4553:compact & 4538: 4536: 4532: 4531: 4529: 4528: 4523: 4518: 4513: 4508: 4503: 4498: 4496:Hermitian form 4493: 4488: 4482: 4480: 4476: 4475: 4473: 4472: 4462: 4457: 4451: 4449: 4445: 4444: 4442: 4441: 4436: 4431: 4425: 4423: 4419: 4418: 4416: 4415: 4410: 4405: 4396: 4387: 4381: 4379: 4378:Basic concepts 4375: 4374: 4371:Hilbert spaces 4367: 4366: 4359: 4352: 4344: 4335: 4334: 4332: 4331: 4326: 4321: 4316: 4311: 4306: 4301: 4296: 4291: 4286: 4281: 4276: 4271: 4266: 4261: 4256: 4246: 4244:Corona theorem 4241: 4235: 4233: 4229: 4228: 4226: 4225: 4223:Wiener algebra 4219: 4217: 4213: 4212: 4210: 4209: 4204: 4199: 4194: 4189: 4184: 4179: 4174: 4169: 4163: 4161: 4157: 4156: 4154: 4153: 4143: 4141:Pseudospectrum 4138: 4133: 4131:Dirac spectrum 4127: 4125: 4121: 4120: 4118: 4117: 4112: 4107: 4102: 4096: 4094: 4090: 4089: 4087: 4086: 4085: 4084: 4074: 4069: 4064: 4059: 4054: 4048: 4042: 4040: 4036: 4035: 4033: 4032: 4027: 4022: 4017: 4012: 4007: 4002: 3997: 3992: 3986: 3984: 3980: 3979: 3977: 3976: 3971: 3966: 3961: 3956: 3951: 3950: 3949: 3944: 3939: 3928: 3926: 3922: 3921: 3919: 3918: 3913: 3908: 3903: 3898: 3893: 3887: 3885: 3879: 3878: 3876: 3875: 3870: 3862: 3854: 3846: 3840: 3838: 3834: 3833: 3831: 3830: 3825: 3820: 3815: 3810: 3805: 3800: 3794: 3792: 3788: 3787: 3785: 3784: 3782:Operator space 3779: 3774: 3769: 3764: 3759: 3754: 3749: 3744: 3742:Banach algebra 3739: 3733: 3731: 3730:Basic concepts 3727: 3726: 3715: 3714: 3707: 3700: 3692: 3686: 3685: 3672: 3662: 3644:(2): 401–485, 3633: 3615:(4): 709–715, 3604: 3575: 3557: 3539:(1): 111–115, 3528: 3502:(1): 370–427, 3491: 3486: 3473: 3455: 3450: 3434: 3429: 3413: 3396:(1): 138–171, 3382: 3378: 3360:(4): 716–808, 3349: 3318: 3300:(1): 116–229, 3289: 3283: 3270: 3253:(2): 372–377, 3242: 3235: 3208: 3194: 3180: 3167: 3161: 3144: 3116: 3099: 3086: 3055: 3054: 3043:(2): 248–253. 3027: 3014: 3013: 3011: 3008: 3007: 3006: 3000: 2995: 2984: 2981: 2971:For instance, 2929: 2926: 2925: 2924: 2913: 2904:of Murray and 2894: 2891: 2883: 2875: 2836: 2781: 2778: 2750: 2745: 2742: 2738:ergodic theory 2721: 2717: 2706:Narutaka Ozawa 2692: 2689: 2625: 2622: 2620:that are not. 2617: 2613: 2610: 2609: 2598: 2595: 2590: 2581: 2578: 2575: 2571: 2566: 2564: 2561: 2560: 2557: 2554: 2549: 2546: 2543: 2539: 2534: 2533: 2531: 2524: 2521: 2516: 2513: 2498: 2495:Powers factors 2490: 2482: 2444: 2443: 2432: 2427: 2423: 2419: 2414: 2410: 2406: 2401: 2397: 2393: 2390: 2387: 2384: 2364: 2361: 2344: 2340: 2319:is diffuse or 2260: 2248: 2244: 2240: 2236: 2232: 2228: 2224: 2218: 2208: 2207: 2181: 2159: 2141: 2115: 2097: 2055: 2052: 2051: 2050: 2045:Type III: The 2043: 2027: 2024: 2019:of the module 2000: 1997: 1969: 1966: 1928: 1857: 1856:-dimension dim 1845: 1842: 1818: 1817: 1814: 1810: 1807: 1799: 1796: 1780: 1777: 1751: 1743: 1742: 1735: 1716: 1707: 1700: 1670: 1667: 1666: 1665: 1638: 1622: 1615: 1532: 1517: 1502: 1469: 1450: 1436: 1433: 1428: 1416: 1412: 1408: 1404: 1400: 1384: 1381: 1376: 1368: 1334:positive reals 1328: 1320: 1316: 1312: 1305: 1304:of the type II 1296: 1289: 1281: 1277: 1267: 1259: 1253: 1249: 1209: 1206: 1201: 1195: 1155: 1154:Type I factors 1152: 1151: 1150: 1139: 1128: 1101: 1069: 1066: 1050: 1049:) is the ||·|| 941: 934: 927: 920: 913: 906: 899: 892: 885: 878: 871: 864: 782: 779: 687: 684: 628:measure spaces 616:Main article: 613: 610: 586:semihereditary 574: 573: 569:tensor product 565: 558: 547: 530: 526: 523: 520: 517: 495: 483: 480: 399:including the 382: 379: 355:Dixmier (1981) 304:Francis Murray 296: 295: 283: 261: 235: 230: 225: 220: 207: 191: 187: 183: 178: 174: 139: 135: 131: 126: 122: 87:ergodic theory 15: 9: 6: 4: 3: 2: 6583: 6572: 6569: 6567: 6564: 6562: 6559: 6558: 6556: 6541: 6533: 6532: 6529: 6523: 6520: 6518: 6515: 6513: 6512:Weak topology 6510: 6508: 6505: 6503: 6500: 6498: 6495: 6494: 6492: 6488: 6481: 6477: 6474: 6472: 6469: 6467: 6464: 6462: 6459: 6457: 6454: 6452: 6449: 6447: 6444: 6442: 6439: 6437: 6436:Index theorem 6434: 6432: 6429: 6427: 6424: 6422: 6419: 6418: 6416: 6412: 6406: 6403: 6401: 6398: 6397: 6395: 6393:Open problems 6391: 6385: 6382: 6380: 6377: 6375: 6372: 6370: 6367: 6365: 6362: 6360: 6357: 6356: 6354: 6350: 6344: 6341: 6339: 6336: 6334: 6331: 6329: 6326: 6324: 6321: 6319: 6316: 6314: 6311: 6309: 6306: 6304: 6301: 6299: 6296: 6295: 6293: 6289: 6283: 6280: 6278: 6275: 6273: 6270: 6268: 6265: 6263: 6260: 6258: 6255: 6253: 6250: 6248: 6245: 6243: 6240: 6239: 6237: 6235: 6231: 6221: 6218: 6216: 6213: 6211: 6208: 6205: 6201: 6197: 6194: 6192: 6189: 6187: 6184: 6183: 6181: 6177: 6171: 6168: 6166: 6163: 6161: 6158: 6156: 6153: 6151: 6148: 6146: 6143: 6141: 6138: 6136: 6133: 6131: 6128: 6126: 6123: 6122: 6119: 6116: 6112: 6107: 6103: 6099: 6092: 6087: 6085: 6080: 6078: 6073: 6072: 6069: 6057: 6054: 6052: 6049: 6047: 6044: 6042: 6039: 6037: 6034: 6033: 6031: 6027: 6021: 6003: 5999: 5995: 5992: 5986: 5977: 5975: 5972: 5968: 5965: 5964: 5963: 5960: 5958: 5955: 5953: 5952: 5947: 5945: 5931: 5926: 5916: 5912: 5903: 5899: 5896: 5894: 5875: 5866: 5865: 5864: 5863: 5859: 5855: 5836: 5827: 5826: 5825: 5824: 5820: 5818: 5794: 5791: 5788: 5784: 5774: 5772: 5771: 5766: 5764: 5761: 5759: 5757: 5753: 5748: 5746: 5743: 5741: 5740: 5735: 5733: 5730: 5728: 5702: 5697: 5694: 5691: 5687: 5677: 5675: 5674: 5669: 5667: 5664: 5662: 5640: 5637: 5629: 5627: 5626: 5621: 5620: 5618: 5616: 5612: 5606: 5602: 5598: 5596: 5593: 5591: 5588: 5586: 5583: 5581: 5578: 5576: 5575:Extreme point 5573: 5571: 5568: 5566: 5563: 5561: 5557: 5553: 5551: 5548: 5547: 5545: 5541: 5535: 5532: 5530: 5527: 5525: 5522: 5520: 5517: 5515: 5509: 5506: 5502: 5498: 5495: 5493: 5487: 5485: 5482: 5480: 5477: 5475: 5472: 5470: 5467: 5465: 5462: 5460: 5457: 5456: 5454: 5452:Types of sets 5450: 5443: 5439: 5436: 5432: 5429: 5427: 5424: 5422: 5419: 5418: 5417: 5414: 5410: 5407: 5405: 5402: 5400: 5397: 5396: 5395: 5392: 5388: 5385: 5383: 5380: 5378: 5375: 5373: 5370: 5368: 5365: 5363: 5360: 5359: 5358: 5355: 5351: 5348: 5346: 5343: 5341: 5338: 5336: 5333: 5331: 5328: 5327: 5326: 5323: 5321: 5318: 5316: 5315:Convex series 5313: 5311: 5310:Bochner space 5308: 5304: 5301: 5300: 5299: 5296: 5294: 5291: 5290: 5288: 5284: 5278: 5275: 5273: 5270: 5268: 5265: 5263: 5262:Riesz's lemma 5260: 5258: 5255: 5253: 5250: 5248: 5247:Mazur's lemma 5245: 5243: 5240: 5238: 5235: 5233: 5230: 5228: 5225: 5221: 5218: 5217: 5216: 5213: 5211: 5208: 5206: 5203: 5201: 5200:Gelfand–Mazur 5198: 5196: 5193: 5191: 5188: 5186: 5183: 5181: 5178: 5176: 5173: 5171: 5168: 5166: 5163: 5161: 5158: 5156: 5153: 5151: 5148: 5146: 5143: 5141: 5138: 5137: 5135: 5133: 5129: 5123: 5120: 5118: 5115: 5111: 5108: 5106: 5103: 5102: 5101: 5098: 5094: 5091: 5089: 5086: 5085: 5084: 5081: 5079: 5076: 5074: 5071: 5069: 5066: 5065: 5063: 5061: 5057: 5051: 5048: 5046: 5043: 5041: 5038: 5036: 5033: 5031: 5028: 5026: 5023: 5021: 5018: 5016: 5013: 5009: 5006: 5005: 5004: 5001: 4999: 4996: 4992: 4989: 4987: 4984: 4983: 4981: 4979: 4976: 4974: 4970: 4966: 4962: 4959: 4958: 4957: 4954: 4952: 4949: 4947: 4943: 4939: 4935: 4932: 4930: 4927: 4925: 4922: 4921: 4920: 4917: 4915: 4912: 4911: 4909: 4907: 4903: 4897: 4894: 4892: 4889: 4885: 4882: 4880: 4877: 4876: 4875: 4872: 4868: 4865: 4863: 4860: 4859: 4858: 4855: 4853: 4850: 4848: 4845: 4841: 4838: 4837: 4836: 4833: 4831: 4828: 4826: 4823: 4822: 4820: 4816: 4810: 4807: 4805: 4802: 4798: 4795: 4794: 4793: 4790: 4788: 4785: 4783: 4780: 4776: 4772: 4769: 4768: 4767: 4764: 4760: 4757: 4756: 4755: 4752: 4750: 4747: 4745: 4742: 4740: 4737: 4736: 4734: 4730: 4723: 4719: 4715: 4712: 4710: 4706: 4704: 4701: 4699:) convex 4698: 4695: 4693: 4690: 4688: 4684: 4682: 4679: 4677: 4674: 4672: 4668: 4664: 4660: 4657: 4655: 4652: 4651: 4650: 4647: 4645: 4644:Grothendieck 4642: 4640: 4637: 4633: 4630: 4629: 4628: 4625: 4623: 4620: 4619: 4617: 4613: 4608: 4601: 4596: 4594: 4589: 4587: 4582: 4581: 4578: 4566: 4565: 4560: 4558: 4556: 4552: 4548: 4544: 4540: 4539: 4537: 4533: 4527: 4524: 4522: 4519: 4517: 4514: 4512: 4509: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4483: 4481: 4477: 4470: 4466: 4463: 4461: 4458: 4456: 4453: 4452: 4450: 4448:Other results 4446: 4440: 4437: 4435: 4432: 4430: 4427: 4426: 4424: 4420: 4414: 4411: 4409: 4406: 4404: 4400: 4399:Hilbert space 4397: 4395: 4391: 4390:Inner product 4388: 4386: 4383: 4382: 4380: 4376: 4372: 4365: 4360: 4358: 4353: 4351: 4346: 4345: 4342: 4330: 4327: 4325: 4322: 4320: 4317: 4315: 4312: 4310: 4307: 4305: 4302: 4300: 4297: 4295: 4292: 4290: 4287: 4285: 4282: 4280: 4277: 4275: 4272: 4270: 4267: 4265: 4262: 4260: 4257: 4254: 4250: 4247: 4245: 4242: 4240: 4237: 4236: 4234: 4230: 4224: 4221: 4220: 4218: 4214: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4164: 4162: 4160:Miscellaneous 4158: 4151: 4147: 4144: 4142: 4139: 4137: 4134: 4132: 4129: 4128: 4126: 4122: 4116: 4113: 4111: 4108: 4106: 4103: 4101: 4098: 4097: 4095: 4091: 4083: 4080: 4079: 4078: 4075: 4073: 4070: 4068: 4065: 4063: 4060: 4058: 4055: 4053: 4049: 4047: 4044: 4043: 4041: 4037: 4031: 4028: 4026: 4023: 4021: 4018: 4016: 4013: 4011: 4008: 4006: 4003: 4001: 3998: 3996: 3993: 3991: 3988: 3987: 3985: 3981: 3975: 3972: 3970: 3967: 3965: 3962: 3960: 3957: 3955: 3952: 3948: 3945: 3943: 3940: 3938: 3935: 3934: 3933: 3930: 3929: 3927: 3925:Decomposition 3923: 3917: 3914: 3912: 3909: 3907: 3904: 3902: 3899: 3897: 3894: 3892: 3889: 3888: 3886: 3884: 3880: 3874: 3871: 3869: 3866: 3863: 3861: 3858: 3855: 3853: 3850: 3847: 3845: 3842: 3841: 3839: 3835: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3796: 3795: 3793: 3789: 3783: 3780: 3778: 3775: 3773: 3770: 3768: 3765: 3763: 3760: 3758: 3755: 3753: 3750: 3748: 3745: 3743: 3740: 3738: 3735: 3734: 3732: 3728: 3724: 3720: 3713: 3708: 3706: 3701: 3699: 3694: 3693: 3690: 3683: 3682: 3677: 3673: 3668: 3663: 3659: 3655: 3651: 3647: 3643: 3639: 3634: 3630: 3626: 3622: 3618: 3614: 3610: 3605: 3601: 3597: 3593: 3589: 3586:(1): 94–161, 3585: 3581: 3576: 3571: 3567: 3566:Compos. Math. 3563: 3558: 3554: 3550: 3546: 3542: 3538: 3534: 3529: 3525: 3521: 3517: 3513: 3509: 3505: 3501: 3497: 3492: 3489: 3487:3-540-42248-X 3483: 3479: 3474: 3471: 3467: 3466: 3461: 3456: 3453: 3451:0-677-00670-5 3447: 3443: 3439: 3435: 3432: 3430:3-540-63633-1 3426: 3422: 3418: 3414: 3411: 3407: 3403: 3399: 3395: 3391: 3387: 3383: 3375: 3371: 3367: 3363: 3359: 3355: 3350: 3346: 3342: 3337: 3332: 3328: 3324: 3319: 3315: 3311: 3307: 3303: 3299: 3295: 3290: 3286: 3284:0-8218-4219-6 3280: 3276: 3271: 3268: 3264: 3260: 3256: 3252: 3248: 3240: 3236: 3232: 3228: 3223: 3218: 3214: 3209: 3202: 3201: 3195: 3190: 3183: 3181:0-444-86308-7 3177: 3173: 3168: 3164: 3162:0-12-185860-X 3158: 3153: 3152: 3145: 3142: 3138: 3134: 3130: 3127:(1): 73–115, 3126: 3122: 3117: 3110: 3109: 3102: 3100:3-540-28486-9 3096: 3092: 3087: 3085: 3082: 3077: 3072: 3069:(1): 51–130, 3068: 3064: 3059: 3058: 3050: 3046: 3042: 3038: 3031: 3024: 3019: 3015: 3004: 3001: 2999: 2996: 2990: 2987: 2986: 2980: 2978: 2974: 2969: 2967: 2963: 2959: 2955: 2951: 2947: 2943: 2939: 2935: 2922: 2918: 2914: 2911: 2907: 2903: 2899: 2895: 2892: 2889: 2881: 2873: 2869: 2865: 2861: 2857: 2853: 2849: 2845: 2841: 2837: 2834: 2827: 2820: 2813: 2809: 2805: 2798: 2794: 2790: 2786: 2782: 2779: 2776: 2772: 2768: 2764: 2760: 2756: 2748: 2747: 2741: 2739: 2735: 2731: 2727: 2715: 2711: 2707: 2703: 2699: 2688: 2686: 2682: 2678: 2674: 2670: 2666: 2662: 2658: 2654: 2649: 2647: 2646:Vaughan Jones 2643: 2639: 2635: 2631: 2621: 2596: 2593: 2588: 2579: 2576: 2573: 2569: 2562: 2555: 2547: 2544: 2541: 2537: 2529: 2511: 2504: 2503: 2502: 2496: 2488: 2487:Powers (1967) 2480: 2479:ITPFI factors 2476: 2472: 2467: 2462: 2460: 2456: 2452: 2430: 2421: 2417: 2408: 2404: 2391: 2388: 2385: 2375: 2374: 2373: 2371: 2360: 2358: 2354: 2350: 2338: 2334: 2330: 2329:measure space 2326: 2322: 2318: 2314: 2310: 2307: 2306:measure space 2303: 2299: 2295: 2291: 2287: 2283: 2280:for a single 2279: 2275: 2271: 2270: 2264: 2258: 2257:Connes (1976) 2254: 2221: 2215: 2213: 2205: 2201: 2197: 2193: 2189: 2185: 2182: 2179: 2175: 2171: 2167: 2163: 2160: 2157: 2153: 2149: 2145: 2142: 2139: 2135: 2131: 2127: 2123: 2119: 2116: 2113: 2109: 2105: 2101: 2098: 2095: 2091: 2087: 2083: 2079: 2076: 2075: 2074: 2072: 2068: 2064: 2060: 2059:Connes (1976) 2048: 2044: 2042:-dimension ∞. 2041: 2037: 2033: 2025: 2022: 2018: 2014: 2010: 2006: 1998: 1995: 1991: 1987: 1983: 1979: 1975: 1967: 1964: 1960: 1956: 1952: 1948: 1944: 1940: 1937:finite): The 1936: 1931: 1926: 1925: 1924: 1922: 1919:The possible 1917: 1915: 1911: 1907: 1903: 1899: 1892: 1888: 1884: 1879: 1877: 1873: 1869: 1865: 1860: 1855: 1851: 1841: 1839: 1835: 1831: 1827: 1823: 1815: 1808: 1805: 1797: 1794: 1790: 1786: 1778: 1775: 1771: 1767: 1763: 1759: 1754: 1749: 1748: 1747: 1740: 1739:tracial state 1736: 1733: 1729: 1725: 1721: 1717: 1714: 1713: 1708: 1705: 1701: 1698: 1694: 1690: 1686: 1685: 1684: 1682: 1681:Takesaki 1979 1676: 1663: 1659: 1655: 1651: 1647: 1643: 1639: 1636: 1632: 1628: 1621: 1613: 1612:Dirac measure 1609: 1605: 1601: 1597: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1564: 1563: 1560: 1558: 1554: 1550: 1546: 1542: 1538: 1531: 1527: 1523: 1516: 1512: 1508: 1501: 1496: 1494: 1490: 1486: 1482: 1477: 1475: 1468: 1464: 1460: 1456: 1449: 1446: 1442: 1432: 1426: 1422: 1398: 1394: 1390: 1380: 1374: 1373:McDuff (1969) 1365: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1326: 1309: 1303: 1293: 1287: 1275: 1271: 1263: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1205: 1198: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1148: 1144: 1140: 1137: 1133: 1129: 1126: 1122: 1118: 1114: 1110: 1109: 1108: 1105: 1098: 1094: 1091: 1087: 1083: 1079: 1075: 1065: 1063: 1058: 1056: 1048: 1044: 1040: 1036: 1031: 1029: 1025: 1021: 1017: 1013: 1009: 1005: 1001: 997: 993: 988: 986: 982: 978: 973: 971: 967: 963: 959: 955: 951: 947: 940: 933: 926: 919: 912: 905: 898: 891: 884: 877: 870: 863: 858: 856: 852: 848: 844: 840: 836: 832: 828: 824: 820: 816: 812: 808: 804: 800: 796: 792: 788: 778: 776: 772: 768: 764: 760: 756: 752: 747: 745: 741: 737: 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 693: 683: 681: 677: 673: 668: 666: 662: 658: 654: 650: 646: 645: 640: 637: 633: 629: 625: 619: 609: 607: 603: 599: 595: 591: 587: 583: 579: 570: 566: 563: 559: 556: 552: 548: 545: 521: 518: 515: 507: 503: 501: 496: 493: 489: 488: 487: 479: 477: 473: 469: 465: 460: 456: 452: 448: 443: 441: 437: 433: 429: 425: 420: 418: 414: 413:norm topology 410: 406: 402: 398: 394: 391: 390:weakly closed 386: 378: 376: 375:Connes (1994) 372: 368: 364: 360: 356: 352: 348: 343: 341: 337: 333: 329: 325: 321: 317: 313: 309: 305: 301: 281: 249: 208: 205: 176: 172: 164: 163:Hilbert space 160: 156: 153: 120: 111: 110: 109: 106: 104: 100: 96: 92: 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 52:Hilbert space 49: 45: 41: 37: 33: 26: 22: 21:ring operator 6502:Balanced set 6476:Distribution 6414:Applications 6383: 6267:Krein–Milman 6252:Closed graph 6029:Applications 5950: 5861: 5822: 5769: 5755: 5751: 5738: 5672: 5624: 5511:Linear cone 5504: 5500: 5489:Convex cone 5382:Paley–Wiener 5242:Mackey–Arens 5232:Krein–Milman 5185:Closed range 5180:Closed graph 5150:Banach–Mazur 5030:Self-adjoint 4934:sesquilinear 4667:Polynomially 4607:Banach space 4563: 4554: 4550: 4546: 4542: 4511:Self-adjoint 4422:Main results 4232:Applications 4076: 4062:Disk algebra 3916:Spectral gap 3791:Main results 3680: 3666: 3641: 3637: 3612: 3608: 3583: 3579: 3569: 3565: 3536: 3532: 3499: 3495: 3477: 3463: 3442:W-* Algebras 3441: 3423:, Springer, 3420: 3393: 3389: 3357: 3353: 3326: 3322: 3297: 3293: 3274: 3250: 3246: 3239:McDuff, Dusa 3212: 3199: 3188: 3171: 3150: 3124: 3120: 3107: 3093:, Springer, 3090: 3066: 3062: 3040: 3036: 3030: 3018: 2970: 2931: 2928:Applications 2909: 2901: 2887: 2879: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2839: 2832: 2822: 2815: 2811: 2807: 2800: 2796: 2792: 2788: 2766: 2762: 2759:pathological 2754: 2726:free entropy 2701: 2694: 2679:. Important 2676: 2672: 2668: 2656: 2652: 2650: 2633: 2629: 2627: 2611: 2494: 2478: 2474: 2463: 2458: 2453:denotes the 2447: 2445: 2372:states that 2369: 2366: 2356: 2348: 2332: 2316: 2308: 2301: 2297: 2293: 2289: 2267: 2265: 2219: 2216: 2211: 2209: 2203: 2199: 2195: 2191: 2187: 2183: 2177: 2173: 2169: 2165: 2161: 2155: 2151: 2148:semidiscrete 2147: 2143: 2137: 2133: 2129: 2125: 2121: 2117: 2111: 2103: 2099: 2093: 2089: 2085: 2081: 2077: 2070: 2066: 2062: 2057: 2046: 2039: 2035: 2031: 2020: 2016: 2012: 2008: 2004: 1993: 1989: 1985: 1981: 1977: 1973: 1962: 1958: 1954: 1950: 1946: 1942: 1938: 1934: 1929: 1920: 1918: 1913: 1909: 1905: 1894: 1890: 1886: 1882: 1880: 1878:-dimension. 1875: 1871: 1867: 1863: 1858: 1853: 1849: 1847: 1833: 1829: 1825: 1821: 1819: 1803: 1792: 1788: 1784: 1773: 1769: 1765: 1761: 1757: 1752: 1744: 1738: 1731: 1727: 1723: 1719: 1710: 1703: 1696: 1688: 1678: 1661: 1657: 1649: 1645: 1641: 1634: 1630: 1626: 1619: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1571: 1567: 1561: 1556: 1548: 1540: 1536: 1529: 1525: 1521: 1514: 1510: 1506: 1499: 1498:The predual 1497: 1492: 1488: 1484: 1480: 1478: 1474:Sakai (1971) 1466: 1462: 1458: 1454: 1447: 1444: 1440: 1438: 1427:of a type II 1388: 1386: 1366: 1361: 1357: 1345: 1327:of a type II 1324: 1310: 1301: 1294: 1245: 1241: 1237: 1236:and satisfy 1229: 1225: 1221: 1213: 1211: 1196: 1191: 1183: 1179: 1175: 1174:with 0 < 1171: 1167: 1163: 1159: 1157: 1146: 1142: 1135: 1131: 1124: 1120: 1116: 1112: 1106: 1095: 1081: 1073: 1071: 1059: 1046: 1042: 1038: 1034: 1032: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 989: 984: 980: 976: 974: 965: 961: 957: 953: 949: 945: 938: 931: 924: 917: 910: 903: 896: 889: 882: 875: 868: 861: 859: 854: 850: 846: 842: 838: 834: 830: 826: 822: 814: 810: 802: 798: 794: 793:are called ( 790: 784: 770: 766: 762: 758: 754: 750: 748: 743: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 689: 669: 664: 660: 656: 652: 648: 643: 621: 594:AW*-algebras 590:Baer *-rings 575: 568: 561: 550: 543: 499: 491: 485: 475: 471: 467: 466:such that || 455:Banach space 447:Sakai (1971) 444: 421: 387: 384: 367:Sakai (1971) 347:Jones (2003) 344: 307: 297: 209:The algebra 107: 72: 39: 35: 29: 6431:Heat kernel 6421:Hardy space 6328:Trace class 6242:Hahn–Banach 6204:Topological 5750:Continuous 5585:Linear span 5570:Convex hull 5550:Affine hull 5409:holomorphic 5345:holomorphic 5325:Derivatives 5215:Hahn–Banach 5155:Banach–Saks 5073:C*-algebras 5040:Trace class 5003:Functionals 4891:Ultrastrong 4804:Quasinormed 4521:Trace class 4259:Heat kernel 3959:Compression 3844:Isospectral 3025:ens-lyon.fr 2989:AW*-algebra 2934:knot theory 2906:von Neumann 2787:of a group 2477:factors or 2475:Araki–Woods 2278:von Neumann 2108:derivations 2082:hyperfinite 1654:trace class 1435:The predual 1272:, found by 757:belongs to 718:is said to 708:projections 706:are called 686:Projections 680:Connes 1994 672:C*-algebras 632:C*-algebras 624:commutative 482:Terminology 417:C*-algebras 405:ultrastrong 381:Definitions 32:mathematics 6555:Categories 6364:C*-algebra 6179:Properties 5503:), and (Hw 5404:continuous 5340:functional 5088:C*-algebra 4973:Continuous 4835:Dual space 4809:Stereotype 4787:Metrizable 4714:Projective 3937:Continuous 3752:C*-algebra 3747:B*-algebra 3496:Math. Ann. 3245:factors", 3010:References 2973:C*-algebra 2698:Voiculescu 2339:finite (II 2337:equivalent 2335:admits an 2325:equivalent 2321:non-atomic 2166:property E 2122:property P 2071:equivalent 1889:such that 1730:) for all 1562:Examples: 1350:Sorin Popa 1132:semifinite 1121:continuous 799:equivalent 742:, or that 690:Operators 578:forgetting 424:involution 393:*-algebras 68:C*-algebra 40:W*-algebra 6338:Unbounded 6333:Transpose 6291:Operators 6220:Separable 6215:Reflexive 6200:Algebraic 6186:Barrelled 5962:Sobolev W 5905:Schwartz 5880:∞ 5841:∞ 5837:ℓ 5803:Ω 5789:λ 5647:Σ 5529:Symmetric 5464:Absorbing 5377:regulated 5357:Integrals 5210:Goldstine 5045:Transpose 4982:Fredholm 4852:Ultraweak 4840:Dual norm 4771:Seminorms 4739:Barrelled 4709:Injective 4697:Uniformly 4671:Reflexive 3723:-algebras 3524:121141866 3470:EMS Press 3417:Sakai, S. 3222:1307.4818 2638:subfactor 2574:λ 2570:λ 2542:λ 2515:↦ 2455:commutant 2426:′ 2418:⊗ 2413:′ 2400:′ 2389:⊗ 2327:to as a 2188:injective 1379:factors. 1232:that are 1010:(meaning 720:belong to 598:*-algebra 582:*-algebra 562:generated 555:separable 551:separable 525:→ 516:τ 457:, is the 432:commutant 428:commutant 409:ultraweak 125:∞ 112:The ring 103:algebraic 44:*-algebra 6540:Category 6352:Algebras 6234:Theorems 6191:Complete 6160:Schwartz 6106:glossary 5898:weighted 5768:Hilbert 5745:Bs space 5615:Examples 5580:Interior 5556:Relative 5534:Zonotope 5513:(subset) 5491:(subset) 5442:Strongly 5421:Lebesgue 5416:Measures 5286:Analysis 5132:Theorems 5083:Spectrum 5008:positive 4991:operator 4929:operator 4919:Bilinear 4884:operator 4867:operator 4847:Operator 4744:Complete 4692:Strictly 4535:Examples 4324:Weyl law 4269:Lax pair 4216:Examples 4050:With an 3969:Discrete 3947:Residual 3883:Spectrum 3868:operator 3860:operator 3852:operator 3767:Spectrum 3678:(1991), 3440:(1967), 3419:(1971), 2983:See also 2921:groupoid 2744:Examples 2702:disjoint 2630:bimodule 2323:, it is 2212:amenable 2104:amenable 2069:are all 1883:standard 1660:||= Tr(| 1389:type III 1387:Lastly, 1360:by SL(2, 1308:factor. 1264:and the 1113:discrete 1022:≠ 1014:≤ 916:, then 99:analytic 54:that is 6343:Unitary 6323:Nuclear 6308:Compact 6303:Bounded 6298:Adjoint 6272:Min–max 6165:Sobolev 6150:Nuclear 6140:Hilbert 6135:FrĂ©chet 6100: ( 5763:Hardy H 5666:c space 5603:)  5558:)  5479:Bounded 5367:Dunford 5362:Bochner 5335:Gateaux 5330:FrĂ©chet 5105:of ODEs 5050:Unitary 5025:Nuclear 4956:Compact 4946:Bounded 4914:Adjoint 4754:FrĂ©chet 4749:F-space 4720: ( 4716:)  4669:)  4649:Hilbert 4622:Asplund 4549:) with 4526:Unitary 4385:Adjoint 3865:Unitary 3658:1969463 3629:1969106 3600:1968823 3553:1968692 3504:Bibcode 3410:1970364 3374:1969107 3345:1989620 3314:1968693 3267:1970730 3227:Bibcode 3141:1971057 3084:0244773 2716:type II 2659:is any 2282:ergodic 2168:or the 2026:Type II 1999:Type II 1809:Type II 1798:Type II 1764:, ...., 1445:predual 1280:and II 1214:type II 1068:Factors 572:spaces. 451:predual 246:of all 58:in the 6318:Normal 6155:Orlicz 6145:Hölder 6125:Banach 6114:Spaces 6102:topics 5679:Besov 5519:Radial 5484:Convex 5469:Affine 5438:Weakly 5431:Vector 5303:bundle 5093:radius 5020:Normal 4986:kernel 4951:Closed 4874:Strong 4792:Normed 4782:Mackey 4627:Banach 4609:topics 4506:Normal 3849:Normal 3656:  3627:  3598:  3572:: 1–77 3551:  3522:  3484:  3448:  3427:  3408:  3372:  3343:  3312:  3281:  3265:  3178:  3159:  3139:  3114:, 2013 3097:  2964:, and 2712:yield 2642:Connes 2446:where 2313:atomic 2274:Murray 2030:: The 2003:: The 1992:; its 1968:Type I 1927:Type I 1779:Type I 1776:or 1). 1750:Type I 1699:) to . 1689:weight 1489:normal 1443:has a 1338:Connes 1336:, but 1270:factor 1262:factor 1160:type I 1143:finite 1084:. As 1082:factor 1078:center 1076:whose 968:. The 596:. The 500:finite 492:factor 401:strong 93:. His 56:closed 6130:Besov 5754:with 5601:Quasi 5595:Polar 5399:Borel 5350:quasi 4879:polar 4862:polar 4676:Riesz 4557:<∞ 3942:Point 3654:JSTOR 3625:JSTOR 3596:JSTOR 3549:JSTOR 3520:S2CID 3406:JSTOR 3370:JSTOR 3341:JSTOR 3310:JSTOR 3263:JSTOR 3217:arXiv 3204:(PDF) 3137:JSTOR 3112:(PDF) 2714:prime 2235:, III 1984:) is 1783:: 0, 1756:: 0, 1720:trace 1712:state 1178:< 1164:E ≠ 0 1006:< 888:. If 847:F=u*u 843:E=uu* 474:|| || 470:||=|| 50:on a 42:is a 6478:(or 6196:Dual 5752:C(K) 5387:weak 4924:form 4857:Weak 4830:Dual 4797:norm 4759:tame 4632:list 4479:Maps 4401:and 4392:and 3873:Unit 3721:and 3482:ISBN 3446:ISBN 3425:ISBN 3279:ISBN 3176:ISBN 3157:ISBN 3095:ISBN 2908:and 2896:The 2838:The 2736:and 2671:(Γ, 2294:Z/nZ 2276:and 2231:, II 2227:, II 2164:has 2134:uTu* 1972:The 1953:, 3/ 1949:, 2/ 1945:, 1/ 1228:and 1125:wild 1117:tame 1018:and 958:u*Eu 902:and 874:and 845:and 634:and 592:and 567:The 478:||. 459:dual 415:are 365:and 349:and 336:1949 332:1943 328:1940 324:1938 320:1943 316:1937 312:1936 89:and 34:, a 4969:Dis 3646:doi 3617:doi 3588:doi 3541:doi 3512:doi 3500:102 3398:doi 3362:doi 3331:doi 3302:doi 3255:doi 3129:doi 3125:104 3071:doi 3045:doi 2862:on 2831:of 2732:in 2667:on 2457:of 2311:is 2292:or 2272:of 2223:, I 2202:to 2194:to 2186:is 2176:to 2154:to 2146:is 2128:on 2110:of 2102:is 2092:or 2088:or 2086:AFD 2084:or 2080:is 1891:JMJ 1828:→ ( 1813:: . 1787:, 2 1760:, 2 1728:a*a 1724:aa* 1697:a*a 1683:). 1555:of 1364:). 1356:of 1184:all 1041:). 956:if 946:not 853:in 841:if 821:of 777:). 682:). 600:of 576:By 468:aa* 407:or 202:of 150:of 46:of 38:or 30:In 23:or 6557:: 6104:– 5739:BV 5673:BK 5625:AC 5507:)) 5440:/ 4942:Un 3652:, 3642:50 3623:, 3613:44 3594:, 3584:41 3568:, 3564:, 3547:, 3537:37 3518:, 3510:, 3498:, 3480:, 3468:, 3462:, 3444:, 3404:, 3394:86 3368:, 3358:44 3339:, 3327:41 3325:, 3308:, 3298:37 3261:, 3251:90 3225:, 3215:, 3174:, 3135:, 3104:, 3081:MR 3065:, 3041:28 3039:. 2968:. 2960:, 2956:, 2952:, 2948:, 2944:, 2940:, 2936:, 2870:∈ 2850:= 2761:, 2740:. 2628:A 2461:. 2359:. 2180:'. 2073:: 1965:.) 1893:= 1830:av 1766:nx 1737:A 1718:A 1709:A 1702:A 1687:A 1637:). 1559:. 1526:M* 1522:M* 1507:M* 1472:. 1244:+ 1240:= 1204:. 1064:. 1057:. 994:) 960:= 937:+ 930:~ 923:+ 909:⊄ 895:⊄ 881:~ 867:~ 857:. 797:) 704:E* 702:= 700:EE 698:= 497:A 490:A 476:a* 403:, 361:, 357:, 342:. 334:, 330:, 326:, 318:, 314:, 85:, 81:, 70:. 6482:) 6206:) 6202:/ 6198:( 6108:) 6090:e 6083:t 6076:v 6009:) 6004:p 6000:L 5996:, 5993:X 5990:( 5987:W 5951:F 5932:) 5927:n 5922:R 5917:( 5913:S 5876:L 5862:L 5823:ℓ 5806:) 5800:( 5795:p 5792:, 5785:L 5770:H 5756:K 5716:) 5712:R 5708:( 5703:s 5698:q 5695:, 5692:p 5688:B 5650:) 5644:( 5641:a 5638:b 5599:( 5554:( 5505:x 5501:x 4971:) 4967:( 4944:) 4940:( 4773:/ 4724:) 4707:( 4687:B 4685:( 4665:( 4599:e 4592:t 4585:v 4564:F 4555:n 4551:K 4547:K 4545:( 4543:C 4471:) 4467:( 4363:e 4356:t 4349:v 4255:) 4251:( 4152:) 4148:( 3711:e 3704:t 3697:v 3648:: 3619:: 3590:: 3570:6 3543:: 3514:: 3506:: 3400:: 3379:1 3364:: 3333:: 3304:: 3257:: 3243:1 3234:. 3229:: 3219:: 3166:. 3131:: 3073:: 3067:4 3051:. 3047:: 2912:. 2888:G 2884:1 2880:G 2876:1 2872:G 2868:g 2864:H 2860:G 2856:G 2854:( 2852:l 2848:H 2844:G 2833:G 2829:â€Č 2825:â€Č 2823:G 2818:â€Č 2816:G 2812:G 2808:H 2803:â€Č 2801:G 2797:G 2793:H 2789:G 2777:. 2767:X 2765:( 2763:L 2755:L 2751:1 2722:1 2718:1 2677:M 2673:V 2669:l 2657:V 2653:M 2634:H 2618:0 2614:0 2597:. 2594:x 2589:) 2580:1 2577:+ 2563:0 2556:0 2548:1 2545:+ 2538:1 2530:( 2523:r 2520:T 2512:x 2499:2 2491:λ 2483:2 2459:M 2450:â€Č 2448:M 2431:, 2422:N 2409:M 2405:= 2396:) 2392:N 2386:M 2383:( 2349:Z 2345:∞ 2341:1 2333:X 2317:X 2309:X 2302:X 2300:( 2298:L 2290:Z 2261:1 2249:1 2245:0 2241:0 2237:λ 2233:∞ 2229:1 2225:∞ 2220:n 2206:. 2204:M 2200:A 2196:M 2192:A 2184:M 2178:M 2174:H 2162:M 2156:M 2152:M 2144:M 2140:. 2138:M 2130:H 2126:T 2118:M 2112:M 2100:M 2078:M 2067:H 2063:M 2047:M 2040:M 2036:M 2032:M 2028:∞ 2023:. 2021:H 2013:M 2009:M 2005:M 2001:1 1994:M 1990:H 1988:⊗ 1986:H 1982:H 1980:( 1978:B 1974:M 1970:∞ 1963:n 1959:M 1955:n 1951:n 1947:n 1943:n 1939:M 1935:n 1933:( 1930:n 1921:M 1914:M 1910:M 1906:M 1897:â€Č 1895:M 1887:J 1876:M 1872:M 1868:M 1864:H 1862:( 1859:M 1854:M 1850:H 1834:v 1832:, 1826:a 1822:v 1811:∞ 1804:x 1800:1 1793:x 1789:x 1785:x 1781:∞ 1774:n 1770:x 1762:x 1758:x 1753:n 1734:. 1732:a 1662:A 1658:A 1650:H 1646:H 1644:( 1642:B 1635:R 1633:( 1631:L 1627:R 1625:( 1623:b 1620:C 1616:0 1614:ÎŽ 1608:R 1606:( 1604:L 1600:R 1598:( 1596:L 1592:R 1590:( 1588:L 1584:R 1582:( 1580:L 1576:R 1572:R 1570:( 1568:L 1557:Z 1549:C 1541:Z 1539:( 1537:l 1533:∗ 1530:M 1518:∗ 1515:M 1511:M 1503:∗ 1500:M 1493:M 1485:M 1481:M 1470:∗ 1467:M 1463:M 1459:M 1455:M 1451:∗ 1448:M 1441:M 1429:∞ 1417:1 1413:λ 1409:0 1405:λ 1401:∞ 1377:1 1369:1 1362:Z 1358:Z 1346:Z 1329:1 1321:∞ 1317:∞ 1313:1 1306:∞ 1297:∞ 1290:1 1282:∞ 1278:1 1268:∞ 1260:1 1254:∞ 1250:1 1246:G 1242:F 1238:E 1230:G 1226:F 1222:E 1202:∞ 1197:n 1192:n 1180:E 1176:F 1172:F 1168:E 1102:1 1074:N 1051:∞ 1047:R 1045:( 1043:L 1039:R 1037:( 1035:L 1028:E 1024:E 1020:F 1016:E 1012:F 1008:E 1004:F 996:E 992:M 985:M 977:M 966:u 962:F 954:F 950:E 942:2 939:F 935:1 932:F 928:2 925:E 921:1 918:E 914:2 911:F 907:1 904:F 900:2 897:E 893:1 890:E 886:2 883:F 879:2 876:E 872:1 869:F 865:1 862:E 855:M 851:u 839:F 835:E 831:F 827:E 823:H 815:F 811:E 803:M 791:M 771:M 767:M 763:M 759:M 755:M 751:M 744:M 740:M 736:M 732:M 728:M 724:M 716:H 712:H 696:E 692:E 678:( 665:X 663:( 661:L 657:X 653:X 649:X 647:( 644:L 529:C 522:M 519:: 472:a 438:( 294:. 282:2 260:H 234:) 229:H 224:( 219:B 206:. 190:) 186:R 182:( 177:2 173:L 138:) 134:R 130:( 121:L 27:.

Index

ring operator
operator assistance
mathematics
*-algebra
bounded operators
Hilbert space
closed
weak operator topology
identity operator
C*-algebra
John von Neumann
single operators
group representations
ergodic theory
quantum mechanics
double commutant theorem
analytic
algebraic
essentially bounded
measurable functions
multiplication operators
Hilbert space
square-integrable functions
bounded operators
von Neumann (1930)
Francis Murray
1936
1937
1943
1938

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑