Knowledge

Ultracold neutrons

Source 📝

32: 1151:(perfluoropolyether vacuum oil)). Using traps with different surface to volume ratios allowed them to separate storage decay time and neutron lifetime from each other. There is another result, with even smaller uncertainty, but which is not included in the World average. It was obtained by Serebrov et al., who found 445:
who realized first that the coherent scattering of slow neutrons would result in an effective interaction potential for neutrons traveling through matter, which would be positive for most materials. The consequence of such a potential would be the total reflection of neutrons slow enough and incident
2117:
Pattie, R. W.; Anaya, J.; Back, H. O.; Boissevain, J. G.; Bowles, T. J.; Broussard, L. J.; Carr, R.; Clark, D. J.; Currie, S.; Du, S.; Filippone, B. W.; Geltenbort, P.; García, A.; Hawari, A.; Hickerson, K. P.; Hill, R.; Hino, M.; Hoedl, S. A.; Hogan, G. E.; Holley, A. T.; Ito, T. M.; Kawai, T.;
1013:
The production, transportation and storage of UCN is currently motivated by their usefulness as a tool to determine properties of the neutron and to study fundamental physical interactions. Storage experiments have improved the accuracy or the upper limit of some neutron related physical values.
485:
After protons are accelerated to around 600 MeV they impinge on a lead target and produce neutrons via spallation. These neutrons are thermalized in e.g. heavy water and then moderated e.g. in liquid or solid deuterium to be cold. The final production of UCN occurs via downscattering in solid
2186:
Liu, J.; Mendenhall, M. P.; Holley, A. T.; Back, H. O.; Bowles, T. J.; Broussard, L. J.; Carr, R.; Clayton, S.; Currie, S.; Filippone, B. W.; García, A.; Geltenbort, P.; Hickerson, K. P.; Hoagland, J.; Hogan, G. E.; Hona, B.; Ito, T. M.; Liu, C.-Y.; Makela, M.; Mammei, R. R.; Martin, J. W.;
1249:
is a measure for the distribution of positive and negative charge inside the neutron. No neutron electric dipole moment has been found as of October 2019). The lowest value for the upper limit of the neutron electric dipole moment was measured with stored UCN (see main article).
1310:
The first reported measurement of the beta-asymmetry using UCN is from a Los Alamos group in 2009. The LANSCE group published precision measurements with polarized UCN the next year. Further measurements by these groups and others have led to the current world average:
1994:
Jenke, T.; Cronenberg, G.; Burgdörfer, J.; Chizhova, L. A.; Geltenbort, P.; Ivanov, A. N.; Lauer, T.; Lins, T.; Rotter, S.; Saul, H.; Schmidt, U.; Abele, H. (16 April 2014). "Gravity Resonance Spectroscopy Constrains Dark Energy and Dark Matter Scenarios".
1145: 992: 1229: 1374: 481:
A neutron turbine in which neutrons at 50 m/s are directed against the blades of a turbine wheel with receding tangential velocity 25 m/s, from which neutrons emerge after multiple reflections with a speed of about
2187:
Melconian, D.; Morris, C. L.; Pattie, R. W.; Pérez Galván, A.; Pitt, M. L.; Plaster, B.; Ramsey, J. C.; Rios, R.; et al. (Jul 2010). "Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons".
477:
Neutrons transported from the reactor though a vertical evacuated guide about 11 meters long are slowed down by gravity, so only those that happened to have ultracold energies can reach the detector at the top of the
657:
Any material with a positive neutron optical potential can reflect UCN. The table on the right gives an (incomplete) list of UCN reflecting materials including the height of the neutron optical potential
1875:
Arzumanov, S; Bondarenko, L; Chernyavsky, S; Drexel, W; Fomin, A; et al. (2000). "Neutron life time value measured by storing ultracold neutrons with detection of inelastically scattered neutrons".
808: 702:
Non-magnetic materials such as DLC are usually preferred for the use with polarized neutrons. Magnetic centers in e.g. Ni can lead to de-polarization of such neutrons upon reflection. If a material is
1055: 1354: 881: 1060: 892: 838: 1643: 1154: 392:
of a material. Neutrons are reflected from a surface if the velocity component normal to the reflecting surface is less than or equal to the critical velocity.
1266:
do not move smoothly but jump from one height to another, as predicted by quantum theory. The finding could be used to probe fundamental physics such as the
415:
with a temperature of 3.5 mK. Moreover, materials with a high optical potential (~ 1 μeV) are used for the design of cold neutrons optical components.
474:
The use of a horizontal evacuated tube from the reactor, curved so all but UCN would be absorbed by the walls of the tube before reaching the detector.
1604:
A. Steyerl; H. Nagel; F.-X. Schreiber; K.-A. Steinhauser; R. Gähler; W. Gläser; P. Ageron; J. M. Astruc; W. Drexel; G. Gervais & W. Mampe (1986).
100: 337: 269: 422:
is significant. Thus, the trajectories are parabolic. Kinetic energy of an UCN is transformed into potential (height) energy with ~102 neV/m.
2056:
Kamiya, Y.; Itagaki, K.; Tani, M.; Kim, G. N.; Komamiya, S. (22 April 2015). "Constraints on New Gravitylike Forces in the Nanometer Range".
1148: 1005:). It is caused by absorption and thermal upscattering. The loss coefficient η is energy-independent and typically of the order of 10 to 10. 377:
of the neutron with atomic nuclei. It can be quantum-mechanically described by an effective potential which is commonly referred to as the
2249: 1373:
Hadden, Elhoucine; Iso, Yuko; Kume, Atsushi; Umemoto, Koichi; Jenke, Tobias; Fally, Martin; Klepp, Jürgen; Tomita, Yasuo (2022-05-24).
295: 361:
which can be stored in traps made from certain materials. The storage is based on the reflection of UCN by such materials under any
159: 1258:
Physicists have observed quantized states of matter under the influence of gravity for the first time. Valery Nesvizhevsky of the
712: 259: 1569:
Steyerl, A. (1969). "Measurements of total cross sections for very slow neutrons with velocities from 100 m/sec to 5 m/sec".
455: 291: 2118:
Kirch, K.; Kitagaki, S.; Lamoreaux, S. K.; Liu, C.-Y.; Liu, J.; Makela, M.; Mammei, R. R.; et al. (5 January 2009).
330: 1669:"Measured velocity spectra and neutron densities of the PF2 ultracold-neutron beam ports at the Institut Laue–Langevin" 1402: 245: 179: 122: 1375:"Nanodiamond-based nanoparticle-polymer composite gratings with extremely large neutron refractive index modulation" 1025: 1246: 1240: 459: 451: 323: 117: 95: 1317: 301: 470:
There are various methods for the production of UCN. Such facilities have been built and are in operation:
287: 112: 1270:, which states that different masses accelerate at the same rate in a gravitational field (V Nesvizhevsky 408: 400: 362: 155: 847: 311: 283: 1921:"Measurement of the neutron lifetime using a gravitational trap and a low-temperature Fomblin coating" 450:
and Fermi and Leona Marshall. The storage of neutrons with very low kinetic energies was predicted by
2253: 1668: 253: 241: 2274: 1140:{\displaystyle \tau _{n}=885.4\pm 0.9_{\mathrm {stat} }\pm 0.4_{\mathrm {syst} }\,{\mathrm {s} }\,} 275: 987:{\displaystyle \mu (E,\theta )=2\eta {\sqrt {\frac {E\cos ^{2}\theta }{V_{F}-E\cos ^{2}\theta }}}} 494: 841: 672:). The height of the neutron optical potential is isotope-specific. The highest known value of V 411:
of 52 nm. As their density is usually very small, UCN can also be described as a very thin
1377:. In McLeod, Robert R; Tomita, Yasuo; Sheridan, John T; Pascual Villalobos, Inmaculada (eds.). 1259: 169: 127: 1919:
Serebrov, A.; Varlamov, V.; Kharitonov, A.; Fomin, A.; Pokotilovski, Yu.; et al. (2005).
816: 2261: 1267: 105: 64: 680: = 8.14 m/s). It defines the upper limit of the kinetic energy range of UCN. 2206: 2144: 2075: 2014: 1942: 1885: 1831: 1690: 1617: 1578: 1483: 1448: 1382: 446:
on a surface at a glancing angle. This effect was experimentally demonstrated by Fermi and
174: 2119: 1224:{\displaystyle 878.5~\pm 0.7_{\mathrm {stat} }\pm 0.4_{\mathrm {syst} }\,{\mathrm {s} }\,} 403:, especially for normal incidence. The kinetic energy of 300 neV corresponds to a maximum 8: 1305: 1263: 696: 90: 46: 2210: 2148: 2079: 2018: 1946: 1889: 1835: 1694: 1621: 1582: 1487: 1452: 1386: 2230: 2196: 2168: 2134: 2099: 2065: 2038: 2004: 1971: 1932: 1920: 1821: 1761: 1733: 1706: 1680: 1408: 374: 231: 150: 81: 72: 68: 1897: 1605: 2222: 2160: 2091: 2030: 1976: 1958: 1901: 1849: 1844: 1809: 1765: 1753: 1710: 1629: 1590: 1509: 1412: 1398: 447: 222: 213: 207: 132: 59: 55: 2234: 2172: 2103: 2042: 2294: 2218: 2214: 2156: 2152: 2087: 2083: 2026: 2022: 1966: 1954: 1950: 1893: 1839: 1748: 1743: 1698: 1625: 1586: 1504: 1499: 1491: 1456: 1390: 1274:
2001 Nature 415 297). UCN spectroscopy has been used to limit scenarios including
1057:, to which the experiment of Arzumanov et al. contributes strongest. Ref. measured 490: 487: 199: 1603: 706:, the neutron optical potential is different for the two polarizations, caused by 399:
of incident neutrons must not be higher than this value to be reflected under any
305: 1474:
Fermi, E.; Marshall, L. (1947-05-15). "Interference Phenomena of Slow Neutrons".
1279: 688: 426: 1702: 1253: 430: 396: 195: 2288: 1962: 1905: 1853: 1757: 1513: 1295: 703: 1725: 2226: 2164: 2095: 2034: 1980: 1495: 1300: 442: 433:, interacts with magnetic fields. The total energy changes with ~60 neV/T. 379: 358: 51: 1460: 31: 1826: 1666: 1439:
Anonymous (1946). "Minutes of the Meeting at Chicago, June 20-22, 1946".
1275: 419: 395:
As the neutron optical potential of most materials is below 300 neV, the
217: 1937: 2247: 1394: 203: 2120:"First Measurement of the Neutron β Asymmetry with Ultracold Neutrons" 1306:
Measurement of the A-coefficient of the neutron beta decay correlation
1231:. Thus, the two most precisely measured values deviate by 5.6 σ. 684: 637: 528: 412: 1874: 1726:"UCN, the ultracold neutron source -- neutrons for particle physics" 1289: 1234: 2070: 1738: 1685: 590: 404: 2201: 2139: 2009: 1993: 575: 23: 883:
the magnetic field created on the surface by the magnetization.
1918: 1667:
Stefan Döge; Jürgen Hingerl & Christoph Morkel (Feb 2020).
1529:
Soviet Physics Journal of Experimental& Theoretical Physics
886:
Each material has a specific loss probability per reflection,
692: 621: 559: 279: 265: 1808:
al, W-M Yao; et al. (Particle Data Group) (2006-07-01).
1283: 1254:
Observation of the gravitational interactions of the neutron
803:{\displaystyle V_{F}(pol.)=V_{F}(unpol.)\pm \mu _{N}\cdot B} 418:
Due to the small kinetic energy of an UCN, the influence of
249: 605: 2116: 997:
which depends on the kinetic energy of the incident UCN (
683:
The most widely used materials for UCN wall coatings are
544: 1301:
Measurement of the neutron-anti-neutron oscillation time
1022:
Today's world average value for the neutron lifetime is
491:
was realized at the Paul Scherrer Institute, Switzerland
454:
and experimentally realized simultaneously by groups at
2185: 1017: 1859: 1527:
Zeldovich, Ya.B. (1959). "Storage of cold neutrons".
1320: 1157: 1063: 1028: 895: 850: 819: 715: 2055: 1372: 1262:
and colleagues found that cold neutrons moving in a
1147:
by storage of UCN in a material bottle covered with
1814:Journal of Physics G: Nuclear and Particle Physics 1597: 1379:Photosensitive Materials and their Applications II 1348: 1223: 1139: 1049: 986: 875: 832: 802: 1290:Search for Neutron to Mirror-Neutron Oscillations 1235:Measurement of the neutron electric dipole moment 2286: 2248:K.A. Olive et al. (Particle Data Group) (2014). 1482:(10). American Physical Society (APS): 666–677. 1858:and 2007 partial update for edition 2008 (URL: 1660: 1724:Lauss, Bernhard; Blau, Bertrand (2021-09-06). 1050:{\displaystyle 885.7\pm 0.8\,{\mathrm {s} }\,} 1790: 1788: 1606:"A new source of cold and ultracold neutrons" 1473: 331: 1870: 1868: 665:) and the corresponding critical velocity ( 388:. The corresponding velocity is called the 1785: 1544: 1542: 338: 324: 2200: 2138: 2069: 2008: 1970: 1936: 1865: 1843: 1825: 1778:R. Golub, D. Richardson, S.K. Lamoreaux, 1747: 1737: 1723: 1684: 1564: 1562: 1526: 1503: 1438: 1381:. Vol. 12151. SPIE. pp. 70–76. 1220: 1212: 1136: 1128: 1046: 1038: 373:The reflection is caused by the coherent 16:Free neutrons stored in very small traps 1568: 1539: 1349:{\displaystyle A_{0}=-0.1184\pm 0.0010} 1008: 500: 2287: 1559: 695:(including Ni) and more recently also 1772: 1798:, Clarendon Press (1990), Oxford, UK 495:Los Alamos National Laboratory, USA. 164:Fundamental research with neutrons: 1801: 1018:Measurement of the neutron lifetime 13: 1807: 1215: 1206: 1203: 1200: 1197: 1182: 1179: 1176: 1173: 1131: 1122: 1119: 1116: 1113: 1098: 1095: 1092: 1089: 1041: 14: 2306: 1796:The Physics of Ultracold Neutrons 876:{\displaystyle B=\mu _{0}\cdot M} 465: 429:of the neutron, produced by its 160:Prompt gamma activation analysis 30: 2241: 2179: 2110: 2049: 1987: 1912: 1717: 2219:10.1103/PhysRevLett.105.181803 2157:10.1103/PhysRevLett.102.012301 2088:10.1103/PhysRevLett.114.161101 2027:10.1103/PhysRevLett.112.151105 1955:10.1016/j.physletb.2004.11.013 1749:10.21468/SciPostPhysProc.5.004 1636: 1520: 1467: 1432: 1425:E. Fermi, Ricerca Scientifica 1419: 1366: 1247:neutron electric dipole moment 1241:Neutron electric dipole moment 1001:) and the angle of incidence ( 911: 899: 842:magnetic moment of the neutron 778: 757: 741: 726: 676:is measured for Ni: 335 neV (v 96:Small-angle neutron scattering 1: 1898:10.1016/s0370-2693(00)00579-7 1782:, Adam Hilger (1991), Bristol 1359: 407:of 7.6 m/s or a minimum 368: 1810:"Review of Particle Physics" 1630:10.1016/0375-9601(86)90587-6 1591:10.1016/0370-2693(69)90127-0 288:ISIS Neutron and Muon Source 113:Inelastic neutron scattering 7: 1884:(1–3). Elsevier BV: 15–22. 1730:SciPost Physics Proceedings 452:Yakov Borisovich Zel'dovich 128:Backscattering spectrometer 123:Time-of-flight spectrometer 10: 2311: 1845:10.1088/0954-3899/33/1/001 1703:10.1016/j.nima.2019.163112 1238: 436: 2250:"e−Asymmetry Parameter A" 386:neutron optical potential 1673:Nucl. Instrum. Methods A 1552:, Sov. Phys. JETP Lett. 833:{\displaystyle \mu _{N}} 118:Triple-axis spectrometer 2189:Physical Review Letters 2127:Physical Review Letters 2058:Physical Review Letters 1997:Physical Review Letters 1505:2027/mdp.39015074124465 1282:, and new short range 180:Neutron capture therapy 2269:Cite journal requires 1496:10.1103/physrev.71.666 1350: 1260:Institut Laue-Langevin 1225: 1141: 1051: 988: 877: 834: 804: 133:Spin-echo spectrometer 1461:10.1103/PhysRev.70.99 1351: 1268:equivalence principle 1226: 1142: 1052: 989: 878: 835: 805: 1318: 1155: 1061: 1026: 1009:Experiments with UCN 893: 848: 817: 713: 501:Reflecting materials 310:Under construction: 175:Fast neutron therapy 2211:2010PhRvL.105r1803L 2149:2009PhRvL.102a2301P 2080:2015PhRvL.114p1101K 2019:2014PhRvL.112o1105J 1947:2005PhLB..605...72S 1890:2000PhLB..483...15A 1836:2006JPhG...33....1Y 1780:Ultra-Cold Neutrons 1695:2020NIMPA.95363112D 1622:1986PhLA..116..347S 1583:1969PhLB...29...33S 1488:1947PhRv...71..666F 1453:1946PhRv...70...99. 1387:2022SPIE12151E..09H 1264:gravitational field 697:diamond-like carbon 156:Activation analysis 91:Neutron diffraction 47:Neutron temperature 1860:http://pdg.lbl.gov 1395:10.1117/12.2623661 1346: 1221: 1137: 1047: 984: 873: 830: 800: 401:angle of incidence 375:strong interaction 363:angle of incidence 351:Ultracold neutrons 232:Neutron facilities 166:Ultracold neutrons 151:Neutron tomography 143:Other applications 82:Neutron scattering 1925:Physics Letters B 1878:Physics Letters B 1794:V.K. Ignatovich, 1644:"ILL Yellow Book" 1571:Physics Letters B 1163: 982: 981: 655: 654: 448:Walter Henry Zinn 390:critical velocity 348: 347: 208:Neutron moderator 2302: 2279: 2278: 2272: 2267: 2265: 2257: 2252:. Archived from 2245: 2239: 2238: 2204: 2183: 2177: 2176: 2142: 2124: 2114: 2108: 2107: 2073: 2053: 2047: 2046: 2012: 1991: 1985: 1984: 1974: 1940: 1916: 1910: 1909: 1872: 1863: 1857: 1847: 1829: 1827:astro-ph/0601514 1805: 1799: 1792: 1783: 1776: 1770: 1769: 1751: 1741: 1721: 1715: 1714: 1688: 1664: 1658: 1657: 1655: 1654: 1640: 1634: 1633: 1601: 1595: 1594: 1566: 1557: 1546: 1537: 1536: 1524: 1518: 1517: 1507: 1471: 1465: 1464: 1436: 1430: 1423: 1417: 1416: 1370: 1355: 1353: 1352: 1347: 1330: 1329: 1280:chameleon fields 1230: 1228: 1227: 1222: 1219: 1218: 1211: 1210: 1209: 1187: 1186: 1185: 1161: 1146: 1144: 1143: 1138: 1135: 1134: 1127: 1126: 1125: 1103: 1102: 1101: 1073: 1072: 1056: 1054: 1053: 1048: 1045: 1044: 993: 991: 990: 985: 983: 980: 973: 972: 957: 956: 946: 939: 938: 925: 924: 882: 880: 879: 874: 866: 865: 839: 837: 836: 831: 829: 828: 809: 807: 806: 801: 793: 792: 756: 755: 725: 724: 644: 505: 504: 486:deuterium. Such 382:pseudo potential 340: 333: 326: 212:Neutron optics: 200:Research reactor 34: 19: 18: 2310: 2309: 2305: 2304: 2303: 2301: 2300: 2299: 2285: 2284: 2283: 2282: 2270: 2268: 2259: 2258: 2246: 2242: 2184: 2180: 2122: 2115: 2111: 2054: 2050: 1992: 1988: 1938:nucl-ex/0408009 1917: 1913: 1873: 1866: 1806: 1802: 1793: 1786: 1777: 1773: 1722: 1718: 1665: 1661: 1652: 1650: 1642: 1641: 1637: 1602: 1598: 1567: 1560: 1547: 1540: 1525: 1521: 1476:Physical Review 1472: 1468: 1441:Physical Review 1437: 1433: 1424: 1420: 1405: 1371: 1367: 1362: 1325: 1321: 1319: 1316: 1315: 1308: 1303: 1292: 1256: 1243: 1237: 1214: 1213: 1196: 1195: 1191: 1172: 1171: 1167: 1156: 1153: 1152: 1130: 1129: 1112: 1111: 1107: 1088: 1087: 1083: 1068: 1064: 1062: 1059: 1058: 1040: 1039: 1027: 1024: 1023: 1020: 1011: 968: 964: 952: 948: 947: 934: 930: 926: 923: 894: 891: 890: 861: 857: 849: 846: 845: 824: 820: 818: 815: 814: 788: 784: 751: 747: 720: 716: 714: 711: 710: 689:beryllium oxide 679: 675: 670: 663: 642: 520: 514: 503: 468: 439: 427:magnetic moment 371: 344: 196:Neutron sources 17: 12: 11: 5: 2308: 2298: 2297: 2281: 2280: 2271:|journal= 2256:on 2015-04-26. 2240: 2195:(18): 181803. 2178: 2109: 2064:(16): 161101. 2048: 2003:(15): 151105. 1986: 1931:(1–2): 72–78. 1911: 1864: 1800: 1784: 1771: 1716: 1659: 1635: 1616:(7): 347–352. 1596: 1558: 1548:V.I. Lushikov 1538: 1519: 1466: 1431: 1418: 1403: 1364: 1363: 1361: 1358: 1357: 1356: 1345: 1342: 1339: 1336: 1333: 1328: 1324: 1307: 1304: 1302: 1299: 1291: 1288: 1255: 1252: 1239:Main article: 1236: 1233: 1217: 1208: 1205: 1202: 1199: 1194: 1190: 1184: 1181: 1178: 1175: 1170: 1166: 1160: 1133: 1124: 1121: 1118: 1115: 1110: 1106: 1100: 1097: 1094: 1091: 1086: 1082: 1079: 1076: 1071: 1067: 1043: 1037: 1034: 1031: 1019: 1016: 1010: 1007: 995: 994: 979: 976: 971: 967: 963: 960: 955: 951: 945: 942: 937: 933: 929: 922: 919: 916: 913: 910: 907: 904: 901: 898: 872: 869: 864: 860: 856: 853: 827: 823: 811: 810: 799: 796: 791: 787: 783: 780: 777: 774: 771: 768: 765: 762: 759: 754: 750: 746: 743: 740: 737: 734: 731: 728: 723: 719: 677: 673: 668: 661: 653: 652: 649: 646: 640: 634: 633: 630: 627: 624: 618: 617: 614: 611: 608: 602: 601: 599: 596: 593: 587: 586: 584: 581: 578: 572: 571: 568: 565: 562: 556: 555: 553: 550: 547: 541: 540: 537: 534: 531: 525: 524: 521: 518: 515: 512: 509: 502: 499: 498: 497: 483: 479: 475: 467: 466:UCN production 464: 438: 435: 397:kinetic energy 370: 367: 346: 345: 343: 342: 335: 328: 320: 317: 316: 315: 314: 308: 298: 272: 262: 256: 235: 234: 228: 227: 226: 225: 220: 210: 190: 189: 188:Infrastructure 185: 184: 183: 182: 177: 172: 170:Interferometry 162: 153: 145: 144: 140: 139: 138: 137: 136: 135: 130: 125: 120: 110: 109: 108: 103: 98: 85: 84: 78: 77: 76: 75: 62: 49: 41: 40: 36: 35: 27: 26: 15: 9: 6: 4: 3: 2: 2307: 2296: 2293: 2292: 2290: 2276: 2263: 2255: 2251: 2244: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2203: 2198: 2194: 2190: 2182: 2174: 2170: 2166: 2162: 2158: 2154: 2150: 2146: 2141: 2136: 2133:(1): 012301. 2132: 2128: 2121: 2113: 2105: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2072: 2067: 2063: 2059: 2052: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2016: 2011: 2006: 2002: 1998: 1990: 1982: 1978: 1973: 1968: 1964: 1960: 1956: 1952: 1948: 1944: 1939: 1934: 1930: 1926: 1922: 1915: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1871: 1869: 1861: 1855: 1851: 1846: 1841: 1837: 1833: 1828: 1823: 1820:(1): 1–1232. 1819: 1815: 1811: 1804: 1797: 1791: 1789: 1781: 1775: 1767: 1763: 1759: 1755: 1750: 1745: 1740: 1735: 1731: 1727: 1720: 1712: 1708: 1704: 1700: 1696: 1692: 1687: 1682: 1678: 1674: 1670: 1663: 1649: 1645: 1639: 1631: 1627: 1623: 1619: 1615: 1611: 1610:Phys. Lett. A 1607: 1600: 1592: 1588: 1584: 1580: 1576: 1572: 1565: 1563: 1555: 1551: 1545: 1543: 1534: 1530: 1523: 1515: 1511: 1506: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1462: 1458: 1454: 1450: 1446: 1442: 1435: 1428: 1422: 1414: 1410: 1406: 1404:9781510651784 1400: 1396: 1392: 1388: 1384: 1380: 1376: 1369: 1365: 1343: 1340: 1337: 1334: 1331: 1326: 1322: 1314: 1313: 1312: 1298: 1297: 1296:Mirror Matter 1287: 1285: 1281: 1277: 1273: 1269: 1265: 1261: 1251: 1248: 1242: 1232: 1192: 1188: 1168: 1164: 1158: 1150: 1108: 1104: 1084: 1080: 1077: 1074: 1069: 1065: 1035: 1032: 1029: 1015: 1006: 1004: 1000: 977: 974: 969: 965: 961: 958: 953: 949: 943: 940: 935: 931: 927: 920: 917: 914: 908: 905: 902: 896: 889: 888: 887: 884: 870: 867: 862: 858: 854: 851: 843: 825: 821: 797: 794: 789: 785: 781: 775: 772: 769: 766: 763: 760: 752: 748: 744: 738: 735: 732: 729: 721: 717: 709: 708: 707: 705: 700: 698: 694: 690: 686: 681: 671: 664: 650: 648:3.24 m/s 647: 641: 639: 636: 635: 631: 629:5.66 m/s 628: 625: 623: 620: 619: 615: 613:6.10 m/s 612: 609: 607: 604: 603: 600: 598:5.47 m/s 597: 594: 592: 589: 588: 585: 583:7.65 m/s 582: 579: 577: 574: 573: 569: 567:6.84 m/s 566: 563: 561: 558: 557: 554: 552:6.99 m/s 551: 548: 546: 543: 542: 538: 536:6.89 m/s 535: 532: 530: 527: 526: 522: 516: 510: 507: 506: 496: 492: 489: 484: 480: 476: 473: 472: 471: 463: 461: 457: 453: 449: 444: 434: 432: 428: 423: 421: 416: 414: 410: 406: 402: 398: 393: 391: 387: 383: 381: 376: 366: 364: 360: 359:free neutrons 356: 352: 341: 336: 334: 329: 327: 322: 321: 319: 318: 313: 309: 307: 303: 299: 297: 293: 289: 285: 281: 277: 273: 271: 267: 263: 261: 257: 255: 251: 247: 243: 239: 238: 237: 236: 233: 230: 229: 224: 221: 219: 215: 211: 209: 205: 201: 197: 194: 193: 192: 191: 187: 186: 181: 178: 176: 173: 171: 167: 163: 161: 157: 154: 152: 149: 148: 147: 146: 142: 141: 134: 131: 129: 126: 124: 121: 119: 116: 115: 114: 111: 107: 106:Reflectometry 104: 102: 99: 97: 94: 93: 92: 89: 88: 87: 86: 83: 80: 79: 74: 70: 66: 65:Cross section 63: 61: 57: 53: 50: 48: 45: 44: 43: 42: 38: 37: 33: 29: 28: 25: 22:Science with 21: 20: 2262:cite journal 2254:the original 2243: 2192: 2188: 2181: 2130: 2126: 2112: 2061: 2057: 2051: 2000: 1996: 1989: 1928: 1924: 1914: 1881: 1877: 1817: 1813: 1803: 1795: 1779: 1774: 1729: 1719: 1676: 1672: 1662: 1651:. Retrieved 1647: 1638: 1613: 1609: 1599: 1577:(1): 33–35. 1574: 1570: 1553: 1549: 1532: 1528: 1522: 1479: 1475: 1469: 1444: 1440: 1434: 1426: 1421: 1378: 1368: 1309: 1293: 1271: 1257: 1244: 1021: 1012: 1002: 998: 996: 885: 812: 701: 682: 666: 659: 656: 488:a UCN source 469: 443:Enrico Fermi 440: 424: 417: 394: 389: 385: 378: 372: 354: 350: 349: 165: 1447:(1–2): 99. 1276:dark energy 1149:Fomblin oil 493:and at the 482:5 m/s. 420:gravitation 258:Australia: 218:Supermirror 39:Foundations 2071:1504.02181 1739:2104.02457 1732:(5): 004. 1686:2001.04538 1679:: 163112. 1653:2022-06-05 1648:www.ill.eu 1360:References 704:magnetized 409:wavelength 369:Properties 300:Historic: 240:America: 204:Spallation 73:Activation 69:Absorption 2202:1007.3790 2140:0809.2941 2010:1404.4099 1963:0370-2693 1906:0370-2693 1854:0954-3899 1766:233033971 1758:2666-4003 1711:209942845 1556:(1969) 23 1514:0031-899X 1429:(1936) 13 1413:249056691 1341:± 1335:− 1189:± 1165:± 1105:± 1081:± 1066:τ 1033:± 978:θ 975:⁡ 959:− 944:θ 941:⁡ 921:η 909:θ 897:μ 868:⋅ 859:μ 822:μ 795:⋅ 786:μ 782:± 685:beryllium 638:Aluminium 529:Beryllium 508:Material: 413:ideal gas 223:Detection 214:Reflector 60:Transport 56:Radiation 2289:Category 2235:16055409 2227:21231098 2173:13048589 2165:19257182 2104:10982682 2096:25955041 2043:38389662 2035:24785025 1981:27308146 591:Graphite 539:2.0–8.5 405:velocity 274:Europe: 250:NIST CNR 24:neutrons 2295:Neutron 2207:Bibcode 2145:Bibcode 2076:Bibcode 2015:Bibcode 1972:4852839 1943:Bibcode 1886:Bibcode 1832:Bibcode 1691:Bibcode 1618:Bibcode 1579:Bibcode 1535:: 1389. 1484:Bibcode 1449:Bibcode 1383:Bibcode 840:is the 699:(DLC). 651:2.9–10 632:2.1–16 626:168 neV 616:1.7–28 610:210 neV 595:180 neV 580:304 neV 576:Diamond 564:252 neV 549:261 neV 533:252 neV 523:η (10) 441:It was 437:History 384:or the 2233:  2225:  2171:  2163:  2102:  2094:  2041:  2033:  1979:  1969:  1961:  1904:  1852:  1764:  1756:  1709:  1550:et al. 1512:  1411:  1401:  1344:0.0010 1338:0.1184 1284:forces 1272:et al. 1162:  813:where 693:nickel 645:54 neV 622:Copper 560:Nickel 460:Munich 357:) are 280:FRM II 276:BER II 270:HANARO 266:J-PARC 264:Asia: 246:LANSCE 101:GISANS 2231:S2CID 2197:arXiv 2169:S2CID 2135:arXiv 2123:(PDF) 2100:S2CID 2066:arXiv 2039:S2CID 2005:arXiv 1933:arXiv 1822:arXiv 1762:S2CID 1734:arXiv 1707:S2CID 1681:arXiv 1409:S2CID 1159:878.5 1078:885.4 1030:885.7 478:tube. 456:Dubna 380:Fermi 2275:help 2223:PMID 2161:PMID 2092:PMID 2031:PMID 1977:PMID 1959:ISSN 1902:ISSN 1850:ISSN 1754:ISSN 1510:ISSN 1399:ISBN 1294:see 1245:The 844:and 606:Iron 570:5.1 458:and 431:spin 425:The 306:HFBR 302:IPNS 296:SINQ 292:JINR 260:OPAL 242:HFIR 52:Flux 2215:doi 2193:105 2153:doi 2131:102 2084:doi 2062:114 2023:doi 2001:112 1967:PMC 1951:doi 1929:605 1894:doi 1882:483 1840:doi 1744:doi 1699:doi 1677:953 1626:doi 1614:116 1587:doi 1500:hdl 1492:doi 1457:doi 1391:doi 1193:0.4 1169:0.7 1109:0.4 1085:0.9 1036:0.8 966:cos 932:cos 545:BeO 355:UCN 312:ESS 284:ILL 254:SNS 2291:: 2266:: 2264:}} 2260:{{ 2229:. 2221:. 2213:. 2205:. 2191:. 2167:. 2159:. 2151:. 2143:. 2129:. 2125:. 2098:. 2090:. 2082:. 2074:. 2060:. 2037:. 2029:. 2021:. 2013:. 1999:. 1975:. 1965:. 1957:. 1949:. 1941:. 1927:. 1923:. 1900:. 1892:. 1880:. 1867:^ 1848:. 1838:. 1830:. 1818:33 1816:. 1812:. 1787:^ 1760:. 1752:. 1742:. 1728:. 1705:. 1697:. 1689:. 1675:. 1671:. 1646:. 1624:. 1612:. 1608:. 1585:. 1575:29 1573:. 1561:^ 1541:^ 1531:. 1508:. 1498:. 1490:. 1480:71 1478:. 1455:. 1445:70 1443:. 1407:. 1397:. 1389:. 1286:. 1278:, 691:, 687:, 462:. 365:. 304:, 294:, 290:, 286:, 282:, 278:, 268:, 248:, 244:, 216:, 206:, 202:, 198:: 168:, 158:, 71:, 67:, 58:, 54:, 2277:) 2273:( 2237:. 2217:: 2209:: 2199:: 2175:. 2155:: 2147:: 2137:: 2106:. 2086:: 2078:: 2068:: 2045:. 2025:: 2017:: 2007:: 1983:. 1953:: 1945:: 1935:: 1908:. 1896:: 1888:: 1862:) 1856:. 1842:: 1834:: 1824:: 1768:. 1746:: 1736:: 1713:. 1701:: 1693:: 1683:: 1656:. 1632:. 1628:: 1620:: 1593:. 1589:: 1581:: 1554:9 1533:9 1516:. 1502:: 1494:: 1486:: 1463:. 1459:: 1451:: 1427:7 1415:. 1393:: 1385:: 1332:= 1327:0 1323:A 1216:s 1207:t 1204:s 1201:y 1198:s 1183:t 1180:a 1177:t 1174:s 1132:s 1123:t 1120:s 1117:y 1114:s 1099:t 1096:a 1093:t 1090:s 1075:= 1070:n 1042:s 1003:θ 999:E 970:2 962:E 954:F 950:V 936:2 928:E 918:2 915:= 912:) 906:, 903:E 900:( 871:M 863:0 855:= 852:B 826:N 798:B 790:N 779:) 776:. 773:l 770:o 767:p 764:n 761:u 758:( 753:F 749:V 745:= 742:) 739:. 736:l 733:o 730:p 727:( 722:F 718:V 678:C 674:F 669:C 667:v 662:F 660:V 658:( 643:0 519:C 517:v 513:F 511:V 353:( 339:e 332:t 325:v 252:-

Index

neutrons

Neutron temperature
Flux
Radiation
Transport
Cross section
Absorption
Activation
Neutron scattering
Neutron diffraction
Small-angle neutron scattering
GISANS
Reflectometry
Inelastic neutron scattering
Triple-axis spectrometer
Time-of-flight spectrometer
Backscattering spectrometer
Spin-echo spectrometer
Neutron tomography
Activation analysis
Prompt gamma activation analysis
Ultracold neutrons
Interferometry
Fast neutron therapy
Neutron capture therapy
Neutron sources
Research reactor
Spallation
Neutron moderator

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.