Knowledge

Virgo interferometer

Source 📝

1269:(which diminishes with the length of the pendulum) above which the noise will be dampened; chaining several pendula allows to reduce the noise by twelve orders of magnitude, at the cost of introducing multiple, collective resonance frequencies, which are at a higher frequency than a single long pendulum. In the current design, the highest resonance frequency is around 2 Hz, providing a meaningful noise reduction starting at 4 Hz, and reaching the level needed for detecting gravitational waves around 10 Hz. A limit of the system is that the noise in the resonance frequency band (below 2 Hz) is not filtered and can generate large oscillations; this is mitigated by an active damping system, including sensors measuring the seismic noise and actuators controlling the superattenuator to counteract the noise. 7513: 35: 1711: 992: 1889: 62: 1445: 1901: 944:; seismic sensors are also installed around the mirrors. The second phase will then try to reduce the mirror thermal noise, by changing the geometry of the laser beam to increase its size on the mirrors (spreading the energy on a larger area and thus reducing the temperature), and by improving the coating of the mirrors; the end mirrors will also be significantly larger, requiring improvements to the suspension. Further improvements for quantum noise reduction are also expected in the second phase, building upon the changes from the first. 1130: 1853: 1520: 1877: 1841: 1821:
many of the outreach activities take place outside the Virgo site. This includes educational activities such as public lectures and courses about Virgo activities, including to school classes, but also participating in several science festivals, which involves the development of methods and devices for the public understanding of gravitational waves (and related topics). The collaboration is also involved in several artistic projects, ranging from visual projects such as "The Rhythm of Space" at the
1427:. In addition, a new method called Newtonian calibration ("NCal") has been introduced at the end of O2, allowing to validate the Pcal results; it relies on gravity to move the mirror, by placing a rotating mass at a specific distance of the mirror. At the beginning of the second part of O4, the Ncal became the main calibration method after achieving better performance than the Pcal; the Pcal is still used to validate the Ncal results and probe higher frequencies unaccessible to the Ncal. 1254:
steered. The optical table where the injection optics used to shape the laser beam are located, such as the benches used for the light detection, are also suspended and under vacuum, to limit the seismic and acoustic noises. In the Advanced Virgo configuration, the whole instrumentation used to detect gravitational waves signals and to steer the interferometer (photodiodes, cameras, and the associated electronics) is also installed on several suspended benches, and under vacuum.
473:. One of the key ideas that set Virgo apart from other projects was targeting low frequencies (around 10 Hz), whereas most projects focused on higher frequencies (around 500 Hz); many believed at the time that this was not doable, and only France and Italy started working on the project, which was first presented in 1987. After being approved by the CNRS and the INFN, the construction of the interferometer began in 1996, with the aim of beginning observations by 2000. 1291: 1198: 1071: 975: 1108: 1398: 7561: 519: 1865: 7525: 7585: 69: 7537: 7573: 26: 1229: 7549: 434:, Italy, and was completed in 2003. After several observation runs in which no gravitational waves were detected, the interferometer was shut down in 2011 to allow for significant upgrades as part of the Advanced Virgo project. It started making observations again in 2017, quickly making its first detections along with the LIGO detectors. 1143:
enhance its power by a factor of 100. A 50 W output power was achieved for the last configuration of the initial Virgo detector, and later reached 100 W during the O3 run, following the Advanced Virgo upgrades; it is expected to be upgraded to 130 W at the beginning of the O4 run. The original Virgo detector used a
1407:
significant source of noise, and is often hard to track and to model. Most of the efforts to mitigate stray light are based on absorbing plates called "baffles", placed near the optics as well as within the tubes; additional precautions are needed to prevent the baffles from having an effect on the interferometer operation.
1115: 1113: 1110: 1109: 1552:(or often amplitude spectrum, which is the square root of the power spectrum); the lower the curve, the better the sensitivity. Virgo is a wide band detector whose sensitivity ranges from a few Hz up to 10 kHz; the image attached shows an example of a Virgo sensitivity curve from 2011, plotted using a 1114: 5627:
The LIGO Scientific Collaboration; the Virgo Collaboration; the KAGRA Collaboration; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K. (2023). "GWTC-3: Compact Binary Coalescences Observed by
1791:
Virgo was included in the latest search for a gravitational wave background along with LIGO, combining the results of O3 with the ones from the O1 and O2 runs (which only used LIGO data). No stochastic background was observed, improving previous constraints on the energy of the background by an order
1693:
The data from the detector is initially only available to LVK members; segments of data around detected events are released at the time of publication of the related paper, and the full data is released after a proprietary period, currently lasting 18 months. During the third observing run (O3), this
1356:
are located at both ends of the arms so that work can be done in the mirror vacuum towers without breaking an arm's ultra-high vacuum. The towers containing the mirrors and attenuators are themselves split in two sections with different pressures. The tubes undergo a process called baking, where they
1282:
mirror, and the rest is collected by the detection system. It first passes through the output mode cleaner, which allows to filter the so-called "high-order modes" (light propagating in an unwanted way, typically introduced by small defects in the mirrors, and susceptible to degrade the measurement),
961:
Following the O4 run, the detector will once again be shut down to undergo upgrades, including an improvement in the coating of the mirrors. A fifth observing run (O5) is currently planned for beginning around June 2027; the target sensitivity for Virgo, which was originally set to be 150–260 Mpc, is
409:
The Virgo Collaboration is part of the larger LIGO-Virgo-KAGRA (LVK) Collaboration, which gathers scientists from the other major gravitational waves experiment, for the purpose of carrying out joint analysis of the data which is crucial for gravitational wave detections. LVK first started in 2007 as
1820:
The Virgo collaboration participates in several activities promoting communication and education on gravitational waves for the general public. One of the more forefront activities is the organization of guided tours of the Virgo facilities for schools, universities, and the general public; however,
1393:
of the mirror. The system also corrects the "cold defects", which are permanent defects introduced during the mirror manufacturing. During the O3 run, the TCS was able to increase the power circulating inside the interferometer by 15%, and decrease the power leaving the interferometer by a factor of
1074:
Aerial view of the site of the Virgo experiment showing the central building, the Mode-Cleaner building, the full 3 km-long west arm and the beginning of the north arm (on the right). The other buildings include offices, workshops, the local computing center and the interferometer control room. When
1752:
domains. While no signal was observed in Virgo, this absence was crucial to put tighter constraints on the localization of the event. This event had tremendous repercussions in the astronomical community, involving more than 4000 astronomers, improving the understanding of neutron star mergers, and
1697:
The analysis of the data requires a variety of different techniques, targeting the different type of sources. The major part of the effort is dedicated to the detection and analysis of mergers of compact objects, the only type of source detected up until now. Several different analysis software are
1689:
An important part of the Virgo collaboration resources is dedicated to the development and deployment of data analysis software designed to process the output of the detector. Apart from the data acquisition software and the tools for distributing the data, this effort is mostly shared with members
1448:
Visualization of a gravitational wave "koi fish" glitch, from LIGO Hanford data taken in 2015. The top part represents the output of the detector ("strain") as a function of time, while the bottom part displays the frequency distribution of the power as a function of time. This type of glitch is of
2922:
Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; Barone, F.; Baronick, J-P; Barsuglia, M.; Basti, A.; Basti, F.; Bauer, Th S.; Bavigadda, V.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bersanetti, D.; Bertolini, A.;
1430:
Finally, the instrument requires an efficient data acquisition system. This system is in charge of managing the data measured at the output of the interferometer and from the many sensors present on the site, writing it in files, and distributing the files for data analysis. To this end, dedicated
1406:
Another important component is the system for controlling stray light, which refers to any light leaving the designated path of the interferometer, either by scattering on a surface or from unwanted reflection. The recombination of this stray light with the main beam of the interferometer can be a
1159:
with an amplification stage made of fibers as well, to improve the robustness of the system; in its final configuration, it is planned to coherently combine the light of two lasers in order to achieve the required power. The wavelength of the laser is 1064 nanometres, in both the original and
1510:
Finally, several short-lived artifacts may appear in the data due to many possible instrumental issues; these are usually referred to as "glitches". It is estimated that about 20% of the detected events are impacted by glitches, requiring specific data processing methods to mitigate their impact.
1185:
in each arm, where the light bounces thousands of times before returning to the beam splitter, maximizing the effect of the signal on the laser path. It also allows the power of the light circulating in the arms to be increased. These mirrors have been specifically designed for Virgo and are made
1163:
This laser is sent into the interferometer after passing through the injection system, which further ensures the stability of the beam, adjusts its shape and power, and positions it correctly for entering the interferometer. Key components of the injection system include the input mode cleaner (a
530:
The Advanced Virgo detector aimed to increase the sensitivity (and thus the distance at which a signal can be detected) by a factor of 10, allowing it to probe a volume of the Universe 1,000 times larger, making detection of gravitational waves more likely. It benefited from the experience gained
1327:
noise (dominant at low frequencies), as the latter was not limiting the instrument's sensitivity. Due to the addition of the squeezed vacuum injection, the quantum noise was reduced by 3.2 dB at high frequencies, resulting in an increase of the range of the detector by 5–8%. Currently, more
947:
The fourth observation run ("O4") was scheduled to start in May 2023, and was planned to last for 20 months, including a commissioning break of up to two months. However, on 11 May 2023, Virgo announced that it would not join at the beginning of O4, as the interferometer was not stable enough to
538:
were added at both ends of each arm to trap residual particles coming from the mirror towers. The new mirrors were larger (350 mm in diameter, with a weight of 40 kg), and their optical performance was improved. The critical optical elements used to control the interferometer are under
405:
The Virgo Collaboration consolidates all the researchers working on various aspects of the detector. As of May 2023, around 850 members, representing 142 institutions in 16 different countries, are part of the collaboration. This includes institutions from France, Italy, the Netherlands, Poland,
5171:
Glanzer, J.; Banagiri, S.; Coughlin, S. B.; Soni, S.; Zevin, M.; Berry, C. P. L.; Patane, O.; Bahaadini, S.; Rohani, N.; Crowston, K.; Kalogera, V.; Østerlund, C.; Katsaggelos, A. (16 March 2023). "Data quality up to the third observing run of Advanced LIGO: Gravity Spy glitch classifications".
1277:
Part of the light circulating in the arm cavities is sent towards the detection system by the beam splitter. In its optimal configuration, the interferometer works close to the "dark fringe", meaning that very little light is sent towards the output (most of it is sent back to the input, to be
1253:
which are attached to a series of attenuators. This chain of suspension, called the "superattenuator", is close to 8 meters high and is also under vacuum. The superattenuators do not only limit the disturbances on the mirrors, they also allow the mirror position and orientation to be precisely
1142:
is the light source of the experiment. It must be powerful, while extremely stable in frequency and amplitude. To meet all these (somewhat opposing) specifications, the beam starts from a very low power, yet very stable, laser. The light from this laser passes through several amplifiers, which
1213:
The signal recycling mirror, located at the output of the interferometer, re-injects part of the signal within the interferometer (currently, the transmission of this mirror is planned to be 40%), effectively forming another cavity. By making small adjustments to this signal recycling mirror,
496:
In the 2000s, the Virgo detector was first built, commissioned, and operated. The instrument successfully reached its expected sensitivity. This initial endeavor was used to validate the Virgo technical design choices; it also demonstrated that giant interferometers were promising devices for
1733:, was a coalescence between two black holes, and also the first event to be detected by three different detectors, allowing for its localization to be greatly improved compared to the events from the first observing run. It also allowed for the first conclusive measure of gravitational wave 1218:
can be reduced in part of the frequency band, while increasing it elsewhere, making it possible to tune the interferometer for certain frequencies. It is currently planned to use the "wideband" configuration, decreasing the noise at high and low frequencies but increasing it at intermediate
1034:, a specific type of (generally) continuous signal where the signal is diffused across large regions of the sky rather than a single source. It could be constituted of a large number of indistinguishable sources from the above categories, or originate from the early instants of the universe. 5827:
Watson, Darach; Hansen, Camilla J.; Selsing, Jonatan; Koch, Andreas; Malesani, Daniele B.; Andersen, Anja C.; Fynbo, Johan P. U.; Arcones, Almudena; Bauswein, Andreas; Covino, Stefano; Grado, Aniello; Heintz, Kasper E.; Hunt, Leslie; Kouveliotou, Chryssa; Leloudas, Giorgos (October 2019).
1419:
interacting with magnets fixed to the pendulum. This technique was employed until O2. For O3, the main calibration method became the photon calibration ("PCal") which had until then been used as a secondary method to validate the results; it uses an auxiliary laser to displace the mirror
1523:
A sensitivity curve from the Virgo detector in the frequency band , computed in August 2011. Its shape is typical: the thermal noise of the mirror suspension pendulum dominates at low frequency while the increase at high frequency is due to the laser shot noise. In between, one can see
5972:
LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration; Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhikari, N.; Adhikari, R. X.; Adkins, V. K.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D. (28 November 2022).
948:
reach the expected sensitivity and needed to undergo the replacement of one of the mirrors, requiring several weeks of work. Virgo has not joined the O4 run during the first part of the run ("O4a"), which ended on 16 January 2024, as it only managed to reach a peak sensitivity of 45
1302:
source was introduced to reduce the quantum noise, which is one of the main limitations to sensitivity. When replacing the standard vacuum by a squeezed vacuum, the fluctuations of a quantity are decreased, at the expense of increasing the fluctuations of the other quantity due to
952:
instead of the 80 to 115 Mpc initially expected; it joined the second part of the run ("O4b") which began on 10 April 2024, with a sensitivity of 50 to 55 Mpc. In June 2024, it was announced that the O4 run would last until 9 June 2025, to get more preparation for the O5 upgrades.
398:, later joined as an observer and eventually became a full member. EGO is responsible for the Virgo site and is in charge of the construction, maintenance, and operation of the detector, as well as its upgrades. One of the goals of EGO is also to promote research on and studies of 6261:
LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration; Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhikari, N.; Adhikari, R. X.; Adkins, V. K.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D. (9 August 2022).
1112: 1674:
the laser power on the beam splitter. To improve it, these two quantities must be increased. This is achieved by having long arms, using optical cavities inside the arm to maximize the exposition to the signal, and implementing power recycling to increase the power in the arms.
1592:. For instance, the range for Virgo during the O3 run was between 40 and 50 Mpc. This range is only an indicator and does not represent a maximal range for the detector; signals from more massive sources will have a larger amplitude, and can thus be detected from further away. 333:). Cooperation between several detectors is crucial for detecting gravitational waves and pinpointing their origin, which is why the LIGO and Virgo collaborations have shared their data since 2007, and with KAGRA since 2019, to form the LIGO-Virgo-KAGRA (LVK) collaboration. 352:
from Earth. Founded at a time when gravitational waves were only a prediction by general relativity, it has now participated in detecting multiple gravitational wave events, making its first detection in 2017 (together with the two LIGO detectors), quickly followed by the
1372:
of the substrate; this results in power escaping from the interferometer and in perturbations of the signal. These two effects are accounted for by the thermal compensation system (TCS), which includes sensors called Hartmann wavefront sensors (HWS), used to measure the
1186:
from state-of-the-art technologies. They are cylinders 35 cm in diameter and 20 cm thick, made from the purest glass obtainable. The mirrors are polished to the atomic level to avoid diffusing (and hence losing) any light. Finally, a reflective coating (a
1180:
located in each arm are the most critical optics of the interferometer. They include the two end mirrors, located at the ends of the 3-km interferometer arms, and the two input mirrors, located near the beginning of the arms. Together, these mirrors make a resonant
1401:
One of the Newtonian calibrators ("NCal") before it was installed at the detector. Several of them are installed near one of the end mirrors ; the movement of the rotor generates a varying gravitational force on the mirror, allowing to move it in a controlled
610: 5564:
The LIGO Scientific Collaboration; the Virgo Collaboration; the KAGRA Collaboration; Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhicary, S.; Adhikari, N.; Adhikari, R. X.; Adkins, V. K.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M. (7 February 2023).
965:
No official plans have been announced for the future of the Virgo installations following the O5 period, although projects for further improving the detectors have been suggested; the current plans of the collaboration are referred to as the Virgo_nEXT project.
509:
to reduce the thermal noise. However, the initial Virgo detector was not sensitive enough and after several months of data collection with the upgraded suspension system, the detector was shut down in September 2011 to begin the installation of Advanced Virgo.
6203:
LIGO Scientific Collaboration and Virgo Collaboration; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, N.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D. (28 April 2022).
1698:
running on the data searching for this type of event, and a dedicated infrastructure is used to emit alerts to the online community. Other efforts are carried out after the data taking period ("offline"), including searches for continuous sources or for a
1209:
The power recycling mirror, placed between the laser and the beam splitter. As most light is reflected toward the laser after returning to the beam splitter, this mirror re-injects this light back into the main interferometer, increasing the power in the
4394:
Zhao, Yuhang; Aritomi, Naoki; Capocasa, Eleonora; Leonardi, Matteo; Eisenmann, Marc; Guo, Yuefan; Polini, Eleonora; Tomura, Akihiro; Arai, Koji; Aso, Yoichi; Huang, Yao-Chin; Lee, Ray-Kuang; Lück, Harald; Miyakawa, Osamu; Prat, Pierre (28 April 2020).
1788:. While none of the searches managed to identify a signal, this allowed upper limits to be set on some parameters; in particular, it was found that the deviation from perfect spinning balls for close known pulsars is at most of the order of 1 mm. 3571:
The LIGO Scientific Collaboration; the Virgo Collaboration; the KAGRA Collaboration; Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhikari, N.; Adhikari, R. X.; Adkins, V. K.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K. (2023).
1104:. As the induced deformation is extremely small, the design requires an excellent precision in the position of the mirrors, the stability of the laser, the measurements, and a very good isolation from the outside world to reduce the amount of noise. 1414:
step is required, which involves moving the mirrors in a controlled way and measuring the result. During the initial Virgo era, this was primarily achieved by agitating one of the pendulum to which the mirror is suspended using coils to generate a
1900: 1694:
resulted in two separated data releases (O3a and O3b), corresponding to the first six months and last six months of the run respectively. The data is then available for anyone on the Gravitational Wave Open Science Center (GWOSC) platform.
999:
event. The x-axis represents the time, and y-axis is the frequency; the way the frequency rises with the time is typical of gravitational waves from compact object binaries, and its exact shape is mainly determined by the masses of the
312:
operates the detector and defines the strategy and policy for its use and upgrades. It is composed of more than 700 members across 16 different countries. The Virgo interferometer operates with similar detectors, including the two
1248:
which could propagate up to the mirrors, shaking them and hence obscuring potential gravitational wave signals, the large mirrors are suspended by a complex system. All of the main mirrors are suspended by four thin fibers made of
1133:
Layout of the Virgo interferometer during the O4 run (2023-2024). It includes the signal recycling mirror and the filter cavity, not present during the previous run. All laser power estimates are indicative as they can fluctuate
3996:
Braccini, S.; Barsotti, L.; Bradaschia, C.; Cella, G.; Virgilio, A. Di; Ferrante, I.; Fidecaro, F.; Fiori, I.; Frasconi, F.; Gennai, A.; Giazotto, A.; Paoletti, F.; Passaquieti, R.; Passuello, D.; Poggiani, R. (1 July 2005).
1119:
Animation displaying the principle of gravitational wave detection with an interferometer such as Virgo. Mirror displacements and phase difference are widely exaggerated ; time is also slowed down by more than a factor
1728:
The first detection of a gravitational signal by Virgo took place at during the second observing run (O2) of the "Advanced" era, as only the LIGO detectors were operating during the first observing run. The event, named
373:
telescopes) as of 2024. The detector is used for joint observing runs with the other detectors, separated by commissioning periods during which the detector is upgraded to increase its sensitivity and scientific output.
1013:) merging together, emitting a rapidly growing signal as they get closer to each other, which only becomes detectable in the last seconds before the merger. Other possible sources of short-lived gravitational waves are 617: 1038:
The detection of these sources gives a new way to observe them (often carrying different information than more classical ways, e.g. using telescopes), and allows to probe fundamental properties of gravity, such as the
5901:
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K. (16 October 2017).
5125:
Acernese, F.; Amico, P.; Alshourbagy, M.; Antonucci, F.; Aoudia, S.; Astone, P.; Avino, S.; Babusci, D.; Ballardin, G.; Barone, F.; Barsotti, L.; Barsuglia, M.; Bauer, Th. S.; Beauville, F.; Bigotta, S. (April 2007).
2041:
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K. (16 October 2017).
500:
The construction of the initial Virgo detector was completed in June 2003, and several data collection periods ("science runs") followed between 2007 and 2011. Some of these runs were done simultaneously with the two
3016:
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K. (6 October 2017).
6871: 6333:
Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, A.; Adams, C.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D. (23 July 2021).
4326:
Virgo Collaboration; Acernese, F.; Agathos, M.; Ain, A.; Albanesi, S.; Alléné, C.; Allocca, A.; Amato, A.; Amra, C.; Andia, M.; Andrade, T.; Andres, N.; Andrés-Carcasona, M.; Andrić, T.; Ansoldi, S. (25 July 2023).
6109:
Abbott, R.; Abe, H.; Acernese, F.; Ackley, K.; Adhikari, N.; Adhikari, R. X.; Adkins, V. K.; Adya, V. B.; Affeldt, C.; Agarwal, D.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L. (25 May 2022).
6803: 6793: 6783: 6752: 6742: 2777:; Barsuglia, M.; Basti, A.; Bauer, Th S.; Beauville, F.; Bebronne, M.; Bejger, M.; Beker, M. G.; Bellachia, F.; Belletoile, A.; Beney, J. L.; Bernardini, M.; Bigotta, S.; Bilhaut, R.; et al. (29 March 2012). 1347:
installation in Europe, with a total volume of 6,800 cubic meters. The two 3-km arms are made of a long steel pipe 1.2m in diameter in which the target residual pressure is about 1 thousandth of a billionth of an
931:
The upgrades following O3 are part of the "Advanced Virgo +" program, divided in two phases, the first one preceding the O4 run and the second one preceding the O5 run. The first phase focuses on the reduction of
4190:
The Virgo Collaboration; Acernese, F.; Agathos, M.; Aiello, L.; Ain, A.; Allocca, A.; Amato, A.; Ansoldi, S.; Antier, S.; Arène, M.; Arnaud, N.; Ascenzi, S.; Astone, P.; Aubin, F.; Babak, S. (22 September 2020).
4822:
Accadia, T; Acernese, F; Antonucci, F; Astone, P; Ballardin, G; Barone, F; Barsuglia, M; Basti, A; Bauer, Th S; Beker, M G; Belletoile, A; Birindelli, S; Bitossi, M; Bizouard, M A; Blom, M (21 January 2011).
4258:
Virgo Collaboration; Acernese, F.; Agathos, M.; Aiello, L.; Allocca, A.; Amato, A.; Ansoldi, S.; Antier, S.; Arène, M.; Arnaud, N.; Ascenzi, S.; Astone, P.; Aubin, F.; Babak, S.; Bacon, P. (5 December 2019).
1319:, during the infancy of gravitational wave detectors. During the O3 run, frequency-independent squeezing was implemented, meaning that the squeezing is identical at all frequencies; it was used to reduce the 2510:
Caron, B.; Dominjon, A.; Drezen, C.; Flaminio, R.; Grave, X.; Marion, F.; Massonnet, L.; Mehmel, C.; Morand, R.; Mours, B.; Yvert, M.; Babusci, D.; Giordano, G.; Matone, G.; Mackowski, J. -M. (1 May 1996).
3119:
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M. (28 February 2018).
1829:, to musical ones with different concerts. It also includes activities promoting gender equality in science, for instance highlighting the women working in Virgo in communications to the general public. 1095:
directions, bouncing on a mirror located at the end of each arm. As the gravitational wave passes, it alters the path of the two beams in a different manner; they are then recombined, and the resulting
4096:
Beauville, F; Buskulic, D; Derome, L; Dominjon, A; Flaminio, R; Hermel, R; Marion, F; Masserot, A; Massonnet, L; Mours, B; Moreau, F; Mugnier, P; Ramonet, J; Tournefier, E; Verkindt, D (7 May 2006).
1111: 1294:
Detection bench of the Virgo interferometer before being installed in April 2015. It is 88 cm wide and hosts the output mode cleaner; the photodiode measuring the signal is placed on another bench.
2773:
Accadia, T.; Acernese, F.; Alshourbagy, M.; Amico, P.; Antonucci, F.; Aoudia, S.; Arnaud, N.; Arnault, C.; Arun, K. G.; Astone, P.; Avino, S.; Babusci, D.; Ballardin, G.; Barone, F.; Barrand, G.;
1340:
Seen from the air, the Virgo detector has a characteristic "L" shape with its two 3-km-long perpendicular arms. The arm "tunnels" house pipes in which the laser beams are travelling in a vacuum.
1357:
are heated at 150°C to remove unwanted particles stuck on the surfaces; while the towers were also baked-out in the initial Virgo design, cryogenic traps are now used to prevent contamination.
1164:
140-metre-long cavity made for improving the beam quality, by stabilizing the frequency, removing light propagating in an unwanted way and reducing the effect of misalignment of the laser), a
6814: 6809: 1632: 2923:
Bitossi, M.; Bizouard, M. A.; Bloemen, S.; Blom, M.; Boer, M.; Bogaert, G.; Bondi, D.; et al. (2015). "Advanced Virgo: A second-generation interferometric gravitational wave detector".
1332:, and helps reduce the shot noise at high frequencies (where radiation pressure noise is not relevant), and reduce the radiation pressure noise at low frequencies (where shot noise is low). 6824: 458:; while they could in principle detect gravitational waves, none of the experiments succeeded. They did however spark the creation of many research groups dedicated to gravitational waves. 1876: 1744:, first merger of two neutron stars detected by the gravitational wave network, and as of January 2023 the only event with a confirmed detection of an electromagnetic counterpart, both in 1504:
frequency of the suspension fibers (which can vibrate at a specific frequency just as the strings of a violin do); and calibration lines, appearing when mirrors are moved for calibration.
4956:
Acernese, F; Agathos, M; Ain, A; Albanesi, S; Allocca, A; Amato, A; Andrade, T; Andres, N; Andrić, T; Ansoldi, S; Antier, S; Arène, M; Arnaud, N; Assiduo, M; Astone, P (21 January 2022).
603: 1352:(improving by a factor of 100 from the original Virgo level). Thus, the residual gas molecules (mainly hydrogen and water) have a limited impact on the path of the laser beams. Large 583:, and represents both the first binary neutron star merger observed and the first gravitational wave observation which was confirmed by non-gravitational means. Indeed, the resulting 1457:
which limit its ability to detect gravitational wave signals. Some of these sources correspond to large frequency ranges and limit the overall sensitivity of the detector, such as:
924:
After further upgrades, Virgo started the third observation run ("O3") in April 2019, planned to last one year, but the run ended earlier that expected on 27 March 2020, due to the
1808:
km s Mpc, combining results from binary black holes and from the GW170817 event. This result is coherent with other estimates of the constant, but not precise enough to solve the
1906:
View of the 3-km-long Virgo west arm (right pipe). The tube on the left, which is 150 metres long, hosts the mode-cleaner cavity which is used to spatially filter the laser beam.
1471:
thermal noise of the mirrors and their suspension wires, corresponding to the agitation of the mirror/suspension from its own temperature, from a few tens to a few hundreds of Hz
1559:
The most common measure for the sensitivity of a gravitational wave detector is the "horizon distance", defined as the distance at which a binary neutron star with masses 1.4
1760:
Several searches for continuous gravitational waves have been performed on data from the past runs. On the O3 run, these include an all-sky search, targeted searches toward
1684: 983: 7137: 1168:
preventing any light from returning to the laser, and a mode-matching telescope, which adapts the size and position of the beam right before it enters the interferometer.
505:
detectors. There was a shut-down of a few months in 2010 to allow for a major upgrade of the Virgo suspension system: the original steel suspension wires were replaced by
1005:
Transient sources, representing objects only detectable for a short period. The main sources in this category are the compact binary coalescenses (CBC), corresponding to
534:
The Advanced Virgo detector kept the same vacuum infrastructure as the initial Virgo, but the remainder of the interferometer was significantly upgraded. Four additional
1065: 1360:
Due to the high power in the interferometer, the mirrors are susceptible to thermal effects caused by the heating induced by the laser (despite having an extremely low
1888: 461:
The idea of a large interferometric detector began to gain credibility in the early 1980s, and in 1985, the Virgo project was conceptualized by the Italian researcher
3094: 2010: 1328:
sophisticated squeezed states are produced by combining the technology from O3 with a new 285 m long cavity, known as the filter cavity. This technology is known as
6504: 7096: 3789: 7605: 1672: 1652: 1468:
from numerous sources, such as waves in the Mediterranean Sea, wind, or human activity like traffic), generally in the low frequencies up to about 10 Hertz (Hz)
6900: 1219:
frequencies. The decreased noise at high frequencies is of particular interest to study the signal from moments right before and after a compact object merger.
7009: 147: 1232:
Any Virgo mirror is supported, under vacuum, by a mechanical structure enormously damping seismic vibrations. A "superattenuator" consists of a chain of
988:
Virgo is designed to look for gravitational waves emitted by astrophysical sources across the universe, which can be broadly classified into three types:
5094:
Aubin, Florian; Dangelser, Eddy; Estevez, Dimitri; Masserot, Alain; Mours, Benoît; Pradier, Thierry; Syx, Antoine; Van Hove, Pierre (6 September 2024),
2870: 1488:
Newtonian noise, caused by tiny fluctuations in the Earth's gravitational field, which affects the position of the mirror, relevant below 20 Hz
1194:) is added. The mirrors located at the end of the arms reflect almost all incoming light; less than 0.002% of the light is lost at each reflection. 7025: 6319: 6038: 3843: 2148:[Press release - The CNRS signs the franco-italian agreement on the creation of the EGO (European Gravitational Observatory) consortium.]. 5801: 1240:. In this way seismic vibrations above 10 Hz are reduced by more than 10 times and the position of the mirror is very carefully controlled. 6581: 4736:
Vinet, Jean-Yves; Brisson, Violette; Braccini, Stefano; Ferrante, Isidoro; Pinard, Laurent; Bondu, François; Tournié, Eric (15 November 1997).
2375:
Bersanetti, Diego; Patricelli, Barbara; Piccinni, Ornella Juliana; Piergiovanni, Francesco; Salemi, Francesco; Sequino, Valeria (August 2021).
387: 301: 6178:"Narrow-band searches for continuous and long-duration transient gravitational waves from known pulsars in the third LIGO-Virgo observing run" 6885: 6881: 6763: 6677: 962:
currently being redefined in light of the performance during O4; plans to enter the O5 run are expected to be known before the end of 2024.
7610: 3898: 1492:
In addition to these broad noise sources, others may affect specific frequencies. These notably include a source at 50 Hz (as well as
419: 3749:
High-power laser system for Advanced Virgo gravitational wave detector : coherently combined master oscillator fiber power amplifiers
1257:
The design of the superattenuators is mainly based on the passive attenuation of the seismic noise, which is achieved by chaining several
7269: 6988: 7249: 6779: 6738: 2482: 4549: 1047:, or more generally whether the observed signals are correctly described by general relativity. It also provides a way to measure the 61: 6819: 1718:
event, both with the two LIGO detectors and with the full network. The addition of Virgo allows for a much more precise localization.
3331: 7197: 5371: 7192: 6876: 3632: 1723: 1329: 1507:
Additional noise sources may also have a short-term impact—bad weather or earthquakes may temporarily increase the noise level.
2146:"Communique de presse – Le CNRS signe l'accord franco-italien de création du consortium EGO European Gravitational Observatory" 1449:
unknown origin, and covers a broad frequency range, with characteristic "fins" at lower frequencies in the time-frequency plot.
1361: 557:
detectors ("aLIGO") on 1 August 2017, during the "O2" observation period. On 14 August 2017, LIGO and Virgo detected a signal,
497:
detecting gravitational waves in a wide frequency band. This phase is generally named the "initial Virgo" or "original Virgo".
6636: 6452: 5975:"All-sky search for continuous gravitational waves from isolated neutron stars using Advanced LIGO and Advanced Virgo O3 data" 3438:"Search for Lensing Signatures in the Gravitational-Wave Observations from the First Half of LIGO–Virgo's Third Observing Run" 1028:), which may emit gravitational waves if they are not perfectly spherical (e.g. if there are tiny "mountains" on the surface). 1024:
Continuous sources, emitting a signal observable on long timescales. The prime candidates are rapidly-spinning neutron stars (
5147: 4634: 3538: 1481:, corresponding to the fluctuation of the power received by the photodiodes and relevant above a few hundreds of Hz, and the 423: 391: 305: 2175: 2145: 6206:"Search of the early O3 LIGO data for continuous gravitational waves from the Cassiopeia A and Vela Jr. supernova remnants" 4397:"Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors" 3844:"A study of coating mechanical and optical losses in view of reducing mirror thermal noise in gravitational wave detectors" 2746:[Gravitational waves : Virgo enters in its scientific exploitation phase - Press releases and communications] 2307:
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (Minutes of the Royal Prussian Academy of Sciences)
6721: 4261:"Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light" 2744:"Ondes gravitationnelles : Virgo entre dans sa phase d'exploitation scientifique – Communiqués et dossiers de presse" 6789: 6336:"Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo's third observing run" 1882:
The Virgo site with, in the foreground, the building which hosts the detector control room and the local computer center.
6112:"Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs" 4098:"Improvement in the shot noise of a laser interferometer gravitational wave detector by means of an output mode-cleaner" 3800: 2558:
J.M. Weisberg and J.H. Taylor (2004). "Relativistic Binary Pulsar B1913+16: Thirty Years of Observations and Analysis".
7336: 7075: 6961: 2519:. Proceedings of the Fourth International Workshop on Theoretical and Phenomenological Aspects of Underground Physics. 383: 297: 115: 2994: 1598: 1410:
To estimate properly the response of the detector to gravitational waves and thus correctly reconstruct the signal, a
1287:, which measure the light intensity. Both the output mode cleaner and the photodiodes are suspended and under vacuum. 7132: 6670: 6606: 5626: 5563: 4055:. Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011). 3570: 3281: 1528:(for instance, the suspension wire violin modes) and contributions from various instrumental noises (among which the 1852: 450:
in 1916, it was not before the 1970s that serious projects for detecting them started to appear. The first were the
7512: 6478: 5463: 5397:
Chen, Hsin-Yu; Holz, Daniel E; Miller, John; Evans, Matthew; Vitale, Salvatore; Creighton, Jolien (4 March 2021).
1389:, which selectively heat parts of the mirror to correct the defects, and ring heaters, which precisely adjust the 7290: 5306:
Davis, D; Littenberg, T B; Romero-Shaw, I M; Millhouse, M; McIver, J; Di Renzo, F; Ashton, G (15 December 2022).
1737:, providing evidence against the existence of polarizations other than the ones predicted by general relativity. 4193:"Quantum Backaction on kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector" 6712: 6702: 5732: 3697: 1147:
laser system, where a "master" laser is used to stabilize a high-powered "slave" laser; the master laser was a
4047:
Beker, M. G.; Blom, M.; van den Brand, J. F. J.; Bulten, H. J.; Hennes, E.; Rabeling, D. S. (1 January 2012).
3379:
Eardley, Douglas M.; Lee, David L.; Lightman, Alan P.; Wagoner, Robert V.; Will, Clifford M. (30 April 1973).
1083:
perturbation which propagates at the speed of light. It slightly curves space-time, which locally changes the
7394: 6946: 2826: 1699: 1031: 3305: 1840: 7127: 6686: 6663: 3354: 1537: 1485:
noise, corresponding to the pressure applied by the laser on the mirror, which is relevant at low frequency
1390: 7357: 4958:"Calibration of advanced Virgo and reconstruction of the detector strain h(t) during the observing run O3" 3828:
The Advanced Virgo Gravitational Wave Detector/ Study of the optical design and development of the mirrors
3122:"GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences" 1075:
this picture was shot, the building hosting the project management and the canteen had not been built yet.
7449: 7331: 7294: 6202: 1454: 1187: 406:
Spain, Belgium, Germany, Hungary, Portugal, Greece, Czechia, Denmark, Ireland, Monaco, China, and Japan.
34: 6650: 2821: 1864: 1453:
Due to the precision required in the measurement, the Virgo detector is sensitive to several sources of
488:
was in agreement with the hypothesis that the system was losing energy by emitting gravitational waves.
7503: 6645: 2783: 978:
Numerical simulations of the gravitational waves emitted by the inspiral and merger of two black holes.
5308:"Subtracting glitches from gravitational-wave detector data during the third LIGO-Virgo observing run" 3998: 1236:, hanging from an upper platform, supported by three long flexible legs clamped to ground, forming an 1201:
One of the mirrors from the initial Virgo detector, now used as an exposition model at the Virgo site.
2048: 1144: 572:
was detected by LIGO and Virgo on 17 August 2017. The signal was produced by the last minutes of two
550:. In the original plan, the laser power was expected to reach 200 W in its final configuration. 3019:"GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence" 6264:"Search for continuous gravitational wave emission from the Milky Way center in O3 LIGO-Virgo data" 4888:
Estevez, D; Lagabbe, P; Masserot, A; Rolland, L; Seglar-Arroyo, M; Verkindt, D (25 February 2021).
4824: 4550:
https://workarea.ego-gw.it/ego2/virgo/advanced-virgo/vac/varies/Virgo_Vacuum_system_Overview_r2.pdf
1822: 1299: 1088: 937: 278: 128: 5489: 7434: 3248: 2337: 5904:"Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A" 4097: 1809: 991: 4738:"Scattered light noise in gravitational wave interferometric detectors: A statistical approach" 4329:"Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector" 1734: 476:
The first goal of Virgo was to directly observe gravitational waves, of which the study of the
6016: 5727: 5398: 5375: 5307: 5237: 4461: 6505:"Black Hole: a new interactive installation by EGO and INFN at Città della Scienza in Naples" 6313: 6032: 4462:"Broadband quantum noise reduction via frequency dependent squeezing for Advanced Virgo Plus" 3186: 2743: 2724:
Acernese, F.; Amico, P.; Al-Shourbagy, M.; Aoudia, S.; Avino, S.; et al. (August 2004).
1585: 1304: 345: 322: 6402: 4524: 1278:
collected by the power recycling mirror). A fraction of this light is reflected back by the
6357: 6285: 6227: 6177: 6133: 6075: 5996: 5925: 5851: 5751: 5692: 5647: 5588: 5420: 5329: 5191: 5052: 4979: 4911: 4846: 4788: 4749: 4700: 4643: 4576: 4475: 4418: 4340: 4272: 4204: 4164: 4109: 4060: 4010: 3962: 3907: 3858: 3763: 3712: 3662: 3595: 3518: 3459: 3392: 3261: 3143: 3040: 2942: 2885: 2835: 2792: 2675: 2614: 2577: 2524: 2489:
Proposition for an interferometric antenna with long arms for searching gravitational waves
2459: 2390: 2346: 2310: 2067: 1690:
of the LIGO and KAGRA collaborations, as part of the LIGO-Virgo-KAGRA (LVK) collaboration.
1444: 1382: 1040: 4396: 3651:
F. Bondu; et al. (1996). "Ultrahigh-spectral-purity laser for the VIRGO experiment".
3121: 3018: 2226: 8: 7589: 7419: 7299: 7279: 7226: 7119: 6845: 5239:
Analysis of sensitivity and noise sources for the Virgo gravitational wave interferometer
5031:"First tests of a Newtonian calibrator on an interferometric gravitational wave detector" 5029:
Estevez, D; Lieunard, B; Marion, F; Mours, B; Rolland, L; Verkindt, D (9 November 2018).
4777:"Scattered light noise in gravitational wave interferometric detectors: Coherent effects" 4656: 4629: 4562: 3950: 3257: 2897: 1781: 1529: 1262: 580: 330: 6361: 6289: 6231: 6137: 6079: 6000: 5929: 5855: 5755: 5696: 5651: 5592: 5424: 5333: 5195: 5056: 4983: 4915: 4858: 4850: 4792: 4753: 4704: 4647: 4580: 4479: 4422: 4344: 4276: 4208: 4168: 4113: 4064: 4022: 4014: 3974: 3966: 3911: 3870: 3862: 3716: 3666: 3599: 3522: 3463: 3396: 3265: 3187:"Status of the Virgo gravitational-wave detector and the O3 Observing Run - EPS-HEP2019" 3147: 3044: 2954: 2946: 2889: 2847: 2839: 2805: 2796: 2778: 2679: 2618: 2581: 2528: 2484:
Proposta di Antenna interferometrica a grande base per la ricerca di Onde Gravitazionali
2463: 2394: 2350: 2314: 2302: 2071: 1500:; so-called "violin modes" at 300 Hz (and several harmonics), corresponding to the 7577: 7565: 7439: 7326: 7142: 7030: 6697: 6381: 6347: 6335: 6301: 6275: 6263: 6243: 6217: 6205: 6159: 6123: 6091: 6065: 6020: 5986: 5974: 5951: 5915: 5883: 5841: 5783: 5741: 5708: 5682: 5637: 5606: 5578: 5444: 5410: 5353: 5319: 5215: 5181: 5153: 5076: 5042: 5011: 4969: 4935: 4901: 4870: 4836: 4669: 4628:
Rocchi, A; Coccia, E; Fafone, V; Malvezzi, V; Minenkov, Y; Sperandio, L (1 June 2012).
4499: 4442: 4408: 4376: 4308: 4240: 4133: 3978: 3931: 3874: 3728: 3613: 3585: 3544: 3508: 3477: 3449: 3418: 3287: 3167: 3133: 3072: 3030: 2958: 2932: 2901: 2851: 2698: 2665: 2653: 2630: 2604: 2567: 2439: 2381: 2332: 2093: 2057: 1657: 1637: 1482: 1424: 1374: 1324: 1191: 1044: 544: 462: 443: 274: 270: 104: 6053: 4561:
Kelly, Thu-Lan; Veitch, Peter J.; Brooks, Aidan F.; Munch, Jesper (20 February 2007).
3380: 2512: 1431:
hardware and software have been developed to accommodate the specific needs of Virgo.
7091: 6385: 6373: 6305: 6247: 6163: 6151: 6052:
Whelan, John T.; Sundaresan, Santosh; Zhang, Yuanhao; Peiris, Prabath (20 May 2015).
6024: 5955: 5943: 5887: 5875: 5867: 5775: 5767: 5712: 5610: 5448: 5436: 5357: 5345: 5219: 5207: 5157: 5143: 5080: 5068: 5015: 5003: 4939: 4927: 4874: 4862: 4804: 4718: 4673: 4661: 4610: 4602: 4503: 4491: 4446: 4434: 4380: 4368: 4312: 4300: 4244: 4232: 4137: 4125: 4121: 4078: 4026: 3982: 3935: 3923: 3878: 3732: 3724: 3678: 3617: 3548: 3534: 3481: 3422: 3291: 3277: 3159: 3064: 3056: 2855: 2703: 2649: 2540: 2536: 2451: 2418: 2097: 2085: 1956: 1533: 1365: 1349: 1344: 1237: 1006: 925: 562: 290: 6095: 5829: 5787: 4776: 4737: 4563:"Accurate and precise optical testing with a differential Hartmann wavefront sensor" 4152: 3076: 2962: 2905: 2634: 2448:
The hidden music of the Universe : my life of running after gravitational waves
7541: 7424: 7415: 6633: 6365: 6293: 6235: 6141: 6083: 6012: 6004: 5933: 5859: 5759: 5700: 5655: 5596: 5428: 5337: 5199: 5135: 5128:"Data Acquisition System of the Virgo Gravitational Waves Interferometric Detector" 5101: 5060: 4995: 4987: 4919: 4854: 4796: 4757: 4708: 4651: 4592: 4584: 4483: 4430: 4426: 4358: 4353: 4348: 4328: 4290: 4285: 4280: 4260: 4222: 4217: 4212: 4192: 4172: 4117: 4068: 4049:"Seismic Attenuation Technology for the Advanced Virgo Gravitational Wave Detector" 4018: 3970: 3915: 3866: 3720: 3670: 3603: 3526: 3467: 3408: 3400: 3269: 3171: 3155: 3151: 3090: 3052: 3048: 2950: 2893: 2843: 2800: 2693: 2683: 2622: 2532: 2408: 2398: 2354: 2200: 2075: 1754: 1553: 1549: 1369: 1364:). These thermal effects can take the shape of a deformation of the surface due to 1316: 1165: 553:
Advanced Virgo started the commissioning process in 2016, joining the two advanced
1129: 6640: 4825:"Calibration and sensitivity of the Virgo detector during its second science run" 4466: 3999:"Measurement of the seismic attenuation performance of the VIRGO Superattenuator" 3530: 3211: 2276: 2153: 1826: 1796: 1785: 1497: 1250: 1048: 584: 540: 480:
over three decades had revealed indirect evidence. The observed decrease of this
447: 6369: 6297: 6239: 6054:"Model-based cross-correlation search for gravitational waves from Scorpius X-1" 6008: 4073: 4048: 3826: 2444:
La musica nascosta dell'universo: La mia vita a caccia delle onde gravitazionali
2358: 1519: 7517: 7373: 7046: 6655: 6146: 6111: 6087: 5938: 5903: 5763: 5704: 5659: 5601: 5566: 5432: 5341: 5203: 5127: 5064: 4991: 4923: 4567: 4487: 3653: 3608: 3573: 3500: 3496: 3472: 3437: 3404: 2626: 2080: 2043: 1416: 1182: 1097: 485: 266: 43: Country with institutions contributing to EGO and the Virgo Collaboration 6529: 6427: 6260: 5971: 5863: 5256: 5105: 1496:
at 100, 150, and 200 Hz), corresponding to the frequency of the European
1315:
of the light. The idea of using squeezed vacuum was first proposed in 1981 by
7599: 7483: 7304: 7158: 6377: 6155: 5947: 5871: 5771: 5673:
Riles, Keith (2023). "Searches for continuous-wave gravitational radiation".
5440: 5349: 5281: 5211: 5139: 5072: 5007: 4931: 4866: 4800: 4761: 4722: 4713: 4688: 4665: 4606: 4495: 4176: 4129: 4082: 4030: 3927: 3060: 2774: 2544: 2478: 2422: 2377:"Advanced Virgo: Status of the Detector, Latest Results and Future Prospects" 2089: 1894:
The Virgo central building which hosts the laser and the beamsplitter mirror.
1474: 1465: 1461: 1397: 1312: 1245: 1215: 1092: 1018: 933: 481: 477: 466: 337: 162: 149: 5514: 4189: 3413: 3381:"Gravitational-Wave Observations as a Tool for Testing Relativistic Gravity" 3244: 2403: 2376: 522:
First direct detection of a gravitational wave by Virgo, on 14 August 2017 (
7553: 7529: 7444: 5879: 5779: 5030: 4957: 4889: 4808: 4614: 4438: 4372: 4304: 4236: 3682: 3163: 3068: 2707: 2328: 2305:[Approximative Integration of the Field Equations of Gravitation]. 1986:"LIGO-M060038-v5: Memorandum of Understanding (MoU) Between VIRGO and LIGO" 1985: 1927: 1777: 1761: 1685:
Ground-based interferometric gravitational-wave search § Data analysis
1148: 1010: 573: 455: 318: 6554: 3747: 2595:
Riles, K. (2013). "Gravitational Waves: Sources, Detectors and Searches".
1290: 984:
Ground-based interferometric gravitational-wave search § Science case
410:
the LIGO-Virgo Collaboration, and was expanded when KAGRA joined in 2019.
6582:"'Cosmic' concert at Teatro Verdi in Pisa to celebrate 20 years of Virgo" 4999: 4588: 4363: 4227: 3674: 2572: 2413: 1773: 1769: 1411: 1156: 506: 399: 4295: 4257: 2688: 2374: 2120: 7410: 7382: 7168: 5567:"Open Data from the Third Observing Run of LIGO, Virgo, KAGRA, and GEO" 4775:
Vinet, Jean-Yves; Brisson, Violette; Braccini, Stefano (15 July 1996).
3273: 2992: 2725: 2455: 1581: 1478: 1353: 1320: 1284: 1197: 1101: 1070: 1066:
Ground-based interferometric gravitational-wave search § Principle
974: 949: 370: 357:
event, the only one to have also been observed with classical methods (
349: 258:
Gravitational wave detector in Santo Stefano a Macerata, Tuscany, Italy
49: Country with institutions contributing to the Virgo Collaboration 6993: 4597: 3948: 3919: 3507:, Springer Handbooks, Berlin, Heidelberg: Springer, pp. 589–613, 3247:. In Marshall, Heather K.; Spyromilio, Jason; Usuda, Tomonori (eds.). 565:
merger detected by both LIGO and Virgo (and the first one for Virgo).
7467: 7362: 6932: 6865: 6861: 6829: 6758: 4325: 2176:"Gravitational wave detectors prepare for next observing run – Virgo" 1745: 1545: 1525: 1501: 1308: 1266: 1080: 1014: 451: 362: 286: 5802:"Astronomers Catch Gravitational Waves from Colliding Neutron Stars" 5399:"Distance measures in gravitational-wave astrophysics and cosmology" 3893: 7367: 7341: 7243: 7237: 7232: 7222: 7217: 7212: 7207: 7202: 6983: 6978: 6352: 6280: 6222: 6128: 6070: 5991: 5920: 5846: 5746: 5687: 5642: 5628:
LIGO and Virgo during the Second Part of the Third Observing Run".
5583: 5415: 5324: 5305: 5186: 5095: 5047: 4974: 4906: 4413: 3590: 3454: 3138: 3035: 2062: 1741: 1730: 1715: 1493: 1378: 1258: 1233: 1017:, instabilities in compact systems, or more exotic sources such as 996: 588: 576: 569: 558: 535: 523: 354: 5539: 4841: 3513: 2937: 2670: 2609: 1595:
Calculations show that the detector sensitivity roughly scales as
1548:, it is usually represented as a curve corresponding to the noise 518: 7101: 5466:[Detection of gravitational waves - Joliot Curie School] 5124: 3894:"Seismic isolation in advanced Virgo gravitational wave detector" 2251: 1152: 427: 132: 5830:"Identification of strontium in the merger of two neutron stars" 2303:"Näherungsweise Integration der Feldgleichungen der Gravitation" 1205:
In addition, two other mirrors are present in the final design:
905:
Timeline of the gravitational wave observation periods from the
7389: 6937: 6748: 5097:
The Virgo Newtonian calibration system for the O4 observing run
4095: 3995: 2772: 2723: 2011:"Virgo Interferometer for the Detection of Gravitational Waves" 1765: 1589: 1177: 1025: 395: 341: 6607:"International Day of Women and Girls in Science 2023 – Virgo" 4821: 2654:"Physics, Astrophysics and Cosmology with Gravitational Waves" 2277:"KAGRA to Join LIGO and Virgo in Hunt for Gravitational Waves" 2044:"Multi-messenger Observations of a Binary Neutron Star Merger" 7163: 6952: 6921: 6799: 5093: 4887: 2779:"Virgo: a laser interferometer to detect gravitational waves" 2557: 1749: 1139: 1084: 914: 892: 587:
was also detected, and optical telescopes later discovered a
366: 358: 326: 184: 25: 5282:"Virgo Logbook - Detector Characterisation (Spectral lines)" 4735: 4046: 3630: 2476: 1091:
design, where a laser is divided in two beams travelling in
561:, which was reported on 27 September 2017. It was the first 6942: 6927: 6917: 6332: 6051: 5170: 4393: 3245:"Status and plans of the Virgo gravitational wave detector" 2921: 2730:
5th Rencontres du Vietnam Particle Physics and Astrophysics
2509: 1799:
have also been obtained and the current best estimate is 68
1710: 1228: 906: 864: 554: 502: 470: 431: 394:. The Dutch Institute for Nuclear and High-Energy Physics, 314: 289:
long and contain its mirrors and instrumentation inside an
282: 245: 223: 7548: 6453:"Le Mappe del Cosmo. Storie che hanno cambiato l'universo" 5900: 5464:
Détection des ondes gravitationnelles - Ecole Joliot Curie
5028: 4955: 4630:"Thermal effects and their compensation in Advanced Virgo" 4627: 3118: 3015: 2040: 940:
introduced in O3, and implementing a new technique called
426:. The construction of the detector started in 1996 at the 3574:"Constraints on the Cosmic Expansion History from GWTC–3" 3378: 2993:
Many authors of the Virgo Collaboration (13 April 2012).
995:
Typical "chirp" of a gravitational wave signal, from the
3951:"The monolithic suspension for the virgo interferometer" 2822:"The monolithic suspension for the Virgo interferometer" 2477:
Giazotto, Adalberto; Milano, Leopoldo; Bordoni, Franco;
1155:. The retained solution for Advanced Virgo is to have a 236:
Around 850 people participate in the Virgo Collaboration
6108: 5826: 3501:"Probing Dynamical Spacetimes with Gravitational Waves" 3329: 2868: 2647: 1951: 1949: 4560: 3831:(PhD) (in French). Université Claude Bernard – Lyon I. 3095:"European detector spots its first gravitational wave" 1776:), and directed search towards the supernova remnants 1748:
and in optical telescopes, and later in the radio and
531:
with the initial detector and technological advances.
7501: 3333:
Virgo nEXT: beyond the AdV+ project - A concept study
3306:"Virgo postpones entry into O4 observing run – Virgo" 2252:"LIGO Scientific Collaboration - Learn about the LSC" 1702:, as well as deeper analysis of the detected events. 1660: 1640: 1601: 446:
is more than 100 years old, having been predicted by
418:
The Virgo project was approved in 1992 by the French
4774: 1946: 936:
by introducing a more powerful laser, improving the
285:, Italy. The instrument has two arms that are three 5396: 4689:"Detecting Gravitational Waves with Advanced Virgo" 3797:
The Next Detectors for Gravitational Wave Astronomy
2996:
Advanced Virgo Technical Design Report VIR–0128A–12
1588:of 8 in the detector. It is generally expressed in 1307:. In the case of Virgo, the two quantities are the 593: 3631:Vinet, Jean-Yves; The Virgo Collaboration (2006). 1666: 1646: 1626: 386:(EGO) consortium, created in December 2000 by the 1079:In general relativity, a gravitational wave is a 7597: 6685: 1627:{\displaystyle {\frac {1}{L\times {\sqrt {P}}}}} 1323:(dominant at high frequencies) and increase the 854: 4153:"Quantum-mechanical noise in an interferometer" 3949:M. Lorenzini & Virgo Collaboration (2010). 3790:"Silicon, the test mass substrate of tomorrow?" 3752:(PhD thesis). Université Nice Sophia Antipolis. 7606:Interferometric gravitational-wave instruments 5515:"LIGO-M1000066-v27: LIGO Data Management Plan" 3566: 3564: 3494: 3355:"Astrophysical Sources of Gravitational Waves" 7240:(first-ever possible light from bh-bh merger) 6671: 1922: 1920: 1124: 1087:path. Concretely, it can be detected using a 611: 317:interferometers in the United States (at the 6318:: CS1 maint: multiple names: authors list ( 6037:: CS1 maint: multiple names: authors list ( 4548:VIRGO Vacuum System Overview, A.Pasqualetti 3899:Journal of the Acoustical Society of America 3787: 302:Centre National de la Recherche Scientifique 68: 6534:Il Ritmo Dello Spazio (The Rhythm of Space) 5728:"Stochastic gravitational wave backgrounds" 5725: 5571:The Astrophysical Journal Supplement Series 3561: 3256:. SPIE Conference Series. Vol. 11445. 2517:Nuclear Physics B - Proceedings Supplements 1963:. The Virgo Collaboration. 18 February 2021 1377:through an auxiliary light source, and two 539:vacuum on suspended mountings. A system of 6678: 6664: 5235: 4686: 3841: 3824: 3184: 1917: 618: 604: 513: 300:(EGO), a consortium founded by the French 24: 6351: 6279: 6221: 6145: 6127: 6069: 5990: 5937: 5919: 5845: 5745: 5686: 5641: 5600: 5582: 5414: 5323: 5185: 5046: 4973: 4905: 4840: 4712: 4655: 4596: 4412: 4362: 4352: 4294: 4284: 4226: 4216: 4072: 3607: 3589: 3512: 3471: 3453: 3412: 3250:Ground-based and Airborne Telescopes VIII 3137: 3034: 2936: 2819: 2804: 2697: 2687: 2669: 2608: 2571: 2412: 2402: 2079: 2061: 491: 7252:(first black hole - neutron star merger) 6586:EGO - European Gravitational Observatory 6509:EGO - European Gravitational Observatory 6432:EGO - European Gravitational Observatory 5132:2007 15th IEEE-NPSS Real-Time Conference 3695: 3650: 3242: 3212:"LIGO Suspends Third Observing Run (O3)" 2597:Progress in Particle and Nuclear Physics 2438: 2300: 1740:It was soon followed by the more famous 1709: 1518: 1443: 1434: 1396: 1289: 1227: 1196: 1128: 1106: 1069: 990: 973: 517: 4890:"The Advanced Virgo photon calibrators" 3330:The Virgo Collaboration (31 May 2022). 3243:Flaminio, Raffaele (13 December 2020). 1724:List of gravitational wave observations 1514: 382:The Virgo experiment is managed by the 7598: 6651:Advanced Virgo Technical Design Report 6397: 6395: 5726:Christensen, Nelson (1 January 2019). 4951: 4949: 4459: 4042: 4040: 3891: 3435: 3238: 3236: 3234: 3232: 3089: 3011: 3009: 2917: 2915: 2732:. Hanoi, Vietnam: 1–6 – via HAL. 2719: 2717: 2434: 2432: 2370: 2368: 1753:putting very tight constraints on the 903: 336:The interferometer is named after the 96:International scientific collaboration 6659: 6579: 6502: 5967: 5965: 5672: 5622: 5620: 5461: 5231: 5229: 4635:Journal of Physics: Conference Series 4519: 4517: 4515: 4513: 4150: 2988: 2986: 2984: 2982: 2980: 2978: 2976: 2974: 2972: 2594: 2327: 2036: 2034: 2032: 1980: 1978: 1870:View of the 3-km-long Virgo north arm 1705: 1279: 941: 853: 596: 306:Istituto Nazionale di Fisica Nucleare 6810:Stanford gravitational wave detector 2481:; Tourrenc, Philippe (12 May 1987). 2450:] (in Italian). Turin: Einaudi. 2333:"Gravitational-Wave-Detector Events" 2115: 2113: 2111: 2109: 2107: 1934:. European Gravitational Observatory 212:LVK (LIGO-Virgo-KAGRA collaboration) 7611:Astronomical observatories in Italy 6392: 6326: 5719: 5666: 4946: 4151:Caves, Carlton M. (15 April 1981). 4037: 4023:10.1016/j.astropartphys.2005.04.002 3745: 3429: 3229: 3006: 2912: 2714: 2429: 2365: 2301:Einstein, Albert (1 January 1916). 1272: 1223: 543:was to be installed to correct the 13: 6962:European Gravitational Observatory 6017:1854/LU-01GXN8M856WCY1YG62A5ACCPTN 5962: 5617: 5226: 4510: 3185:Bersanetti, Diego (13 July 2019). 3112: 2969: 2227:"Scientific Collaboration – Virgo" 2029: 1975: 1544:As the sensitivity depends on the 1305:Heisenberg's uncertainty principle 384:European Gravitational Observatory 325:) and the Japanese interferometer 298:European Gravitational Observatory 116:European Gravitational Observatory 14: 7622: 7246:(first-ever "mass gap" collision) 6627: 6580:Rossi, Giada (23 December 2023). 6503:Rossi, Giada (23 November 2022). 2104: 1858:Aerial view of the Virgo detector 1335: 1043:of gravitational waves, possible 7583: 7571: 7559: 7547: 7535: 7523: 7511: 6599: 6573: 6547: 6522: 6496: 6471: 6445: 6420: 3892:Boschi, Valerio (1 March 2019). 3842:R Flaminio; et al. (2010). 3436:Abbott, R.; et al. (2021). 2869:The Virgo Collaboration (2011). 2820:Lorenzini, Matteo (April 2010). 2513:"Status of the VIRGO experiment" 2499:(Technical report) (in Italian). 1899: 1887: 1875: 1863: 1851: 1839: 1678: 1439: 67: 60: 33: 6254: 6196: 6170: 6102: 6045: 5894: 5820: 5794: 5557: 5532: 5507: 5482: 5455: 5390: 5364: 5299: 5274: 5249: 5164: 5118: 5087: 5022: 4881: 4815: 4768: 4729: 4680: 4621: 4554: 4542: 4453: 4387: 4319: 4251: 4183: 4144: 4089: 3989: 3942: 3885: 3835: 3818: 3781: 3756: 3746:Wei, Li-Wei (3 December 2015). 3739: 3689: 3644: 3624: 3488: 3372: 3347: 3323: 3298: 3204: 3178: 3083: 2862: 2813: 2766: 2736: 2641: 2588: 2551: 2503: 2470: 2321: 2294: 2269: 2244: 2219: 1160:Advanced Virgo configurations. 969: 377: 6703:Gravitational-wave observatory 5733:Reports on Progress in Physics 4657:10.1088/1742-6596/363/1/012016 4431:10.1103/PhysRevLett.124.171101 4354:10.1103/PhysRevLett.131.041403 4286:10.1103/PhysRevLett.123.231108 4218:10.1103/PhysRevLett.125.131101 3696:F. Bondu; et al. (2002). 3634:The VIRGO physics book Vol. II 3505:Springer Handbook of Spacetime 3495:Van Den Broeck, Chris (2014), 3156:10.1103/PhysRevLett.120.091101 3053:10.1103/PhysRevLett.119.141101 2898:10.1088/0264-9381/28/11/114002 2193: 2168: 2138: 2003: 1265:. They are characterized by a 1: 7395:Gravitational wave background 6947:LIGO Scientific Collaboration 6457:Auditorium Parco della Musica 5403:Classical and Quantum Gravity 5312:Classical and Quantum Gravity 5174:Classical and Quantum Gravity 5035:Classical and Quantum Gravity 4962:Classical and Quantum Gravity 4894:Classical and Quantum Gravity 4859:10.1088/0264-9381/28/2/025005 4829:Classical and Quantum Gravity 4102:Classical and Quantum Gravity 3975:10.1088/0264-9381/27/8/084021 3955:Classical and Quantum Gravity 3871:10.1088/0264-9381/27/8/084030 3851:Classical and Quantum Gravity 3705:Classical and Quantum Gravity 2955:10.1088/0264-9381/32/2/024001 2925:Classical and Quantum Gravity 2878:Classical and Quantum Gravity 2871:"Status of the Virgo project" 2848:10.1088/0264-9381/27/8/084021 2827:Classical and Quantum Gravity 2806:10.1088/1748-0221/7/03/P03012 1911: 1654:is the arm cavity length and 1330:frequency-dependent squeezing 1054: 591:corresponding to the merger. 437: 7198:First observation (GW150914) 6984:TAMA 20, later known as LISM 6687:Gravitational-wave astronomy 6634:Description on EGO's website 5675:Living Reviews in Relativity 3698:"The VIRGO injection system" 3531:10.1007/978-3-642-41992-8_27 2658:Living Reviews in Relativity 2537:10.1016/0920-5632(96)00220-4 1825:in Pisa, or "On Air" at the 1298:Starting with the O3 run, a 1100:pattern is measured using a 1059: 7: 7332:Tests of general relativity 6370:10.1103/PhysRevD.104.022004 6298:10.1103/PhysRevD.106.042003 6240:10.1103/PhysRevD.105.082005 6009:10.1103/PhysRevD.106.102008 4687:Nardecchia, Ilaria (2022). 4460:Polini, E (1 August 2021). 4074:10.1016/j.phpro.2012.03.741 3499:; Petkov, Vesselin (eds.), 2359:10.1103/PhysRevLett.20.1307 2152:(in French). Archived from 1815: 1477:, which includes the laser 904: 705: 422:and in 1993 by the Italian 340:, a cluster of about 1,500 10: 7627: 6994:Caltech 40m interferometer 6479:"The sounds of the Cosmos" 6088:10.1103/PhysRevD.91.102005 5705:10.1007/s41114-023-00044-3 5660:10.1103/PhysRevX.13.041039 5372:"Virgo Sensitivity Curves" 4122:10.1088/0264-9381/23/9/030 3725:10.1088/0264-9381/19/7/381 3405:10.1103/PhysRevLett.30.884 2784:Journal of Instrumentation 2627:10.1016/j.ppnp.2012.08.001 1846:Overview of the Virgo site 1832: 1721: 1682: 1171: 1125:Laser and injection system 1063: 981: 579:to each other and finally 465:and the French researcher 413: 7403: 7350: 7319: 7259: 7185: 7178: 7151: 7118: 7084: 7068: 7059: 7039: 7018: 7002: 6971: 6910: 6899: 6854: 6838: 6772: 6731: 6720: 6711: 6693: 6116:The Astrophysical Journal 5908:The Astrophysical Journal 5864:10.1038/s41586-019-1676-3 5106:10.48550/arXiv.2406.10028 4525:"Fighting Noises – Virgo" 3578:The Astrophysical Journal 3442:The Astrophysical Journal 2648:Sathyaprakash and, B.S.; 2207:. The Virgo Collaboration 2049:The Astrophysical Journal 1957:"The Virgo Collaboration" 956: 240: 230: 216: 208: 198: 190: 178: 141: 121: 111: 100: 92: 84: 55: 32: 23: 7435:Supermassive black holes 6147:10.3847/1538-4357/ac6acf 5939:10.3847/2041-8213/aa920c 5764:10.1088/1361-6633/aae6b5 5602:10.3847/1538-4365/acdc9f 5433:10.1088/1361-6382/abd594 5342:10.1088/1361-6382/aca238 5204:10.1088/1361-6382/acb633 5140:10.1109/RTC.2007.4382842 5065:10.1088/1361-6382/aae95f 4992:10.1088/1361-6382/ac3c8e 4924:10.1088/1361-6382/abe2db 4801:10.1103/PhysRevD.54.1276 4762:10.1103/PhysRevD.56.6085 4714:10.3390/galaxies10010028 4488:10.1088/1402-4896/abfef0 4177:10.1103/PhysRevD.23.1693 3764:"Optical Layout – Virgo" 3609:10.3847/1538-4357/ac74bb 3473:10.3847/1538-4357/ac23db 2201:"The Virgo Institutions" 2121:"IGWN | Observing Plans" 2081:10.3847/2041-8213/aa91c9 1714:Sky localization of the 1151:, and the slave laser a 1089:Michelson interferometer 628: 442:Although the concept of 279:Santo Stefano a Macerata 267:Michelson interferometer 129:Santo Stefano a Macerata 7274:Resonant mass detectors 6483:Athens Science Festival 5462:Hello, Patrice (1997). 5257:"O2 Instrumental Lines" 4401:Physical Review Letters 4333:Physical Review Letters 4265:Physical Review Letters 4197:Physical Review Letters 3385:Physical Review Letters 3126:Physical Review Letters 3023:Physical Review Letters 2404:10.3390/universe7090322 2338:Physical Review Letters 2125:observing.docs.ligo.org 1795:Broad estimates of the 568:Just a few days later, 514:Advanced Virgo detector 296:Virgo is hosted by the 269:designed to detect the 5544:www.gw-openscience.org 5374:. 2011. Archived from 5261:www.gw-openscience.org 3906:(3_Supplement): 1668. 2309:(in German): 688–696. 1719: 1668: 1648: 1628: 1541: 1450: 1403: 1295: 1241: 1202: 1135: 1121: 1076: 1032:Stochastic backgrounds 1001: 979: 527: 492:Initial Virgo detector 7459:Rotating neutron star 7270:Laser interferometers 4003:Astroparticle Physics 3788:J. Degallaix (2015). 3093:(27 September 2017). 2726:"The status of VIRGO" 2560:ASP Conference Series 1722:Further information: 1713: 1700:stochastic background 1669: 1649: 1629: 1586:signal-to-noise ratio 1522: 1447: 1435:Noise and sensitivity 1400: 1368:, or a change in the 1343:Virgo is the largest 1293: 1231: 1200: 1132: 1118: 1073: 1045:gravitational lensing 994: 977: 521: 478:binary pulsar 1913+16 323:Livingston, Louisiana 76:Location within Italy 7351:Effects / properties 7280:Atom interferometers 7193:List of observations 7120:Pulsar timing arrays 6559:Studio Tomás Sarceno 5490:"Our Collaborations" 5470:(Report) (in French) 4589:10.1364/AO.46.000861 3675:10.1364/OL.21.000582 3260:. pp. 205–214. 1812:on its exact value. 1658: 1638: 1599: 1515:Detector sensitivity 1283:before reaching the 1261:, each acting as an 263:Virgo interferometer 19:The Virgo experiment 7440:Stellar black holes 7420:quantum fluctuation 7300:Pulsar timing array 7287:Indirect detection 7227:neutron star merger 7010:INDIGO (LIGO-India) 6362:2021PhRvD.104b2004A 6290:2022PhRvD.106d2003A 6232:2022PhRvD.105h2005A 6138:2022ApJ...935....1A 6080:2015PhRvD..91j2005W 6001:2022PhRvD.106j2008A 5930:2017ApJ...848L..13A 5856:2019Natur.574..497W 5806:Sky & Telescope 5756:2019RPPh...82a6903C 5697:2023LRR....26....3R 5652:2023PhRvX..13d1039A 5593:2023ApJS..267...29A 5425:2021CQGra..38e5010C 5334:2022CQGra..39x5013D 5286:logbook.virgo-gw.eu 5236:G. Vajente (2008). 5196:2023CQGra..40f5004G 5057:2018CQGra..35w5009E 4984:2022CQGra..39d5006A 4916:2021CQGra..38g5007E 4851:2011CQGra..28b5005A 4793:1996PhRvD..54.1276V 4754:1997PhRvD..56.6085V 4705:2022Galax..10...28N 4648:2012JPhCS.363a2016R 4581:2007ApOpt..46..861K 4480:2021PhyS...96h4003P 4423:2020PhRvL.124q1101Z 4345:2023PhRvL.131d1403A 4277:2019PhRvL.123w1108A 4209:2020PhRvL.125m1101A 4169:1981PhRvD..23.1693C 4114:2006CQGra..23.3235B 4065:2012PhPro..37.1389B 4015:2005APh....23..557B 3967:2010CQGra..27h4021L 3912:2019ASAJ..145.1668B 3863:2010CQGra..27h4030F 3825:R. Bonnand (2012). 3717:2002CQGra..19.1829B 3667:1996OptL...21..582B 3600:2023ApJ...949...76A 3523:2014shst.book..589V 3464:2021ApJ...923...14A 3397:1973PhRvL..30..884E 3343:(Technical report). 3266:2020SPIE11445E..11F 3148:2018PhRvL.120i1101A 3045:2017PhRvL.119n1101A 2947:2015CQGra..32b4001A 2890:2011CQGra..28k4002A 2840:2010CQGra..27h4021L 2797:2012JInst...7.3012A 2689:10.12942/lrr-2009-2 2680:2009LRR....12....2S 2619:2013PrPNP..68....1R 2582:2005ASPC..328...25W 2529:1996NuPhS..48..107C 2464:2018lmnd.book.....G 2440:Giazotto, Adalberto 2395:2021Univ....7..322B 2351:1968PhRvL..20.1307W 2315:1916SPAW.......688E 2072:2017ApJ...848L..12A 1823:Museo della Grafica 1532:frequency from the 1391:radius of curvature 1267:resonance frequency 1263:harmonic oscillator 1192:ion beam sputtering 444:gravitational waves 348:, about 50 million 346:Virgo constellation 310:Virgo Collaboration 304:(CNRS) and Italian 281:, near the city of 271:gravitational waves 163:43.6313°N 10.5045°E 159: /  20: 7327:General relativity 7031:Einstein Telescope 6933:Fermilab holometer 6698:Gravitational wave 6639:2006-07-13 at the 6403:"Outreach – Virgo" 6184:. 21 December 2021 5494:LIGO Lab | Caltech 5378:on 1 December 2015 3806:on 8 December 2015 3274:10.1117/12.2565418 3216:LIGO Lab | Caltech 2650:Schutz, Bernard F. 2281:LIGO Lab | Caltech 1764:and several known 1720: 1706:Scientific results 1664: 1644: 1624: 1542: 1483:radiation pressure 1451: 1425:radiation pressure 1404: 1375:optical aberration 1325:radiation pressure 1296: 1242: 1203: 1136: 1122: 1077: 1007:binary black holes 1002: 980: 545:mirror aberrations 528: 469:after they met in 463:Adalberto Giazotto 275:general relativity 222:About ten million 105:Gravitational wave 18: 7499: 7498: 7315: 7314: 7266:Direct detection 7114: 7113: 7110: 7109: 7092:Big Bang Observer 7055: 7054: 6895: 6894: 6561:. 13 October 2018 6340:Physical Review D 6268:Physical Review D 6210:Physical Review D 6058:Physical Review D 5979:Physical Review D 5840:(7779): 497–500. 5808:. 16 October 2017 5630:Physical Review X 5149:978-1-4244-0866-5 4781:Physical Review D 4748:(10): 6085–6095. 4742:Physical Review D 4157:Physical Review D 3920:10.1121/1.5101119 3540:978-3-642-41992-8 3091:Gibney, Elizabeth 2345:(23): 1307–1308. 1667:{\displaystyle P} 1647:{\displaystyle L} 1622: 1619: 1345:ultra-high vacuum 1238:inverted pendulum 1116: 926:COVID-19 pandemic 922: 921: 899: 898: 701:2030 — 691:2028 — 681:2026 — 671:2024 — 661:2022 — 651:2020 — 641:2018 — 631:2016 — 577:spiralling closer 563:binary black hole 291:ultra-high vacuum 256: 255: 7618: 7588: 7587: 7586: 7576: 7575: 7574: 7564: 7563: 7562: 7552: 7551: 7540: 7539: 7538: 7528: 7527: 7526: 7516: 7515: 7507: 7431:Binary inspiral 7425:Phase transition 7416:Cosmic inflation 7183: 7182: 7066: 7065: 6908: 6907: 6729: 6728: 6718: 6717: 6680: 6673: 6666: 6657: 6656: 6646:Virgo's homepage 6622: 6621: 6619: 6617: 6603: 6597: 6596: 6594: 6592: 6577: 6571: 6570: 6568: 6566: 6551: 6545: 6544: 6542: 6540: 6526: 6520: 6519: 6517: 6515: 6500: 6494: 6493: 6491: 6489: 6475: 6469: 6468: 6466: 6464: 6449: 6443: 6442: 6440: 6438: 6424: 6418: 6417: 6415: 6413: 6399: 6390: 6389: 6355: 6330: 6324: 6323: 6317: 6309: 6283: 6258: 6252: 6251: 6225: 6200: 6194: 6193: 6191: 6189: 6174: 6168: 6167: 6149: 6131: 6106: 6100: 6099: 6073: 6049: 6043: 6042: 6036: 6028: 5994: 5969: 5960: 5959: 5941: 5923: 5898: 5892: 5891: 5849: 5824: 5818: 5817: 5815: 5813: 5798: 5792: 5791: 5749: 5723: 5717: 5716: 5690: 5670: 5664: 5663: 5645: 5624: 5615: 5614: 5604: 5586: 5561: 5555: 5554: 5552: 5550: 5536: 5530: 5529: 5527: 5525: 5511: 5505: 5504: 5502: 5500: 5486: 5480: 5479: 5477: 5475: 5469: 5459: 5453: 5452: 5418: 5394: 5388: 5387: 5385: 5383: 5368: 5362: 5361: 5327: 5303: 5297: 5296: 5294: 5292: 5278: 5272: 5271: 5269: 5267: 5253: 5247: 5246: 5244: 5233: 5224: 5223: 5189: 5168: 5162: 5161: 5134:. pp. 1–8. 5122: 5116: 5115: 5114: 5112: 5091: 5085: 5084: 5050: 5026: 5020: 5019: 4977: 4953: 4944: 4943: 4909: 4885: 4879: 4878: 4844: 4819: 4813: 4812: 4787:(2): 1276–1286. 4772: 4766: 4765: 4733: 4727: 4726: 4716: 4684: 4678: 4677: 4659: 4625: 4619: 4618: 4600: 4558: 4552: 4546: 4540: 4539: 4537: 4535: 4521: 4508: 4507: 4457: 4451: 4450: 4416: 4391: 4385: 4384: 4366: 4356: 4323: 4317: 4316: 4298: 4288: 4255: 4249: 4248: 4230: 4220: 4187: 4181: 4180: 4163:(8): 1693–1708. 4148: 4142: 4141: 4108:(9): 3235–3250. 4093: 4087: 4086: 4076: 4053:Physics Procedia 4044: 4035: 4034: 3993: 3987: 3986: 3946: 3940: 3939: 3889: 3883: 3882: 3848: 3839: 3833: 3832: 3822: 3816: 3815: 3813: 3811: 3805: 3799:. Archived from 3794: 3785: 3779: 3778: 3776: 3774: 3760: 3754: 3753: 3743: 3737: 3736: 3711:(7): 1829–1833. 3702: 3693: 3687: 3686: 3648: 3642: 3641: 3639: 3628: 3622: 3621: 3611: 3593: 3568: 3559: 3558: 3557: 3555: 3516: 3492: 3486: 3485: 3475: 3457: 3433: 3427: 3426: 3416: 3414:2060/19730012613 3376: 3370: 3369: 3367: 3365: 3351: 3345: 3344: 3338: 3327: 3321: 3320: 3318: 3316: 3302: 3296: 3295: 3255: 3240: 3227: 3226: 3224: 3222: 3208: 3202: 3201: 3199: 3197: 3182: 3176: 3175: 3141: 3116: 3110: 3109: 3107: 3105: 3087: 3081: 3080: 3038: 3013: 3004: 3003: 3001: 2990: 2967: 2966: 2940: 2919: 2910: 2909: 2875: 2866: 2860: 2859: 2817: 2811: 2810: 2808: 2770: 2764: 2763: 2761: 2759: 2749: 2740: 2734: 2733: 2721: 2712: 2711: 2701: 2691: 2673: 2645: 2639: 2638: 2612: 2592: 2586: 2585: 2575: 2573:astro-ph/0407149 2555: 2549: 2548: 2507: 2501: 2500: 2494: 2474: 2468: 2467: 2436: 2427: 2426: 2416: 2406: 2372: 2363: 2362: 2325: 2319: 2318: 2298: 2292: 2291: 2289: 2287: 2273: 2267: 2266: 2264: 2262: 2248: 2242: 2241: 2239: 2237: 2223: 2217: 2216: 2214: 2212: 2197: 2191: 2190: 2188: 2186: 2172: 2166: 2165: 2163: 2161: 2142: 2136: 2135: 2133: 2131: 2117: 2102: 2101: 2083: 2065: 2038: 2027: 2026: 2024: 2022: 2007: 2001: 2000: 1998: 1996: 1982: 1973: 1972: 1970: 1968: 1953: 1944: 1943: 1941: 1939: 1924: 1903: 1891: 1879: 1867: 1855: 1843: 1807: 1806: 1755:speed of gravity 1673: 1671: 1670: 1665: 1653: 1651: 1650: 1645: 1633: 1631: 1630: 1625: 1623: 1621: 1620: 1615: 1603: 1370:refractive index 1280:signal recycling 1273:Detection system 1244:To mitigate the 1224:Superattenuators 1166:Faraday isolator 1117: 942:signal recycling 888: 874: 860: 855: 702: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 647: 642: 637: 632: 620: 613: 606: 600: 594: 252: 249: 247: 174: 173: 171: 170: 169: 168:43.6313; 10.5045 164: 160: 157: 156: 155: 152: 71: 70: 64: 48: 42: 37: 28: 21: 17: 7626: 7625: 7621: 7620: 7619: 7617: 7616: 7615: 7596: 7595: 7594: 7584: 7582: 7572: 7570: 7560: 7558: 7546: 7536: 7534: 7524: 7522: 7510: 7502: 7500: 7495: 7404:Types / sources 7399: 7346: 7337:Metric theories 7311: 7255: 7174: 7147: 7106: 7080: 7062:interferometers 7061: 7051: 7035: 7026:Cosmic Explorer 7014: 6998: 6967: 6903:interferometers 6902: 6891: 6886:Mario Schenberg 6850: 6834: 6768: 6764:Mario Schenberg 6723: 6707: 6689: 6684: 6641:Wayback Machine 6630: 6625: 6615: 6613: 6611:www.virgo-gw.eu 6605: 6604: 6600: 6590: 6588: 6578: 6574: 6564: 6562: 6553: 6552: 6548: 6538: 6536: 6528: 6527: 6523: 6513: 6511: 6501: 6497: 6487: 6485: 6477: 6476: 6472: 6462: 6460: 6451: 6450: 6446: 6436: 6434: 6426: 6425: 6421: 6411: 6409: 6401: 6400: 6393: 6331: 6327: 6311: 6310: 6259: 6255: 6201: 6197: 6187: 6185: 6176: 6175: 6171: 6107: 6103: 6050: 6046: 6030: 6029: 5970: 5963: 5899: 5895: 5825: 5821: 5811: 5809: 5800: 5799: 5795: 5724: 5720: 5671: 5667: 5625: 5618: 5562: 5558: 5548: 5546: 5538: 5537: 5533: 5523: 5521: 5513: 5512: 5508: 5498: 5496: 5488: 5487: 5483: 5473: 5471: 5467: 5460: 5456: 5395: 5391: 5381: 5379: 5370: 5369: 5365: 5304: 5300: 5290: 5288: 5280: 5279: 5275: 5265: 5263: 5255: 5254: 5250: 5242: 5234: 5227: 5169: 5165: 5150: 5123: 5119: 5110: 5108: 5092: 5088: 5027: 5023: 4954: 4947: 4886: 4882: 4820: 4816: 4773: 4769: 4734: 4730: 4685: 4681: 4626: 4622: 4559: 4555: 4547: 4543: 4533: 4531: 4529:www.virgo-gw.eu 4523: 4522: 4511: 4467:Physica Scripta 4458: 4454: 4392: 4388: 4324: 4320: 4256: 4252: 4188: 4184: 4149: 4145: 4094: 4090: 4045: 4038: 3994: 3990: 3947: 3943: 3890: 3886: 3846: 3840: 3836: 3823: 3819: 3809: 3807: 3803: 3792: 3786: 3782: 3772: 3770: 3768:www.virgo-gw.eu 3762: 3761: 3757: 3744: 3740: 3700: 3694: 3690: 3649: 3645: 3637: 3629: 3625: 3569: 3562: 3553: 3551: 3541: 3497:Ashtekar, Abhay 3493: 3489: 3434: 3430: 3391:(18): 884–886. 3377: 3373: 3363: 3361: 3353: 3352: 3348: 3336: 3328: 3324: 3314: 3312: 3310:www.virgo-gw.eu 3304: 3303: 3299: 3284: 3253: 3241: 3230: 3220: 3218: 3210: 3209: 3205: 3195: 3193: 3183: 3179: 3117: 3113: 3103: 3101: 3088: 3084: 3014: 3007: 2999: 2991: 2970: 2920: 2913: 2873: 2867: 2863: 2818: 2814: 2771: 2767: 2757: 2755: 2747: 2742: 2741: 2737: 2722: 2715: 2646: 2642: 2593: 2589: 2556: 2552: 2508: 2504: 2492: 2475: 2471: 2437: 2430: 2373: 2366: 2331:(3 June 1968). 2326: 2322: 2299: 2295: 2285: 2283: 2275: 2274: 2270: 2260: 2258: 2250: 2249: 2245: 2235: 2233: 2231:www.virgo-gw.eu 2225: 2224: 2220: 2210: 2208: 2199: 2198: 2194: 2184: 2182: 2180:www.virgo-gw.eu 2174: 2173: 2169: 2159: 2157: 2156:on 5 March 2016 2144: 2143: 2139: 2129: 2127: 2119: 2118: 2105: 2039: 2030: 2020: 2018: 2009: 2008: 2004: 1994: 1992: 1984: 1983: 1976: 1966: 1964: 1955: 1954: 1947: 1937: 1935: 1926: 1925: 1918: 1914: 1907: 1904: 1895: 1892: 1883: 1880: 1871: 1868: 1859: 1856: 1847: 1844: 1835: 1827:Palais de Tokyo 1818: 1810:current debates 1805: 1802: 1801: 1800: 1797:Hubble constant 1786:Galactic Center 1768:(including the 1726: 1708: 1687: 1681: 1659: 1656: 1655: 1639: 1636: 1635: 1614: 1607: 1602: 1600: 1597: 1596: 1579: 1576: 1572: 1569: 1565: 1562: 1517: 1442: 1437: 1386: 1338: 1300:squeezed vacuum 1275: 1226: 1188:Bragg reflector 1174: 1127: 1107: 1098:interferometric 1068: 1062: 1057: 1049:Hubble constant 986: 972: 959: 918: 895: 886: 881: 872: 867: 858: 847: 846: 845: 840: 839: 838: 833: 832: 831: 826: 825: 824: 819: 818: 817: 812: 811: 810: 805: 804: 803: 798: 797: 796: 791: 790: 789: 784: 783: 782: 777: 776: 775: 770: 769: 768: 763: 762: 761: 756: 755: 754: 749: 748: 747: 745: 740: 739: 738: 733: 732: 731: 726: 725: 724: 719: 718: 717: 712: 711: 710: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 624: 598: 585:gamma-ray burst 541:adaptive optics 516: 494: 440: 416: 380: 259: 244: 233: 219: 201: 181: 167: 165: 161: 158: 153: 150: 148: 146: 145: 137: 80: 79: 78: 77: 74: 73: 72: 51: 50: 46: 44: 40: 12: 11: 5: 7624: 7614: 7613: 7608: 7593: 7592: 7580: 7568: 7556: 7544: 7532: 7520: 7497: 7496: 7494: 7493: 7492: 7491: 7477: 7476: 7475: 7462: 7461: 7460: 7454: 7453: 7452: 7447: 7442: 7437: 7429: 7428: 7427: 7422: 7407: 7405: 7401: 7400: 7398: 7397: 7392: 7386: 7381:Chirp signal ( 7379: 7376: 7374:speed of light 7370: 7365: 7360: 7354: 7352: 7348: 7347: 7345: 7344: 7339: 7334: 7329: 7323: 7321: 7317: 7316: 7313: 7312: 7310: 7309: 7308: 7307: 7302: 7297: 7285: 7284: 7283: 7275: 7272: 7263: 7261: 7257: 7256: 7254: 7253: 7247: 7241: 7235: 7230: 7220: 7215: 7210: 7205: 7200: 7195: 7189: 7187: 7180: 7176: 7175: 7173: 7172: 7166: 7161: 7155: 7153: 7149: 7148: 7146: 7145: 7140: 7135: 7130: 7124: 7122: 7116: 7115: 7112: 7111: 7108: 7107: 7105: 7104: 7099: 7094: 7088: 7086: 7082: 7081: 7079: 7078: 7072: 7070: 7063: 7057: 7056: 7053: 7052: 7050: 7049: 7047:LIGO-Australia 7043: 7041: 7040:Past proposals 7037: 7036: 7034: 7033: 7028: 7022: 7020: 7016: 7015: 7013: 7012: 7006: 7004: 7000: 6999: 6997: 6996: 6991: 6986: 6981: 6975: 6973: 6969: 6968: 6966: 6965: 6958:Advanced Virgo 6955: 6950: 6940: 6935: 6930: 6925: 6914: 6912: 6905: 6897: 6896: 6893: 6892: 6890: 6889: 6884:(downsized to 6879: 6874: 6869: 6864:(downsized to 6858: 6856: 6855:Past proposals 6852: 6851: 6849: 6848: 6842: 6840: 6836: 6835: 6833: 6832: 6827: 6822: 6817: 6812: 6807: 6797: 6787: 6776: 6774: 6770: 6769: 6767: 6766: 6761: 6756: 6746: 6735: 6733: 6726: 6715: 6709: 6708: 6706: 6705: 6700: 6694: 6691: 6690: 6683: 6682: 6675: 6668: 6660: 6654: 6653: 6648: 6643: 6629: 6628:External links 6626: 6624: 6623: 6598: 6572: 6546: 6521: 6495: 6470: 6444: 6419: 6391: 6325: 6253: 6195: 6169: 6101: 6064:(10): 102005. 6044: 5985:(10): 102008. 5961: 5893: 5819: 5793: 5718: 5665: 5616: 5556: 5531: 5506: 5481: 5454: 5389: 5363: 5318:(24): 245013. 5298: 5273: 5248: 5225: 5163: 5148: 5117: 5086: 5041:(23): 235009. 5021: 4945: 4880: 4814: 4767: 4728: 4679: 4620: 4575:(6): 861–866. 4568:Applied Optics 4553: 4541: 4509: 4452: 4407:(17): 171101. 4386: 4318: 4271:(23): 231108. 4250: 4203:(13): 131101. 4182: 4143: 4088: 4036: 4009:(6): 557–565. 3988: 3941: 3884: 3834: 3817: 3780: 3755: 3738: 3688: 3654:Optics Letters 3643: 3623: 3560: 3539: 3487: 3428: 3371: 3346: 3322: 3297: 3282: 3228: 3203: 3177: 3111: 3082: 3029:(14): 141101. 3005: 2968: 2911: 2884:(11): 114002. 2861: 2812: 2765: 2735: 2713: 2640: 2587: 2550: 2523:(1): 107–109. 2502: 2479:Brillet, Alain 2469: 2428: 2364: 2320: 2293: 2268: 2243: 2218: 2192: 2167: 2137: 2103: 2028: 2017:. 1 April 2019 2002: 1974: 1945: 1915: 1913: 1910: 1909: 1908: 1905: 1898: 1896: 1893: 1886: 1884: 1881: 1874: 1872: 1869: 1862: 1860: 1857: 1850: 1848: 1845: 1838: 1834: 1831: 1817: 1814: 1803: 1792:of magnitude. 1707: 1704: 1683:Main article: 1680: 1677: 1663: 1643: 1618: 1613: 1610: 1606: 1577: 1574: 1570: 1567: 1563: 1560: 1550:power spectrum 1516: 1513: 1490: 1489: 1486: 1472: 1469: 1441: 1438: 1436: 1433: 1417:magnetic field 1384: 1337: 1336:Infrastructure 1334: 1274: 1271: 1225: 1222: 1221: 1220: 1211: 1183:optical cavity 1173: 1170: 1126: 1123: 1064:Main article: 1061: 1058: 1056: 1053: 1036: 1035: 1029: 1022: 1019:cosmic strings 982:Main article: 971: 968: 958: 955: 920: 919: 901: 900: 897: 896: 891: 889: 883: 882: 877: 875: 869: 868: 863: 861: 851: 849: 848: 843: 842: 841: 836: 835: 834: 829: 828: 827: 822: 821: 820: 815: 814: 813: 808: 807: 806: 801: 800: 799: 794: 793: 792: 787: 786: 785: 780: 779: 778: 773: 772: 771: 766: 765: 764: 759: 758: 757: 752: 751: 750: 743: 742: 741: 736: 735: 734: 729: 728: 727: 722: 721: 720: 715: 714: 713: 708: 707: 706: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 629: 626: 625: 623: 622: 615: 608: 597: 515: 512: 493: 490: 486:orbital period 454:, invented by 439: 436: 415: 412: 379: 376: 257: 254: 253: 242: 238: 237: 234: 231: 228: 227: 220: 217: 214: 213: 210: 206: 205: 204:Gianluca Gemme 202: 199: 196: 195: 194:Basic research 192: 188: 187: 182: 179: 176: 175: 143: 139: 138: 136: 135: 125: 123: 119: 118: 113: 109: 108: 102: 98: 97: 94: 90: 89: 86: 82: 81: 75: 66: 65: 59: 58: 57: 56: 53: 52: 45: 39: 38: 30: 29: 9: 6: 4: 3: 2: 7623: 7612: 7609: 7607: 7604: 7603: 7601: 7591: 7581: 7579: 7569: 7567: 7557: 7555: 7550: 7545: 7543: 7533: 7531: 7521: 7519: 7514: 7509: 7508: 7505: 7489: 7488:other unknown 7485: 7484:cosmic string 7481: 7480: 7478: 7473: 7469: 7466: 7465: 7463: 7458: 7457: 7455: 7451: 7448: 7446: 7445:Neutron stars 7443: 7441: 7438: 7436: 7433: 7432: 7430: 7426: 7423: 7421: 7417: 7414: 7413: 7412: 7409: 7408: 7406: 7402: 7396: 7393: 7391: 7387: 7384: 7380: 7377: 7375: 7371: 7369: 7366: 7364: 7361: 7359: 7356: 7355: 7353: 7349: 7343: 7340: 7338: 7335: 7333: 7330: 7328: 7325: 7324: 7322: 7318: 7306: 7305:Binary pulsar 7303: 7301: 7298: 7296: 7292: 7289: 7288: 7286: 7282: 7281: 7276: 7273: 7271: 7268: 7267: 7265: 7264: 7262: 7258: 7251: 7248: 7245: 7242: 7239: 7236: 7234: 7231: 7228: 7224: 7221: 7219: 7216: 7214: 7211: 7209: 7206: 7204: 7201: 7199: 7196: 7194: 7191: 7190: 7188: 7184: 7181: 7177: 7171:: Gravity Spy 7170: 7167: 7165: 7162: 7160: 7159:Einstein@Home 7157: 7156: 7154: 7152:Data analysis 7150: 7144: 7141: 7139: 7136: 7134: 7131: 7129: 7126: 7125: 7123: 7121: 7117: 7103: 7100: 7098: 7095: 7093: 7090: 7089: 7087: 7083: 7077: 7074: 7073: 7071: 7067: 7064: 7058: 7048: 7045: 7044: 7042: 7038: 7032: 7029: 7027: 7024: 7023: 7021: 7017: 7011: 7008: 7007: 7005: 7001: 6995: 6992: 6990: 6987: 6985: 6982: 6980: 6977: 6976: 6974: 6970: 6963: 6959: 6956: 6954: 6951: 6948: 6944: 6943:Advanced LIGO 6941: 6939: 6936: 6934: 6931: 6929: 6926: 6923: 6919: 6916: 6915: 6913: 6909: 6906: 6904: 6898: 6887: 6883: 6880: 6878: 6875: 6873: 6870: 6867: 6863: 6860: 6859: 6857: 6853: 6847: 6844: 6843: 6841: 6837: 6831: 6828: 6826: 6823: 6821: 6818: 6816: 6813: 6811: 6808: 6805: 6801: 6798: 6795: 6791: 6788: 6785: 6781: 6778: 6777: 6775: 6771: 6765: 6762: 6760: 6757: 6754: 6750: 6747: 6744: 6740: 6737: 6736: 6734: 6730: 6727: 6725: 6722:Resonant mass 6719: 6716: 6714: 6710: 6704: 6701: 6699: 6696: 6695: 6692: 6688: 6681: 6676: 6674: 6669: 6667: 6662: 6661: 6658: 6652: 6649: 6647: 6644: 6642: 6638: 6635: 6632: 6631: 6612: 6608: 6602: 6587: 6583: 6576: 6560: 6556: 6550: 6535: 6531: 6525: 6510: 6506: 6499: 6484: 6480: 6474: 6458: 6454: 6448: 6433: 6429: 6428:"Guided Tour" 6423: 6408: 6404: 6398: 6396: 6387: 6383: 6379: 6375: 6371: 6367: 6363: 6359: 6354: 6349: 6346:(2): 022004. 6345: 6341: 6337: 6329: 6321: 6315: 6307: 6303: 6299: 6295: 6291: 6287: 6282: 6277: 6274:(4): 042003. 6273: 6269: 6265: 6257: 6249: 6245: 6241: 6237: 6233: 6229: 6224: 6219: 6216:(8): 082005. 6215: 6211: 6207: 6199: 6183: 6179: 6173: 6165: 6161: 6157: 6153: 6148: 6143: 6139: 6135: 6130: 6125: 6121: 6117: 6113: 6105: 6097: 6093: 6089: 6085: 6081: 6077: 6072: 6067: 6063: 6059: 6055: 6048: 6040: 6034: 6026: 6022: 6018: 6014: 6010: 6006: 6002: 5998: 5993: 5988: 5984: 5980: 5976: 5968: 5966: 5957: 5953: 5949: 5945: 5940: 5935: 5931: 5927: 5922: 5917: 5913: 5909: 5905: 5897: 5889: 5885: 5881: 5877: 5873: 5869: 5865: 5861: 5857: 5853: 5848: 5843: 5839: 5835: 5831: 5823: 5807: 5803: 5797: 5789: 5785: 5781: 5777: 5773: 5769: 5765: 5761: 5757: 5753: 5748: 5743: 5740:(1): 016903. 5739: 5735: 5734: 5729: 5722: 5714: 5710: 5706: 5702: 5698: 5694: 5689: 5684: 5680: 5676: 5669: 5661: 5657: 5653: 5649: 5644: 5639: 5636:(4): 041039. 5635: 5631: 5623: 5621: 5612: 5608: 5603: 5598: 5594: 5590: 5585: 5580: 5576: 5572: 5568: 5560: 5545: 5541: 5535: 5520: 5516: 5510: 5495: 5491: 5485: 5465: 5458: 5450: 5446: 5442: 5438: 5434: 5430: 5426: 5422: 5417: 5412: 5409:(5): 055010. 5408: 5404: 5400: 5393: 5377: 5373: 5367: 5359: 5355: 5351: 5347: 5343: 5339: 5335: 5331: 5326: 5321: 5317: 5313: 5309: 5302: 5287: 5283: 5277: 5262: 5258: 5252: 5241: 5240: 5232: 5230: 5221: 5217: 5213: 5209: 5205: 5201: 5197: 5193: 5188: 5183: 5180:(6): 065004. 5179: 5175: 5167: 5159: 5155: 5151: 5145: 5141: 5137: 5133: 5129: 5121: 5107: 5103: 5099: 5098: 5090: 5082: 5078: 5074: 5070: 5066: 5062: 5058: 5054: 5049: 5044: 5040: 5036: 5032: 5025: 5017: 5013: 5009: 5005: 5001: 5000:11368/3006794 4997: 4993: 4989: 4985: 4981: 4976: 4971: 4968:(4): 045006. 4967: 4963: 4959: 4952: 4950: 4941: 4937: 4933: 4929: 4925: 4921: 4917: 4913: 4908: 4903: 4900:(7): 075007. 4899: 4895: 4891: 4884: 4876: 4872: 4868: 4864: 4860: 4856: 4852: 4848: 4843: 4838: 4835:(2): 025005. 4834: 4830: 4826: 4818: 4810: 4806: 4802: 4798: 4794: 4790: 4786: 4782: 4778: 4771: 4763: 4759: 4755: 4751: 4747: 4743: 4739: 4732: 4724: 4720: 4715: 4710: 4706: 4702: 4698: 4694: 4690: 4683: 4675: 4671: 4667: 4663: 4658: 4653: 4649: 4645: 4642:(1): 012016. 4641: 4637: 4636: 4631: 4624: 4616: 4612: 4608: 4604: 4599: 4594: 4590: 4586: 4582: 4578: 4574: 4570: 4569: 4564: 4557: 4551: 4545: 4530: 4526: 4520: 4518: 4516: 4514: 4505: 4501: 4497: 4493: 4489: 4485: 4481: 4477: 4474:(8): 084003. 4473: 4469: 4468: 4463: 4456: 4448: 4444: 4440: 4436: 4432: 4428: 4424: 4420: 4415: 4410: 4406: 4402: 4398: 4390: 4382: 4378: 4374: 4370: 4365: 4364:11568/1196710 4360: 4355: 4350: 4346: 4342: 4339:(4): 041403. 4338: 4334: 4330: 4322: 4314: 4310: 4306: 4302: 4297: 4292: 4287: 4282: 4278: 4274: 4270: 4266: 4262: 4254: 4246: 4242: 4238: 4234: 4229: 4228:11390/1193696 4224: 4219: 4214: 4210: 4206: 4202: 4198: 4194: 4186: 4178: 4174: 4170: 4166: 4162: 4158: 4154: 4147: 4139: 4135: 4131: 4127: 4123: 4119: 4115: 4111: 4107: 4103: 4099: 4092: 4084: 4080: 4075: 4070: 4066: 4062: 4059:: 1389–1397. 4058: 4054: 4050: 4043: 4041: 4032: 4028: 4024: 4020: 4016: 4012: 4008: 4004: 4000: 3992: 3984: 3980: 3976: 3972: 3968: 3964: 3961:(8): 084021. 3960: 3956: 3952: 3945: 3937: 3933: 3929: 3925: 3921: 3917: 3913: 3909: 3905: 3901: 3900: 3895: 3888: 3880: 3876: 3872: 3868: 3864: 3860: 3857:(8): 084030. 3856: 3852: 3845: 3838: 3830: 3829: 3821: 3802: 3798: 3791: 3784: 3769: 3765: 3759: 3751: 3750: 3742: 3734: 3730: 3726: 3722: 3718: 3714: 3710: 3706: 3699: 3692: 3684: 3680: 3676: 3672: 3668: 3664: 3660: 3656: 3655: 3647: 3640:. p. 19. 3636: 3635: 3627: 3619: 3615: 3610: 3605: 3601: 3597: 3592: 3587: 3583: 3579: 3575: 3567: 3565: 3550: 3546: 3542: 3536: 3532: 3528: 3524: 3520: 3515: 3510: 3506: 3502: 3498: 3491: 3483: 3479: 3474: 3469: 3465: 3461: 3456: 3451: 3447: 3443: 3439: 3432: 3424: 3420: 3415: 3410: 3406: 3402: 3398: 3394: 3390: 3386: 3382: 3375: 3360: 3356: 3350: 3342: 3335: 3334: 3326: 3311: 3307: 3301: 3293: 3289: 3285: 3283:9781510636774 3279: 3275: 3271: 3267: 3263: 3259: 3252: 3251: 3246: 3239: 3237: 3235: 3233: 3217: 3213: 3207: 3192: 3188: 3181: 3173: 3169: 3165: 3161: 3157: 3153: 3149: 3145: 3140: 3135: 3132:(9): 091101. 3131: 3127: 3123: 3115: 3100: 3096: 3092: 3086: 3078: 3074: 3070: 3066: 3062: 3058: 3054: 3050: 3046: 3042: 3037: 3032: 3028: 3024: 3020: 3012: 3010: 2998: 2997: 2989: 2987: 2985: 2983: 2981: 2979: 2977: 2975: 2973: 2964: 2960: 2956: 2952: 2948: 2944: 2939: 2934: 2931:(2): 024001. 2930: 2926: 2918: 2916: 2907: 2903: 2899: 2895: 2891: 2887: 2883: 2879: 2872: 2865: 2857: 2853: 2849: 2845: 2841: 2837: 2834:(8): 084021. 2833: 2829: 2828: 2823: 2816: 2807: 2802: 2798: 2794: 2790: 2786: 2785: 2780: 2776: 2769: 2753: 2745: 2739: 2731: 2727: 2720: 2718: 2709: 2705: 2700: 2695: 2690: 2685: 2681: 2677: 2672: 2667: 2663: 2659: 2655: 2651: 2644: 2636: 2632: 2628: 2624: 2620: 2616: 2611: 2606: 2602: 2598: 2591: 2583: 2579: 2574: 2569: 2565: 2561: 2554: 2546: 2542: 2538: 2534: 2530: 2526: 2522: 2518: 2514: 2506: 2498: 2490: 2486: 2485: 2480: 2473: 2465: 2461: 2457: 2453: 2449: 2445: 2441: 2435: 2433: 2424: 2420: 2415: 2414:11568/1161730 2410: 2405: 2400: 2396: 2392: 2388: 2384: 2383: 2378: 2371: 2369: 2360: 2356: 2352: 2348: 2344: 2340: 2339: 2334: 2330: 2324: 2316: 2312: 2308: 2304: 2297: 2282: 2278: 2272: 2257: 2253: 2247: 2232: 2228: 2222: 2206: 2202: 2196: 2181: 2177: 2171: 2155: 2151: 2147: 2141: 2126: 2122: 2116: 2114: 2112: 2110: 2108: 2099: 2095: 2091: 2087: 2082: 2077: 2073: 2069: 2064: 2059: 2055: 2051: 2050: 2045: 2037: 2035: 2033: 2016: 2012: 2006: 1991: 1987: 1981: 1979: 1962: 1958: 1952: 1950: 1933: 1932:www.ego-gw.it 1929: 1928:"Our mission" 1923: 1921: 1916: 1902: 1897: 1890: 1885: 1878: 1873: 1866: 1861: 1854: 1849: 1842: 1837: 1836: 1830: 1828: 1824: 1813: 1811: 1798: 1793: 1789: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1758: 1756: 1751: 1747: 1743: 1738: 1736: 1735:polarizations 1732: 1725: 1717: 1712: 1703: 1701: 1695: 1691: 1686: 1679:Data analysis 1676: 1661: 1641: 1616: 1611: 1608: 1604: 1593: 1591: 1587: 1584:) produces a 1583: 1557: 1555: 1554:log-log scale 1551: 1547: 1539: 1535: 1531: 1527: 1521: 1512: 1508: 1505: 1503: 1499: 1495: 1487: 1484: 1480: 1476: 1475:quantum noise 1473: 1470: 1467: 1466:ground motion 1463: 1462:seismic noise 1460: 1459: 1458: 1456: 1446: 1440:Noise sources 1432: 1428: 1426: 1423: 1418: 1413: 1408: 1399: 1395: 1392: 1388: 1380: 1376: 1371: 1367: 1363: 1358: 1355: 1351: 1346: 1341: 1333: 1331: 1326: 1322: 1318: 1317:Carlton Caves 1314: 1310: 1306: 1301: 1292: 1288: 1286: 1281: 1270: 1268: 1264: 1260: 1255: 1252: 1247: 1246:seismic noise 1239: 1235: 1230: 1217: 1216:quantum noise 1212: 1208: 1207: 1206: 1199: 1195: 1193: 1189: 1184: 1179: 1169: 1167: 1161: 1158: 1154: 1153:Nd:YVO4 laser 1150: 1146: 1141: 1131: 1105: 1103: 1099: 1094: 1090: 1086: 1082: 1072: 1067: 1052: 1050: 1046: 1042: 1033: 1030: 1027: 1023: 1020: 1016: 1012: 1011:neutron stars 1008: 1004: 1003: 998: 993: 989: 985: 976: 967: 963: 954: 951: 945: 943: 939: 935: 934:quantum noise 929: 927: 916: 912: 908: 902: 894: 890: 885: 884: 880: 876: 871: 870: 866: 862: 857: 856: 852: 850: 627: 621: 616: 614: 609: 607: 602: 601: 595: 592: 590: 586: 582: 578: 575: 574:neutron stars 571: 566: 564: 560: 556: 551: 549: 546: 542: 537: 532: 525: 520: 511: 508: 504: 498: 489: 487: 483: 482:binary pulsar 479: 474: 472: 468: 467:Alain Brillet 464: 459: 457: 453: 449: 445: 435: 433: 429: 425: 421: 411: 407: 403: 401: 397: 393: 389: 385: 375: 372: 368: 364: 360: 356: 351: 347: 343: 339: 338:Virgo Cluster 334: 332: 328: 324: 320: 316: 311: 307: 303: 299: 294: 292: 288: 284: 280: 276: 273:predicted by 272: 268: 264: 251: 243: 239: 235: 229: 225: 221: 215: 211: 207: 203: 197: 193: 189: 186: 183: 177: 172: 144: 140: 134: 130: 127: 126: 124: 120: 117: 114: 110: 106: 103: 99: 95: 91: 87: 83: 63: 54: 36: 31: 27: 22: 16: 7590:Solar System 7487: 7471: 7372:Travel with 7358:Polarization 7277: 7179:Observations 6957: 6901:Ground-based 6614:. Retrieved 6610: 6601: 6589:. Retrieved 6585: 6575: 6563:. Retrieved 6558: 6549: 6537:. Retrieved 6533: 6524: 6512:. Retrieved 6508: 6498: 6486:. Retrieved 6482: 6473: 6461:. Retrieved 6459:(in Italian) 6456: 6447: 6435:. Retrieved 6431: 6422: 6410:. Retrieved 6406: 6343: 6339: 6328: 6314:cite journal 6271: 6267: 6256: 6213: 6209: 6198: 6186:. Retrieved 6182:www.ligo.org 6181: 6172: 6119: 6115: 6104: 6061: 6057: 6047: 6033:cite journal 5982: 5978: 5911: 5907: 5896: 5837: 5833: 5822: 5810:. Retrieved 5805: 5796: 5737: 5731: 5721: 5678: 5674: 5668: 5633: 5629: 5574: 5570: 5559: 5547:. Retrieved 5543: 5534: 5522:. Retrieved 5519:dcc.ligo.org 5518: 5509: 5497:. Retrieved 5493: 5484: 5472:. Retrieved 5457: 5406: 5402: 5392: 5380:. Retrieved 5376:the original 5366: 5315: 5311: 5301: 5289:. Retrieved 5285: 5276: 5264:. Retrieved 5260: 5251: 5238: 5177: 5173: 5166: 5131: 5120: 5111:11 September 5109:, retrieved 5096: 5089: 5038: 5034: 5024: 4965: 4961: 4897: 4893: 4883: 4832: 4828: 4817: 4784: 4780: 4770: 4745: 4741: 4731: 4696: 4692: 4682: 4639: 4633: 4623: 4572: 4566: 4556: 4544: 4532:. Retrieved 4528: 4471: 4465: 4455: 4404: 4400: 4389: 4336: 4332: 4321: 4296:11585/709335 4268: 4264: 4253: 4200: 4196: 4185: 4160: 4156: 4146: 4105: 4101: 4091: 4056: 4052: 4006: 4002: 3991: 3958: 3954: 3944: 3903: 3897: 3887: 3854: 3850: 3837: 3827: 3820: 3808:. Retrieved 3801:the original 3796: 3783: 3771:. Retrieved 3767: 3758: 3748: 3741: 3708: 3704: 3691: 3661:(8): 582–4. 3658: 3652: 3646: 3633: 3626: 3581: 3577: 3552:, retrieved 3504: 3490: 3445: 3441: 3431: 3388: 3384: 3374: 3362:. Retrieved 3358: 3349: 3340: 3332: 3325: 3313:. Retrieved 3309: 3300: 3249: 3219:. Retrieved 3215: 3206: 3194:. Retrieved 3190: 3180: 3129: 3125: 3114: 3102:. Retrieved 3098: 3085: 3026: 3022: 2995: 2928: 2924: 2881: 2877: 2864: 2831: 2825: 2815: 2791:(3): 03012. 2788: 2782: 2775:Barsotti, L. 2768: 2756:. Retrieved 2751: 2738: 2729: 2661: 2657: 2643: 2600: 2596: 2590: 2563: 2559: 2553: 2520: 2516: 2505: 2496: 2488: 2483: 2472: 2447: 2443: 2386: 2380: 2342: 2336: 2323: 2306: 2296: 2284:. Retrieved 2280: 2271: 2259:. Retrieved 2256:www.ligo.org 2255: 2246: 2234:. Retrieved 2230: 2221: 2209:. Retrieved 2204: 2195: 2183:. Retrieved 2179: 2170: 2158:. Retrieved 2154:the original 2149: 2140: 2128:. Retrieved 2124: 2053: 2047: 2019:. Retrieved 2014: 2005: 1993:. Retrieved 1990:dcc.ligo.org 1989: 1965:. Retrieved 1960: 1936:. Retrieved 1931: 1819: 1794: 1790: 1778:Cassiopeia A 1774:Vela pulsars 1762:Scorpius X-1 1759: 1739: 1727: 1696: 1692: 1688: 1594: 1558: 1543: 1509: 1506: 1491: 1452: 1429: 1421: 1409: 1405: 1359: 1342: 1339: 1297: 1276: 1256: 1243: 1204: 1175: 1162: 1149:Nd:YAG laser 1145:master-slave 1137: 1078: 1041:polarization 1037: 987: 970:Science case 964: 960: 946: 930: 923: 910: 878: 567: 552: 547: 533: 529: 507:glass fibers 499: 495: 475: 460: 456:Joseph Weber 441: 417: 408: 404: 381: 378:Organization 335: 331:Kamioka mine 319:Hanford Site 309: 308:(INFN). The 295: 262: 260: 209:Affiliations 200:Spokesperson 112:Headquarters 15: 7578:Outer space 7566:Spaceflight 7479:Hypothesis 7456:Continuous 7060:Space-based 6616:26 February 6565:26 February 6539:26 February 6530:"Home page" 6437:26 February 5812:20 February 5524:26 February 5499:26 February 5382:15 December 4534:21 February 3810:16 December 3196:29 February 3104:21 February 2758:21 February 2754:(in French) 2205:virgo-gw.eu 2160:11 February 1961:virgo-gw.eu 1590:megaparsecs 1412:calibration 1354:gate valves 1285:photodiodes 1157:fiber laser 599:This box: 402:in Europe. 400:gravitation 350:light-years 277:. It is in 265:is a large 166: / 142:Coordinates 7600:Categories 7482:Colliding 7411:Stochastic 7383:chirp mass 7278:Proposed: 7169:Zooniverse 6353:2101.12130 6281:2204.04523 6223:2111.15116 6129:2111.13106 6071:1504.05890 5992:2201.00697 5921:1710.05834 5914:(2): L13. 5847:1910.10510 5747:1811.08797 5688:2206.06447 5643:2111.03606 5584:2302.03676 5416:1709.08079 5325:2207.03429 5187:2208.12849 5048:1806.06572 4975:2107.03294 4907:2009.08103 4598:2440/43095 4414:2003.10672 3591:2111.03604 3455:2105.06384 3139:1710.05837 3036:1709.09660 2456:B07FY52PGV 2389:(9): 322. 2211:11 October 2130:16 January 2063:1710.05833 2056:(2): L12. 1967:11 October 1938:11 October 1912:References 1746:gamma rays 1582:solar mass 1534:power grid 1526:resonances 1498:power grid 1479:shot noise 1362:absorption 1350:atmosphere 1321:shot noise 1190:made with 1176:The large 1102:photodiode 1093:orthogonal 1081:space-time 1055:Instrument 1015:supernovas 452:Weber bars 438:Conception 430:site near 287:kilometres 154:10°30′16″E 151:43°37′53″N 7542:Astronomy 7468:Supernova 7363:Spin-flip 6989:TENKO-100 6866:MiniGRAIL 6830:Weber bar 6759:MiniGRAIL 6713:Detectors 6386:231719405 6378:2470-0010 6306:248085352 6248:244729269 6164:244709285 6156:0004-637X 6025:245650351 5956:126310483 5948:2041-8213 5888:204837882 5872:1476-4687 5772:0034-4885 5713:249642127 5611:256627681 5577:(2): 29. 5449:119057584 5441:0264-9381 5358:250334515 5350:0264-9381 5220:251903127 5212:0264-9381 5158:140107498 5081:119192600 5073:0264-9381 5016:238634092 5008:0264-9381 4940:221761337 4932:0264-9381 4875:118586058 4867:0264-9381 4842:1009.5190 4723:2075-4434 4699:(1): 28. 4674:122763506 4666:1742-6596 4607:2155-3165 4504:235285860 4496:0031-8949 4447:214623227 4381:260185660 4313:209446443 4245:222235425 4138:123072147 4130:0264-9381 4083:1875-3892 4031:0927-6505 3983:123269358 3936:150337668 3928:0001-4966 3879:122750664 3733:250902832 3618:243832919 3584:(2): 76. 3549:119242493 3514:1301.7291 3482:234482851 3448:(1): 14. 3423:120335306 3341:ego-gw.it 3292:230549331 3061:0031-9007 2938:1408.3978 2856:123269358 2671:0903.0338 2610:1209.0667 2545:0920-5632 2497:ego-gw.it 2423:2218-1997 2329:Weber, J. 2098:217162243 2090:2041-8213 1612:× 1546:frequency 1538:harmonics 1502:resonance 1494:harmonics 1379:actuators 1309:amplitude 1060:Principle 938:squeezing 917:detectors 536:cryotraps 363:gamma-ray 248:.virgo-gw 107:detection 85:Formation 7470:or from 7388:Carried 7378:h strain 7368:Redshift 7342:Graviton 7250:GW200105 7244:GW190814 7238:GW190521 7233:GW190412 7223:GW170817 7218:GW170814 7213:GW170608 7208:GW170104 7203:GW151226 7138:NANOGrav 7085:Proposed 7019:Proposed 6979:TAMA 300 6882:Graviton 6839:Proposed 6780:EXPLORER 6739:NAUTILUS 6724:antennas 6637:Archived 6555:"On Air" 6188:29 March 6122:(1): 1. 6096:59360101 5880:31645733 5788:53712558 5780:30462612 5681:(1): 3. 5474:20 April 5291:24 March 5266:24 March 4809:10020804 4693:Galaxies 4615:17279130 4439:32412296 4373:37566847 4305:31868444 4237:33034506 3683:19876090 3554:23 April 3221:16 April 3164:29547330 3077:46829350 3069:29053306 2963:20640558 2906:59369141 2708:28163611 2664:(1): 2. 2652:(2009). 2635:56407863 2603:: 1–54. 2442:(2018). 2382:Universe 2261:31 March 2236:31 March 2015:eoPortal 1816:Outreach 1784:and the 1782:Vela Jr. 1742:GW170817 1731:GW170814 1716:GW170814 1634:, where 1578:☉ 1571:☉ 1564:☉ 1536:and its 1366:dilation 1311:and the 1134:rapidly. 1000:objects. 997:GW170817 589:kilonova 570:GW170817 559:GW170814 524:GW170814 448:Einstein 355:GW170817 342:galaxies 329:(in the 226:per year 218:Budget 122:Location 7518:Physics 7504:Portals 7490:sources 7474:sources 7472:unknown 7291:B-modes 7260:Methods 7225:(first 7102:TianQin 7069:Planned 7003:Planned 6820:GEOGRAV 6790:ALLEGRO 6358:Bibcode 6286:Bibcode 6228:Bibcode 6134:Bibcode 6076:Bibcode 5997:Bibcode 5926:Bibcode 5852:Bibcode 5752:Bibcode 5693:Bibcode 5648:Bibcode 5589:Bibcode 5549:5 March 5540:"GWOSC" 5421:Bibcode 5330:Bibcode 5192:Bibcode 5053:Bibcode 4980:Bibcode 4912:Bibcode 4847:Bibcode 4789:Bibcode 4750:Bibcode 4701:Bibcode 4644:Bibcode 4577:Bibcode 4476:Bibcode 4419:Bibcode 4341:Bibcode 4273:Bibcode 4205:Bibcode 4165:Bibcode 4110:Bibcode 4061:Bibcode 4011:Bibcode 3963:Bibcode 3908:Bibcode 3859:Bibcode 3773:5 March 3713:Bibcode 3663:Bibcode 3596:Bibcode 3519:Bibcode 3460:Bibcode 3393:Bibcode 3262:Bibcode 3191:cern.ch 3172:3889124 3144:Bibcode 3041:Bibcode 2943:Bibcode 2886:Bibcode 2836:Bibcode 2793:Bibcode 2752:Cnrs.fr 2699:5255530 2676:Bibcode 2615:Bibcode 2578:Bibcode 2525:Bibcode 2460:Bibcode 2391:Bibcode 2347:Bibcode 2311:Bibcode 2150:Cnrs.fr 2068:Bibcode 2021:26 July 1833:Gallery 1766:pulsars 1580:is the 1573:(where 1402:manner. 1259:pendula 1234:pendula 1178:mirrors 1172:Mirrors 1026:pulsars 887:  873:  859:  696:– 686:– 676:– 666:– 656:– 646:– 636:– 581:merging 548:in-situ 428:Cascina 414:History 359:optical 344:in the 321:and in 241:Website 232:Staff 180:Region 133:Cascina 101:Purpose 7464:Burst 7390:energy 7320:Theory 7186:Events 7097:DECIGO 6938:GEO600 6911:Active 6815:ALTAIR 6749:AURIGA 6732:Active 6591:6 June 6488:6 June 6463:6 June 6384:  6376:  6304:  6246:  6162:  6154:  6094:  6023:  5954:  5946:  5886:  5878:  5870:  5834:Nature 5786:  5778:  5770:  5711:  5609:  5447:  5439:  5356:  5348:  5218:  5210:  5156:  5146:  5079:  5071:  5014:  5006:  4938:  4930:  4873:  4865:  4807:  4721:  4672:  4664:  4613:  4605:  4502:  4494:  4445:  4437:  4379:  4371:  4311:  4303:  4243:  4235:  4136:  4128:  4081:  4029:  3981:  3934:  3926:  3877:  3731:  3681:  3616:  3547:  3537:  3480:  3421:  3364:17 May 3315:13 May 3290:  3280:  3170:  3162:  3099:Nature 3075:  3067:  3059:  2961:  2904:  2854:  2706:  2696:  2633:  2566:: 25. 2543:  2491:] 2454:  2421:  2286:4 July 2096:  2088:  1995:4 July 1387:lasers 1251:silica 957:Future 844:  837:  830:  823:  816:  809:  802:  795:  788:  781:  774:  767:  760:  753:  746:(plan) 396:Nikhef 191:Fields 47:  41:  7554:Stars 7530:Italy 7164:PyCBC 6953:KAGRA 6922:ACIGA 6877:SFERA 6862:GRAIL 6825:AGATA 6800:NIOBE 6514:8 May 6412:8 May 6407:Virgo 6382:S2CID 6348:arXiv 6302:S2CID 6276:arXiv 6244:S2CID 6218:arXiv 6160:S2CID 6124:arXiv 6092:S2CID 6066:arXiv 6021:S2CID 5987:arXiv 5952:S2CID 5916:arXiv 5884:S2CID 5842:arXiv 5784:S2CID 5742:arXiv 5709:S2CID 5683:arXiv 5638:arXiv 5607:S2CID 5579:arXiv 5468:(PDF) 5445:S2CID 5411:arXiv 5354:S2CID 5320:arXiv 5243:(PDF) 5216:S2CID 5182:arXiv 5154:S2CID 5077:S2CID 5043:arXiv 5012:S2CID 4970:arXiv 4936:S2CID 4902:arXiv 4871:S2CID 4837:arXiv 4670:S2CID 4500:S2CID 4443:S2CID 4409:arXiv 4377:S2CID 4309:S2CID 4241:S2CID 4134:S2CID 3979:S2CID 3932:S2CID 3875:S2CID 3847:(PDF) 3804:(PDF) 3793:(PDF) 3729:S2CID 3701:(PDF) 3638:(PDF) 3614:S2CID 3586:arXiv 3545:S2CID 3509:arXiv 3478:S2CID 3450:arXiv 3419:S2CID 3359:Virgo 3337:(PDF) 3288:S2CID 3254:(PDF) 3168:S2CID 3134:arXiv 3073:S2CID 3031:arXiv 3000:(PDF) 2959:S2CID 2933:arXiv 2902:S2CID 2874:(PDF) 2852:S2CID 2748:(PDF) 2666:arXiv 2631:S2CID 2605:arXiv 2568:arXiv 2493:(PDF) 2487:[ 2446:[ 2185:4 May 2094:S2CID 2058:arXiv 1750:x-ray 1566:–1.4 1530:50 Hz 1464:(any 1455:noise 1313:phase 1210:arms. 1140:laser 1085:light 915:KAGRA 911:Virgo 893:KAGRA 879:Virgo 371:radio 367:X-ray 327:KAGRA 224:euros 185:Italy 7486:and 7450:EMRI 7143:PPTA 7133:IPTA 7128:EPTA 7076:LISA 6972:Past 6928:CLIO 6918:AIGO 6872:TIGA 6846:TOBA 6804:IGEC 6794:IGEC 6784:IGEC 6773:Past 6753:IGEC 6743:IGEC 6618:2023 6593:2024 6567:2023 6541:2023 6516:2023 6490:2024 6465:2024 6439:2023 6414:2023 6374:ISSN 6320:link 6190:2023 6152:ISSN 6039:link 5944:ISSN 5876:PMID 5868:ISSN 5814:2023 5776:PMID 5768:ISSN 5551:2023 5526:2023 5501:2023 5476:2023 5437:ISSN 5384:2015 5346:ISSN 5293:2023 5268:2023 5208:ISSN 5144:ISBN 5113:2024 5069:ISSN 5004:ISSN 4928:ISSN 4863:ISSN 4805:PMID 4719:ISSN 4662:ISSN 4611:PMID 4603:ISSN 4536:2023 4492:ISSN 4435:PMID 4369:PMID 4301:PMID 4233:PMID 4126:ISSN 4079:ISSN 4027:ISSN 3924:ISSN 3812:2015 3775:2023 3679:PMID 3556:2023 3535:ISBN 3366:2024 3317:2023 3278:ISBN 3258:SPIE 3223:2023 3198:2024 3160:PMID 3106:2024 3065:PMID 3057:ISSN 2760:2024 2704:PMID 2541:ISSN 2452:ASIN 2419:ISSN 2288:2023 2263:2023 2238:2023 2213:2023 2187:2023 2162:2016 2132:2024 2086:ISSN 2023:2024 1997:2023 1969:2023 1940:2023 1780:and 1772:and 1770:Crab 1138:The 1009:(or 913:and 907:LIGO 865:LIGO 619:edit 612:talk 605:view 555:LIGO 503:LIGO 471:Rome 432:Pisa 424:INFN 420:CNRS 392:INFN 390:and 388:CNRS 369:and 315:LIGO 283:Pisa 261:The 93:Type 88:1993 7295:CMB 7293:of 6366:doi 6344:104 6294:doi 6272:106 6236:doi 6214:105 6142:doi 6120:935 6084:doi 6013:hdl 6005:doi 5983:106 5934:doi 5912:848 5860:doi 5838:574 5760:doi 5701:doi 5656:doi 5597:doi 5575:267 5429:doi 5338:doi 5200:doi 5136:doi 5102:doi 5061:doi 4996:hdl 4988:doi 4920:doi 4855:doi 4797:doi 4758:doi 4709:doi 4652:doi 4640:363 4593:hdl 4585:doi 4484:doi 4427:doi 4405:124 4359:hdl 4349:doi 4337:131 4291:hdl 4281:doi 4269:123 4223:hdl 4213:doi 4201:125 4173:doi 4118:doi 4069:doi 4019:doi 3971:doi 3916:doi 3904:145 3867:doi 3721:doi 3671:doi 3604:doi 3582:949 3527:doi 3468:doi 3446:923 3409:hdl 3401:doi 3270:doi 3152:doi 3130:120 3049:doi 3027:119 2951:doi 2894:doi 2844:doi 2801:doi 2694:PMC 2684:doi 2623:doi 2564:328 2533:doi 2409:hdl 2399:doi 2355:doi 2076:doi 2054:848 1556:. 1540:) . 1422:via 1394:2. 1120:10. 950:Mpc 737:O4b 730:O4a 484:'s 250:.eu 246:www 7602:: 6609:. 6584:. 6557:. 6532:. 6507:. 6481:. 6455:. 6430:. 6405:. 6394:^ 6380:. 6372:. 6364:. 6356:. 6342:. 6338:. 6316:}} 6312:{{ 6300:. 6292:. 6284:. 6270:. 6266:. 6242:. 6234:. 6226:. 6212:. 6208:. 6180:. 6158:. 6150:. 6140:. 6132:. 6118:. 6114:. 6090:. 6082:. 6074:. 6062:91 6060:. 6056:. 6035:}} 6031:{{ 6019:. 6011:. 6003:. 5995:. 5981:. 5977:. 5964:^ 5950:. 5942:. 5932:. 5924:. 5910:. 5906:. 5882:. 5874:. 5866:. 5858:. 5850:. 5836:. 5832:. 5804:. 5782:. 5774:. 5766:. 5758:. 5750:. 5738:82 5736:. 5730:. 5707:. 5699:. 5691:. 5679:26 5677:. 5654:. 5646:. 5634:13 5632:. 5619:^ 5605:. 5595:. 5587:. 5573:. 5569:. 5542:. 5517:. 5492:. 5443:. 5435:. 5427:. 5419:. 5407:38 5405:. 5401:. 5352:. 5344:. 5336:. 5328:. 5316:39 5314:. 5310:. 5284:. 5259:. 5228:^ 5214:. 5206:. 5198:. 5190:. 5178:40 5176:. 5152:. 5142:. 5130:. 5100:, 5075:. 5067:. 5059:. 5051:. 5039:35 5037:. 5033:. 5010:. 5002:. 4994:. 4986:. 4978:. 4966:39 4964:. 4960:. 4948:^ 4934:. 4926:. 4918:. 4910:. 4898:38 4896:. 4892:. 4869:. 4861:. 4853:. 4845:. 4833:28 4831:. 4827:. 4803:. 4795:. 4785:54 4783:. 4779:. 4756:. 4746:56 4744:. 4740:. 4717:. 4707:. 4697:10 4695:. 4691:. 4668:. 4660:. 4650:. 4638:. 4632:. 4609:. 4601:. 4591:. 4583:. 4573:46 4571:. 4565:. 4527:. 4512:^ 4498:. 4490:. 4482:. 4472:96 4470:. 4464:. 4441:. 4433:. 4425:. 4417:. 4403:. 4399:. 4375:. 4367:. 4357:. 4347:. 4335:. 4331:. 4307:. 4299:. 4289:. 4279:. 4267:. 4263:. 4239:. 4231:. 4221:. 4211:. 4199:. 4195:. 4171:. 4161:23 4159:. 4155:. 4132:. 4124:. 4116:. 4106:23 4104:. 4100:. 4077:. 4067:. 4057:37 4051:. 4039:^ 4025:. 4017:. 4007:23 4005:. 4001:. 3977:. 3969:. 3959:27 3957:. 3953:. 3930:. 3922:. 3914:. 3902:. 3896:. 3873:. 3865:. 3855:27 3853:. 3849:. 3795:. 3766:. 3727:. 3719:. 3709:19 3707:. 3703:. 3677:. 3669:. 3659:21 3657:. 3612:. 3602:. 3594:. 3580:. 3576:. 3563:^ 3543:, 3533:, 3525:, 3517:, 3503:, 3476:. 3466:. 3458:. 3444:. 3440:. 3417:. 3407:. 3399:. 3389:30 3387:. 3383:. 3357:. 3339:. 3308:. 3286:. 3276:. 3268:. 3231:^ 3214:. 3189:. 3166:. 3158:. 3150:. 3142:. 3128:. 3124:. 3097:. 3071:. 3063:. 3055:. 3047:. 3039:. 3025:. 3021:. 3008:^ 2971:^ 2957:. 2949:. 2941:. 2929:32 2927:. 2914:^ 2900:. 2892:. 2882:28 2880:. 2876:. 2850:. 2842:. 2832:27 2830:. 2824:. 2799:. 2787:. 2781:. 2750:. 2728:. 2716:^ 2702:. 2692:. 2682:. 2674:. 2662:12 2660:. 2656:. 2629:. 2621:. 2613:. 2601:68 2599:. 2576:. 2562:. 2539:. 2531:. 2521:48 2515:. 2495:. 2458:. 2431:^ 2417:. 2407:. 2397:. 2385:. 2379:. 2367:^ 2353:. 2343:20 2341:. 2335:. 2279:. 2254:. 2229:. 2203:. 2178:. 2123:. 2106:^ 2092:. 2084:. 2074:. 2066:. 2052:. 2046:. 2031:^ 2013:. 1988:. 1977:^ 1959:. 1948:^ 1930:. 1919:^ 1804:-8 1757:. 1383:CO 1381:: 1051:. 928:. 909:, 744:O5 723:O3 716:O2 709:O1 365:, 361:, 293:. 131:, 7506:: 7418:- 7385:) 7229:) 6964:) 6960:( 6949:) 6945:( 6924:) 6920:( 6888:) 6868:) 6806:) 6802:( 6796:) 6792:( 6786:) 6782:( 6755:) 6751:( 6745:) 6741:( 6679:e 6672:t 6665:v 6620:. 6595:. 6569:. 6543:. 6518:. 6492:. 6467:. 6441:. 6416:. 6388:. 6368:: 6360:: 6350:: 6322:) 6308:. 6296:: 6288:: 6278:: 6250:. 6238:: 6230:: 6220:: 6192:. 6166:. 6144:: 6136:: 6126:: 6098:. 6086:: 6078:: 6068:: 6041:) 6027:. 6015:: 6007:: 5999:: 5989:: 5958:. 5936:: 5928:: 5918:: 5890:. 5862:: 5854:: 5844:: 5816:. 5790:. 5762:: 5754:: 5744:: 5715:. 5703:: 5695:: 5685:: 5662:. 5658:: 5650:: 5640:: 5613:. 5599:: 5591:: 5581:: 5553:. 5528:. 5503:. 5478:. 5451:. 5431:: 5423:: 5413:: 5386:. 5360:. 5340:: 5332:: 5322:: 5295:. 5270:. 5245:. 5222:. 5202:: 5194:: 5184:: 5160:. 5138:: 5104:: 5083:. 5063:: 5055:: 5045:: 5018:. 4998:: 4990:: 4982:: 4972:: 4942:. 4922:: 4914:: 4904:: 4877:. 4857:: 4849:: 4839:: 4811:. 4799:: 4791:: 4764:. 4760:: 4752:: 4725:. 4711:: 4703:: 4676:. 4654:: 4646:: 4617:. 4595:: 4587:: 4579:: 4538:. 4506:. 4486:: 4478:: 4449:. 4429:: 4421:: 4411:: 4383:. 4361:: 4351:: 4343:: 4315:. 4293:: 4283:: 4275:: 4247:. 4225:: 4215:: 4207:: 4179:. 4175:: 4167:: 4140:. 4120:: 4112:: 4085:. 4071:: 4063:: 4033:. 4021:: 4013:: 3985:. 3973:: 3965:: 3938:. 3918:: 3910:: 3881:. 3869:: 3861:: 3814:. 3777:. 3735:. 3723:: 3715:: 3685:. 3673:: 3665:: 3620:. 3606:: 3598:: 3588:: 3529:: 3521:: 3511:: 3484:. 3470:: 3462:: 3452:: 3425:. 3411:: 3403:: 3395:: 3368:. 3319:. 3294:. 3272:: 3264:: 3225:. 3200:. 3174:. 3154:: 3146:: 3136:: 3108:. 3079:. 3051:: 3043:: 3033:: 3002:. 2965:. 2953:: 2945:: 2935:: 2908:. 2896:: 2888:: 2858:. 2846:: 2838:: 2809:. 2803:: 2795:: 2789:7 2762:. 2710:. 2686:: 2678:: 2668:: 2637:. 2625:: 2617:: 2607:: 2584:. 2580:: 2570:: 2547:. 2535:: 2527:: 2466:. 2462:: 2425:. 2411:: 2401:: 2393:: 2387:7 2361:. 2357:: 2349:: 2317:. 2313:: 2290:. 2265:. 2240:. 2215:. 2189:. 2164:. 2134:. 2100:. 2078:: 2070:: 2060:: 2025:. 1999:. 1971:. 1942:. 1662:P 1642:L 1617:P 1609:L 1605:1 1575:M 1568:M 1561:M 1385:2 1021:. 526:)

Index



Virgo interferometer is located in Italy
Gravitational wave
European Gravitational Observatory
Santo Stefano a Macerata
Cascina
43°37′53″N 10°30′16″E / 43.6313°N 10.5045°E / 43.6313; 10.5045
Italy
euros
www.virgo-gw.eu
Michelson interferometer
gravitational waves
general relativity
Santo Stefano a Macerata
Pisa
kilometres
ultra-high vacuum
European Gravitational Observatory
Centre National de la Recherche Scientifique
Istituto Nazionale di Fisica Nucleare
LIGO
Hanford Site
Livingston, Louisiana
KAGRA
Kamioka mine
Virgo Cluster
galaxies
Virgo constellation
light-years

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.