Knowledge

Viral entry

Source đź“ť

300: 257: 1314: 126: 291:(ACE2). The evolved, high level of activity to mediate cell to cell fusion has resulted in an enhanced fusion capacity. Current prophylaxis against SARS-2 infection targets the spike (S) proteins that harbor the capacity for membrane fusion. Vaccinations are based on the blocking the viral S glycoprotein with the cell, thus stopping the fusion of the virus and its host cell membranes. The fusion mechanism is also studied as a potential target for antiviral development. 107: 1562: 32: 1550: 1586: 1574: 334:, also enter the cell through endocytosis. Entry via the endosome guarantees low pH and exposure to proteases which are needed to open the viral capsid and release the genetic material inside the host cytoplasm. Further, endosomes transport the virus through the cell and ensure that no trace of the virus is left on the surface, which could otherwise trigger immune recognition by the host. 150:. This attachment causes the two membranes to remain in mutual proximity, favoring further interactions between surface proteins. This is also the first requisite that must be satisfied before a cell can become infected. Satisfaction of this requisite makes the cell susceptible. Viruses that exhibit this behavior include many enveloped viruses such as 268:, viral receptors attach to the receptors on the surface of the cell and secondary receptors may be present to initiate the puncture of the membrane or fusion with the host cell. Following attachment, the viral envelope fuses with the host cell membrane, causing the virus to enter. Viruses that enter a cell in this manner included 311:; they “trick” the host cell to ingest the virions through the cell membrane. Cells can take in resources from the environment outside of the cell, and these mechanisms may be exploited by viruses to enter a cell in the same manner as ordinary resources. Once inside the cell, the virus leaves the host 366:
Once a virus is in a cell, it will activate formation of proteins (either by itself or using the host’s machinery) to gain full control of the host cell, if possible. Control mechanisms include the suppression of intrinsic cell defenses, suppression of cell signaling and suppression of host cellular
137:
Cell entry by enveloped viruses is more complicated. Enveloped viruses enter the cell by attaching to an attachment factor located on the surface of the host cell. They then enter by endocytosis or a direct membrane fusion event. The fusion event is when the virus membrane and the host cell membrane
138:
fuse together allowing a virus to enter. It does this by attachment – or adsorption – onto a susceptible cell; a cell which holds a receptor that the virus can bind to, akin to two pieces of a puzzle fitting together. The
83:
and introduces viral material into the cell. The major steps involved in viral entry are shown below. Despite the variation among viruses, there are several shared generalities concerning viral entry.
1013:
Outlaw, Victor K.; Bovier, Francesca T.; Mears, Megan C.; Cajimat, Maria N.; Zhu, Yun; Lin, Michelle J.; Addetia, Amin; Lieberman, Nicole A. P.; Peddu, Vikas; Xie, Xuping; Shi, Pei-Yong (2020-10-20).
1166:
Sebestyén, Magdolna G.; Budker, Vladimir G.; Budker, Tatiana; Subbotin, Vladimir M.; Zhang, Guofeng; Monahan, Sean D.; Lewis, David L.; Wong, So C.; Hagstrom, James E.; Wolff, Jon A. (July 2006).
958:"Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion" 248:(GFP), virus entry and infection can be visualized in real-time. Once a virus enters a cell, replication is not immediate and indeed takes some time (seconds to hours). 677:
Kumar, Binod; Dutta, Dipanjan; Iqbal, Jawed; Ansari, Mairaj Ahmed; Roy, Arunava; Chikoti, Leela; Pisano, Gina; Veettil, Mohanan Valiya; Chandran, Bala (October 2016).
378:
A cell is classified as susceptible to a virus if the virus is able to enter the cell. After the introduction of the viral particle, unpacking of the contents (viral
346:
into the cell, leaving the rest of the virus on the surface. This is restricted to viruses in which only the genome is required for infection of a cell (for example
350:
because they can be immediately translated) and is further restricted to viruses that actually exhibit this behavior. The best studied example includes the
736:
Veettil, Mohanan Valiya; Kumar, Binod; Ansari, Mairaj Ahmed; Dutta, Dipanjan; Iqbal, Jawed; Gjyshi, Olsi; Bottero, Virginie; Chandran, Bala (April 2016).
679:"ESCRT-I Protein Tsg101 Plays a Role in the Post-macropinocytic Trafficking and Infection of Endothelial Cells by Kaposi's Sarcoma-Associated Herpesvirus" 956:
Xia, Shuai; Liu, Meiqin; Wang, Chao; Xu, Wei; Lan, Qiaoshuai; Feng, Siliang; Qi, Feifei; Bao, Linlin; Du, Lanying; Liu, Shuwen; Qin, Chuan (2020-03-30).
193:
bilayer, a cell's natural barrier to the outside world. The process by which this barrier is breached depends upon the virus. Types of entry are:
852:
Campadelli-Fiume, Gabriella; Amasio, Michele; Avitabile, Elisa; Cerretani, Arianna; Forghieri, Cristina; Gianni, Tatiana; Menotti, Laura (2007).
1015:"Inhibition of Coronavirus Entry In Vitro and Ex Vivo by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain" 287:, either at the cell surface or in vesicles. Research efforts have focused on the spike protein's interaction with its cell-surface receptor, 220:: The host cell takes in the viral particle through the process of endocytosis, essentially engulfing the virus like it would a food particle. 738:"ESCRT-0 Component Hrs Promotes Macropinocytosis of Kaposi's Sarcoma-Associated Herpesvirus in Human Dermal Microvascular Endothelial Cells" 165:(or simply phages). Typical phages have long tails used to attach to receptors on the bacterial surface and inject their viral genome. 416:"Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B" 795:"Protective Immunity Based on the Conserved Hemagglutinin Stalk Domain and Its Prospects for Universal Influenza Vaccine Development" 358:
land on a cell, its central sheath pierces the cell membrane and the phage injects DNA from the head capsid directly into the cell.
1480: 342:
A third method is by simply attaching to the surface of the host cell via receptors on the cell with the virus injecting only its
1238: 199: 909:"Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity" 315:
by which it was taken up and thus gains access to the cytoplasm. Examples of viruses that enter this way include the
312: 288: 173:
Prior to entry, a virus must attach to a host cell. Attachment is achieved when specific proteins on the viral
1168:"Mechanism of plasmid delivery by hydrodynamic tail vein injection. I. Hepatocyte uptake of various molecules" 1590: 620:"KSHV Entry and Trafficking in Target Cells-Hijacking of Cell Signal Pathways, Actin and Membrane Dynamics" 324: 99:
enters the cell by attaching to the attachment factor located on a host cell. It then enters the cell by
1231: 1617: 1272: 347: 284: 245: 1578: 368: 1267: 355: 1473: 372: 210:: The cell membrane is punctured and made to further connect with the unfolding viral envelope. 1070:
Tang, Tiffany; Bidon, Miya; Jaimes, Javier A.; Whittaker, Gary R.; Daniel, Susan (June 2020).
375:. Often, these cytotoxic effects lead to the death and decline of a cell infected by a virus. 1224: 92:
How a virus enters a cell is different depending on the type of virus it is. A virus with a
1525: 1520: 1072:"Coronavirus membrane fusion mechanism offers a potential target for antiviral development" 515: 427: 273: 155: 111: 8: 1515: 1500: 1262: 519: 501: 431: 1203: 1104: 1071: 1047: 1014: 990: 957: 933: 908: 889: 829: 794: 770: 737: 713: 678: 654: 619: 595: 562: 450: 415: 182: 139: 538: 503: 299: 264:
The most well-known example is through membrane fusion. In a number of viruses with a
1612: 1549: 1490: 1335: 1195: 1187: 1109: 1091: 1052: 1034: 995: 977: 938: 881: 873: 834: 816: 775: 757: 718: 700: 659: 641: 600: 582: 543: 455: 395: 320: 48: 1087: 893: 103:
or by making a hole in the membrane of the host cell and inserting its viral genome.
1566: 1386: 1322: 1179: 1099: 1083: 1042: 1026: 985: 969: 928: 920: 865: 854:"The multipartite system that mediates entry of herpes simplex virus into the cell" 824: 806: 765: 749: 708: 690: 649: 631: 590: 574: 533: 523: 445: 435: 72: 1207: 1396: 1381: 1376: 1360: 695: 280: 130: 1554: 1485: 1453: 1340: 1298: 508:
Proceedings of the National Academy of Sciences of the United States of America
502:
Lakadamyali, Melike; Michael J. Rust; Hazen P. Babcock; Xiaowei Zhuang (2003).
383: 265: 178: 162: 143: 93: 80: 58: 973: 1606: 1505: 1417: 1350: 1303: 1191: 1095: 1038: 981: 877: 820: 761: 704: 645: 586: 351: 186: 147: 53: 528: 440: 1468: 1463: 1427: 1412: 1391: 1313: 1247: 1199: 1113: 1056: 999: 942: 885: 838: 779: 722: 663: 604: 547: 459: 391: 190: 189:
of the target cell. A virus must now enter the cell, which is covered by a
1030: 907:
Zhu, Yuanmei; Yu, Danwei; Yan, Hongxia; Chong, Huihui; He, Yuxian (2020).
811: 1458: 1437: 1355: 924: 753: 563:"Visualization of Targeted Transduction by Engineered Lentiviral Vectors" 308: 215: 125: 119: 115: 100: 851: 106: 1535: 1510: 578: 331: 316: 256: 1216: 1495: 1432: 1422: 1345: 1167: 853: 793:
Khanna, Madhu; Sharma, Sachin; Kumar, Binod; Rajput, Roopali (2014).
636: 237: 22: 1183: 869: 31: 1277: 478: 379: 161:
These basic ideas extend to viruses that infect bacteria, known as
1126:
Helle F, Dubuisson J. "Hepatitis C virus entry into host cells."
307:
Viruses with no viral envelope enter the cell generally through
1530: 1293: 387: 343: 233: 229: 174: 146:
effectively become connected to complementary receptors on the
96: 394:) occurs as preparation of the next stage of viral infection: 1251: 1165: 76: 413: 269: 151: 1069: 1012: 279:
In SARS-CoV-2 and similar viruses, entry occurs through
792: 735: 504:"Visualizing infection of individual influenza viruses" 676: 420:
Proceedings of the National Academy of Sciences, USA
110:
Schematic of different pathways of viral entry: (A)
407: 16:
Earliest stage of infection in the viral life cycle
618:Kumar, Binod; Chandran, Bala (November 14, 2016). 1604: 414:Subramanian RP, Geraghty RJ (20 February 2007). 337: 87: 1232: 906: 617: 479:"Virus entry into host cell ~ ViralZone page" 955: 251: 1143:, 6th edition." Blackwell Publishing, 2007. 354:; for example, when the tail fibers of the 1239: 1225: 71:is the earliest stage of infection in the 1103: 1046: 989: 932: 828: 810: 769: 712: 694: 653: 635: 594: 560: 537: 527: 449: 439: 1481:Laboratory diagnosis of viral infections 298: 294: 255: 124: 105: 1246: 1156:Lippincott Williams & Williams 2013 1605: 1220: 1573: 473: 471: 469: 1585: 13: 30: 14: 1629: 466: 236:is injected into the host cell's 181:bind to specific proteins called 79:comes into contact with the host 1584: 1572: 1561: 1560: 1548: 1312: 1152:Howley, Peter M; Knipe, David M 330:Many enveloped viruses, such as 1159: 1146: 1141:Introduction to Modern Virology 1133: 1120: 1088:10.1016/j.antiviral.2020.104792 1063: 1006: 949: 900: 561:Joo, K-I; P Wang (2008-05-15). 289:angiotensin-converting enzyme 2 260:Viral entry via membrane fusion 845: 786: 729: 670: 611: 554: 495: 1: 799:BioMed Research International 401: 1172:The Journal of Gene Medicine 696:10.1371/journal.ppat.1005960 325:foot-and-mouth disease virus 129:Membrane fusion mediated by 7: 858:Reviews in Medical Virology 361: 348:positive-strand RNA viruses 338:Entry via genetic injection 303:Viral entry via endocytosis 168: 88:Reducing cellular proximity 10: 1634: 1544: 1446: 1405: 1369: 1321: 1310: 1286: 1273:Social history of viruses 1258: 974:10.1038/s41422-020-0305-x 252:Entry via membrane fusion 246:green fluorescent protein 529:10.1073/pnas.0832269100 441:10.1073/pnas.0608374104 1474:Helper dependent virus 304: 261: 134: 122: 35: 1031:10.1128/mBio.01935-20 302: 295:Entry via endocytosis 259: 128: 109: 34: 1526:Virus quantification 1521:Virus classification 1139:N.J. Dimmock et al. 925:10.1128/JVI.00635-20 754:10.1128/JVI.02704-15 483:viralzone.expasy.org 274:herpes simplex virus 156:herpes simplex virus 1516:Virus-like particle 913:Journal of Virology 812:10.1155/2014/546274 742:Journal of Virology 520:2003PNAS..100.9280L 432:2007PNAS..104.2903S 244:Through the use of 1076:Antiviral Research 579:10.1038/gt.2008.87 305: 262: 135: 123: 36: 1600: 1599: 1491:Neurotropic virus 1336:Viral replication 1128:Cell Mol Life Sci 396:viral replication 390:via some form of 321:hepatitis C virus 225:Viral penetration 66: 65: 1625: 1618:Viral life cycle 1588: 1587: 1576: 1575: 1564: 1563: 1552: 1387:Phenotype mixing 1323:Viral life cycle 1316: 1241: 1234: 1227: 1218: 1217: 1212: 1211: 1163: 1157: 1150: 1144: 1137: 1131: 1124: 1118: 1117: 1107: 1067: 1061: 1060: 1050: 1010: 1004: 1003: 993: 953: 947: 946: 936: 904: 898: 897: 849: 843: 842: 832: 814: 790: 784: 783: 773: 733: 727: 726: 716: 698: 689:(10): e1005960. 674: 668: 667: 657: 639: 637:10.3390/v8110305 615: 609: 608: 598: 558: 552: 551: 541: 531: 499: 493: 492: 490: 489: 475: 464: 463: 453: 443: 411: 283:mediated by the 207:Hemifusion state 185:proteins on the 120:macropinocytosis 73:viral life cycle 25:virus life cycle 19: 18: 1633: 1632: 1628: 1627: 1626: 1624: 1623: 1622: 1603: 1602: 1601: 1596: 1540: 1442: 1401: 1397:Viral evolution 1382:Antigenic shift 1377:Antigenic drift 1365: 1361:Lysogenic cycle 1317: 1308: 1282: 1254: 1245: 1215: 1184:10.1002/jgm.921 1164: 1160: 1154:Fields Virology 1151: 1147: 1138: 1134: 1125: 1121: 1068: 1064: 1011: 1007: 954: 950: 905: 901: 870:10.1002/rmv.546 850: 846: 791: 787: 734: 730: 675: 671: 616: 612: 573:(20): 1384–96. 559: 555: 514:(16): 9280–85. 500: 496: 487: 485: 477: 476: 467: 412: 408: 404: 364: 340: 297: 281:membrane fusion 254: 200:Membrane fusion 171: 133:fusion proteins 112:membrane fusion 90: 17: 12: 11: 5: 1631: 1621: 1620: 1615: 1598: 1597: 1595: 1594: 1582: 1570: 1558: 1545: 1542: 1541: 1539: 1538: 1533: 1528: 1523: 1518: 1513: 1508: 1503: 1498: 1493: 1488: 1486:Marine viruses 1483: 1478: 1477: 1476: 1466: 1461: 1456: 1454:Antiviral drug 1450: 1448: 1444: 1443: 1441: 1440: 1435: 1430: 1425: 1420: 1415: 1409: 1407: 1403: 1402: 1400: 1399: 1394: 1389: 1384: 1379: 1373: 1371: 1367: 1366: 1364: 1363: 1358: 1353: 1348: 1343: 1341:Viral shedding 1338: 1333: 1327: 1325: 1319: 1318: 1311: 1309: 1307: 1306: 1301: 1299:Viral envelope 1296: 1290: 1288: 1284: 1283: 1281: 1280: 1275: 1270: 1265: 1259: 1256: 1255: 1244: 1243: 1236: 1229: 1221: 1214: 1213: 1178:(7): 852–873. 1158: 1145: 1132: 1119: 1062: 1005: 968:(4): 343–355. 948: 899: 864:(5): 313–326. 844: 785: 748:(8): 3860–72. 728: 683:PLOS Pathogens 669: 610: 553: 494: 465: 426:(8): 2903–08. 405: 403: 400: 386:and the viral 363: 360: 352:bacteriophages 339: 336: 296: 293: 266:viral envelope 253: 250: 242: 241: 221: 211: 179:viral envelope 170: 167: 163:bacteriophages 144:viral envelope 89: 86: 64: 63: 62: 61: 56: 51: 46: 38: 37: 27: 26: 15: 9: 6: 4: 3: 2: 1630: 1619: 1616: 1614: 1611: 1610: 1608: 1593: 1592: 1583: 1581: 1580: 1571: 1569: 1568: 1559: 1557: 1556: 1551: 1547: 1546: 1543: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1506:Viral disease 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1475: 1472: 1471: 1470: 1467: 1465: 1462: 1460: 1457: 1455: 1452: 1451: 1449: 1445: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1418:Bacteriophage 1416: 1414: 1411: 1410: 1408: 1404: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1380: 1378: 1375: 1374: 1372: 1368: 1362: 1359: 1357: 1354: 1352: 1351:Virus latency 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1328: 1326: 1324: 1320: 1315: 1305: 1304:Viral protein 1302: 1300: 1297: 1295: 1292: 1291: 1289: 1285: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1261: 1260: 1257: 1253: 1249: 1242: 1237: 1235: 1230: 1228: 1223: 1222: 1219: 1209: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1162: 1155: 1149: 1142: 1136: 1129: 1123: 1115: 1111: 1106: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1066: 1058: 1054: 1049: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1009: 1001: 997: 992: 987: 983: 979: 975: 971: 967: 963: 962:Cell Research 959: 952: 944: 940: 935: 930: 926: 922: 918: 914: 910: 903: 895: 891: 887: 883: 879: 875: 871: 867: 863: 859: 855: 848: 840: 836: 831: 826: 822: 818: 813: 808: 804: 800: 796: 789: 781: 777: 772: 767: 763: 759: 755: 751: 747: 743: 739: 732: 724: 720: 715: 710: 706: 702: 697: 692: 688: 684: 680: 673: 665: 661: 656: 651: 647: 643: 638: 633: 629: 625: 621: 614: 606: 602: 597: 592: 588: 584: 580: 576: 572: 568: 564: 557: 549: 545: 540: 535: 530: 525: 521: 517: 513: 509: 505: 498: 484: 480: 474: 472: 470: 461: 457: 452: 447: 442: 437: 433: 429: 425: 421: 417: 410: 406: 399: 397: 393: 389: 385: 381: 376: 374: 370: 369:transcription 359: 357: 353: 349: 345: 335: 333: 328: 326: 322: 318: 314: 310: 301: 292: 290: 286: 285:spike protein 282: 277: 275: 271: 267: 258: 249: 247: 239: 235: 231: 227: 226: 222: 219: 218: 217: 212: 209: 208: 203: 202: 201: 196: 195: 194: 192: 188: 187:cell membrane 184: 180: 176: 166: 164: 159: 157: 153: 149: 148:cell membrane 145: 141: 132: 131:paramyxovirus 127: 121: 117: 113: 108: 104: 102: 98: 95: 85: 82: 78: 74: 70: 60: 57: 55: 52: 50: 47: 45: 42: 41: 40: 39: 33: 29: 28: 24: 21: 20: 1589: 1577: 1565: 1553: 1469:Viral vector 1464:Helper virus 1428:Human virome 1413:Animal virus 1392:Reassortment 1330: 1268:Introduction 1248:Microbiology 1175: 1171: 1161: 1153: 1148: 1140: 1135: 1130:. 2007 Oct 4 1127: 1122: 1079: 1075: 1065: 1022: 1018: 1008: 965: 961: 951: 916: 912: 902: 861: 857: 847: 802: 798: 788: 745: 741: 731: 686: 682: 672: 627: 623: 613: 570: 566: 556: 511: 507: 497: 486:. Retrieved 482: 423: 419: 409: 392:nucleic acid 377: 365: 341: 329: 306: 278: 263: 243: 228:: The viral 224: 223: 214: 213: 206: 205: 198: 197: 191:phospholipid 172: 160: 136: 94:nonenveloped 91: 68: 67: 43: 1591:WikiProject 1459:Giant virus 1438:Plant virus 1356:Lytic cycle 1331:Viral entry 630:(11): 305. 373:translation 309:endocytosis 272:, KSHV and 216:Endocytosis 116:endocytosis 101:endocytosis 69:Viral entry 49:Replication 1607:Categories 1536:Virosphere 1511:Viral load 1501:Satellites 1287:Components 1082:: 104792. 805:: 546274. 488:2021-02-05 402:References 332:SARS-CoV-2 317:poliovirus 118:, and (C) 1496:Oncovirus 1433:Mycovirus 1423:Virophage 1346:Viroplasm 1192:1099-498X 1096:0166-3542 1039:2150-7511 982:1001-0602 878:1052-9276 821:2314-6133 762:1098-5514 705:1553-7374 646:1999-4915 587:0969-7128 567:Gene Ther 238:cytoplasm 140:receptors 75:, as the 23:Influenza 1613:Virology 1567:Category 1370:Genetics 1278:Virology 1200:16724360 1114:32272173 1057:33082259 1000:32231345 943:32376627 894:30771615 886:17573668 839:24982895 780:26819309 723:27764233 664:27854239 605:18480844 548:12883000 460:17299053 384:tegument 380:proteins 362:Outcomes 356:T2 phage 183:receptor 169:Overview 59:Shedding 1579:Commons 1406:By host 1263:History 1105:7194977 1048:7587434 991:7104723 934:7343218 830:4055638 771:4810545 714:5072609 655:5127019 624:Viruses 596:2575058 516:Bibcode 451:1815279 428:Bibcode 382:in the 313:vesicle 142:on the 54:Latency 1555:Portal 1531:Virome 1294:Capsid 1208:564796 1206:  1198:  1190:  1112:  1102:  1094:  1055:  1045:  1037:  998:  988:  980:  941:  931:  919:(14). 892:  884:  876:  837:  827:  819:  778:  768:  760:  721:  711:  703:  662:  652:  644:  603:  593:  585:  546:  539:170909 536:  458:  448:  388:genome 344:genome 323:, and 234:genome 230:capsid 175:capsid 114:, (B) 97:capsid 1447:Other 1252:Virus 1204:S2CID 1025:(5). 890:S2CID 77:virus 44:Entry 1196:PMID 1188:ISSN 1110:PMID 1092:ISSN 1053:PMID 1035:ISSN 1019:mBio 996:PMID 978:ISSN 939:PMID 882:PMID 874:ISSN 835:PMID 817:ISSN 803:2014 776:PMID 758:ISSN 719:PMID 701:ISSN 660:PMID 642:ISSN 601:PMID 583:ISSN 544:PMID 456:PMID 371:and 154:and 81:cell 1180:doi 1100:PMC 1084:doi 1080:178 1043:PMC 1027:doi 986:PMC 970:doi 929:PMC 921:doi 866:doi 825:PMC 807:doi 766:PMC 750:doi 709:PMC 691:doi 650:PMC 632:doi 591:PMC 575:doi 534:PMC 524:doi 512:100 446:PMC 436:doi 424:104 270:HIV 232:or 204:or 177:or 152:HIV 1609:: 1250:: 1202:. 1194:. 1186:. 1174:. 1170:. 1108:. 1098:. 1090:. 1078:. 1074:. 1051:. 1041:. 1033:. 1023:11 1021:. 1017:. 994:. 984:. 976:. 966:30 964:. 960:. 937:. 927:. 917:94 915:. 911:. 888:. 880:. 872:. 862:17 860:. 856:. 833:. 823:. 815:. 801:. 797:. 774:. 764:. 756:. 746:90 744:. 740:. 717:. 707:. 699:. 687:12 685:. 681:. 658:. 648:. 640:. 626:. 622:. 599:. 589:. 581:. 571:15 569:. 565:. 542:. 532:. 522:. 510:. 506:. 481:. 468:^ 454:. 444:. 434:. 422:. 418:. 398:. 327:. 319:, 276:. 158:. 1240:e 1233:t 1226:v 1210:. 1182:: 1176:8 1116:. 1086:: 1059:. 1029:: 1002:. 972:: 945:. 923:: 896:. 868:: 841:. 809:: 782:. 752:: 725:. 693:: 666:. 634:: 628:8 607:. 577:: 550:. 526:: 518:: 491:. 462:. 438:: 430:: 240:.

Index

Influenza

Entry
Replication
Latency
Shedding
viral life cycle
virus
cell
nonenveloped
capsid
endocytosis

membrane fusion
endocytosis
macropinocytosis

paramyxovirus
receptors
viral envelope
cell membrane
HIV
herpes simplex virus
bacteriophages
capsid
viral envelope
receptor
cell membrane
phospholipid
Membrane fusion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑