Knowledge

Spallation

Source 📝

913: 1237:, it has the advantage that the beam can be pulsed with relative ease. Furthermore, the energetic cost of one spallation neutron is six times lower than that of a neutron gained via nuclear fission. In contrast to nuclear fission, the spallation neutrons cannot trigger further spallation or fission processes to produce further neutrons. Therefore, there is no chain reaction, which makes the process non-critical. Observations of cosmic ray spallation had already been made in the 1930s, but the first observations from a particle accelerator occurred in 1947, and the term "spallation" was coined by 1175:. Evidence of cosmic ray spallation (also known as "spoliation") is seen on outer surfaces of bodies and gives a means of measuring the length of time of exposure. The composition of cosmic rays themselves may also indicate that they have suffered spallation before reaching Earth, because the proportion of light elements such as lithium, boron, and beryllium in them exceeds average cosmic abundances; these elements in the cosmic rays were evidently formed from spallation of oxygen, nitrogen, carbon and perhaps silicon in the cosmic ray sources or during their lengthy travel here. 1306: 926: 141: 25: 122: 1267:, subcritical reactors can also produce net usable energy as the average energy expenditure per neutron produced ranges around 30 MeV (1GeV beam producing a bit over 30 neutrons in the most productive targets) while fission produces on the order of 200 MeV per actinide atom that is split. Even at relatively low 1656:, but which produces a highly intense pulsed beam of protons. Whereas Nimrod would produce around 2 μA at 7 GeV, ISIS produces 200 μA at 0.8 GeV. This is pulsed at the rate of 50 Hz, and this intense beam of protons is focused onto a target. Experiments have been done with 1684:
to the energies that are needed for the scattering instruments. Whilst protons can be focused since they have charge, chargeless neutrons cannot be, so in this arrangement the instruments are arranged around the moderators.
1225:
or another heavy metal. The target nuclei are excited and upon deexcitation, 20 to 30 neutrons are expelled per nucleus. Although this is a far more expensive way of producing neutron beams than by a
1089:" acts as a secondary projectile with velocities that can be as high as one third of the stress wave speed on the material. This type of failure is typically an effect of high explosive squash head ( 1817:
Rossi, Bruno (1933). "Über die Eigenschaften der durchdringenden Korpuskularstrahlung im Meeresniveau" [About properties of penetrating, corpuscular radiation at sea level].
1905:
Taylor, Andrew; Dunne, M; Bennington, S; Ansell, S; Gardner, I; Norreys, P; Broome, T; Findlay, D; Nelmes, R (February 2007). "A Route to the Brightest Possible Neutron Source?".
1129:
wherein it propagates and reflects as a tensile wave at the free boundary. This tensile pulse spalls/peels the thin film while propagating towards the substrate. Using theory of
1695:, which can be used to locate hydrogen atoms in structures, resolve atomic thermal motion, and study collective excitations of phonons more effectively than 1861: 1077:
Spallation can occur when a tensile stress wave propagates through a material and can be observed in flat plate impact tests. It is caused by an internal
1271:
of the processes involved, net usable energy could be generated while being able to use actinides unsuitable for use in conventional reactors as "fuel".
1374: 1611: 1025:
walls. In the context of metal oxidation, spallation refers to the breaking off of the oxide layer from a metal. For example, the flaking off of
1543: 1761: 1637: 1288: 1569: 957: 871: 1433: 1533: 1133:
in solids it is possible to extract the interface strength. The stress pulse created in this example is usually around 3 to 8
1970: 1660:
targets but although these produce the most intense neutron beams, they also have the shortest lives. Generally, therefore,
1565: 1604: 220: 89: 61: 1975: 1519: 1453: 1396: 1085:
of materials. A fragment or multiple fragments will be created on the free end of the plate. This fragment known as "
108: 524: 912: 68: 1773: 716: 1880: 1597: 1391: 1369: 421: 46: 1575: 950: 75: 1561: 1386: 1145:(1 micrometre in thickness or less). It is also possible to mode convert a longitudinal stress wave into a 1202:, formed by spallation of terrestrial elements under cosmic ray bombardment, have been detected on Earth. 1997: 1691:
has the potential to produce orders of magnitude more neutrons than spallation. This could be useful for
1688: 1429: 1268: 1245: 734: 704: 205: 42: 1738: 1732: 1629: 1585: 1557: 1141:
fluence. Due to the non-contact application of load, this technique is very well suited to spall ultra-
1090: 781: 331: 57: 1767: 1527: 1515: 1284: 667: 1961: 2002: 1549: 943: 930: 662: 366: 1965: 657: 554: 519: 215: 35: 1981: 1443: 1401: 711: 361: 326: 125:
Spallation as a result of impact can occur with or without penetration of the impacting object.
1668:
targets have been used. Spallation processes in the target produce the neutrons, initially at
1624:
Generally the production of neutrons at a spallation source begins with a high-powered proton
1379: 1338: 1253: 1164: 1158: 1081:
due to stresses, which are generated by the interaction of stress waves, exceeding the local
836: 721: 613: 1722:(phenomenon in which microscopic particles of a solid material are ejected from its surface) 1213:. A particle beam consisting of protons at around 1 GeV is shot into a target consisting of 776: 1916: 1826: 1645: 1625: 1448: 1264: 1206: 1058: 846: 821: 638: 8: 1744: 1713: 1692: 1641: 1633: 1364: 1320: 1280: 1126: 1110: 741: 620: 514: 457: 450: 440: 381: 376: 210: 1920: 1830: 1101:
Laser induced spallation is a recent experimental technique developed to understand the
82: 1940: 1872: 1842: 1673: 1505: 1439: 1424: 1355: 1346: 1342: 1176: 1122: 1050: 978: 684: 679: 494: 1932: 1907: 1846: 1496: 1487: 1481: 1406: 1333: 1329: 1214: 1006: 986: 856: 851: 811: 689: 428: 416: 399: 371: 341: 182: 1944: 1876: 1924: 1834: 1708: 1657: 1649: 1473: 1257: 1241: 1130: 1082: 1066: 876: 866: 796: 549: 467: 435: 255: 187: 1579: 1677: 1234: 1230: 1042: 861: 841: 816: 746: 633: 561: 507: 472: 132: 1469: 1226: 1065:
the loss of tubing material due to the repeated flexing of the tubing within a
917: 771: 766: 645: 578: 386: 321: 298: 285: 272: 172: 150: 1991: 1260:
into less harmful substances. Besides having a neutron multiplication factor
1054: 896: 891: 886: 881: 831: 489: 462: 306: 245: 198: 177: 1928: 1936: 1669: 1325: 1146: 1118: 1030: 1022: 994: 826: 801: 786: 531: 479: 336: 1793: 1305: 1672:—a good fraction of the proton energy. These neutrons are then slowed in 1491: 1238: 1134: 998: 791: 484: 406: 259: 1652:
so it was replaced with a new synchrotron, initially using the original
1274: 1838: 1719: 1142: 1106: 1078: 1062: 1002: 982: 761: 751: 588: 411: 281: 1163:
Nuclear spallation from the impact of cosmic rays occurs naturally in
1187: 1183: 1168: 1034: 1018: 977:) are ejected from a body due to impact or stress. In the context of 806: 756: 583: 571: 566: 445: 1045:, spallation is the process in which a heavy nucleus emits numerous 24: 1904: 1665: 1661: 1653: 1218: 1191: 1179: 1102: 1038: 981:
it describes ejection of material from a target during impact by a
140: 1681: 1297: 1210: 1046: 1014: 268: 241: 233: 165: 155: 1021:
due to the internal stresses in the rock; it commonly occurs on
1755: 1750: 1696: 1553: 1539: 1249: 1195: 1010: 990: 160: 1138: 1114: 1086: 974: 121: 1523: 1244:
that same year. Spallation is a proposed neutron source in
1222: 1199: 1172: 1033:, spallation is a process used to make stone tools such as 1026: 1149:
using a pulse shaping prism and achieve shear spallation.
1628:. The accelerator may consist of a linac only (as in the 1137:
in duration while its magnitude varies as a function of
1017:, spallation can refer to pieces of rock breaking off a 1794:"Spallation Target | Paul Scherrer Institut (PSI)" 1205:
Nuclear spallation is one of the processes by which a
1275:
Production of neutrons at a spallation neutron source
1252:, which is planned to investigate the feasibility of 1869:
Faculty of Nuclear Sciences and Physical Engineering
49:. Unsourced material may be challenged and removed. 1632:) or a combination of linac and synchrotron (e.g. 993:impacts on a planetary surface and the effects of 1989: 1167:and on the surfaces of bodies in space such as 1605: 973:is a process in which fragments of material ( 951: 1962:IAEA database of spallation neutron sources 1644:is based on some components of the former 1612: 1598: 1049:as a result of being hit by a high-energy 958: 944: 1898: 109:Learn how and when to remove this message 1871:. Czech Technical University in Prague. 1726: 120: 1990: 1859: 1816: 1152: 1072: 1971:Description of ISIS accelerator etc. 1762:PSI Spallation Neutron Source (SINQ) 1438:Fundamental research with neutrons: 47:adding citations to reliable sources 18: 1984:at the ISIS neutron and muon source 1248:like the upcoming research reactor 1096: 13: 14: 2014: 1955: 1209:may be used to produce a beam of 1434:Prompt gamma activation analysis 1304: 925: 924: 911: 139: 23: 1774:China Spallation Neutron Source 1648:. Nimrod was uncompetitive for 34:needs additional citations for 1853: 1810: 1786: 1370:Small-angle neutron scattering 1: 1779: 1029:from iron. In the context of 1966:Accelerator Knowledge Portal 1741:, under construction, Sweden 1562:ISIS Neutron and Muon Source 1387:Inelastic neutron scattering 1246:subcritical nuclear reactors 1053:, thus greatly reducing its 7: 1860:Krása, Antonín (May 2010). 1716:(accelerator-driven system) 1702: 1689:Inertial confinement fusion 1402:Backscattering spectrometer 1397:Time-of-flight spectrometer 705:High-energy nuclear physics 10: 2019: 1739:European Spallation Source 1630:European Spallation Source 1278: 1156: 1976:Spallation Neutron Source 1862:"Neutron Sources for ADS" 1768:Spallation Neutron Source 1285:Spallation Neutron Source 1392:Triple-axis spectrometer 1929:10.1126/science.1127185 1640:) . As an example, the 1636:) or a cyclotron (e.g. 1454:Neutron capture therapy 1113:. A high energy pulsed 989:, spallation describes 216:Interacting boson model 1819:Zeitschrift für Physik 1733:Institut-Laue-Langevin 1407:Spin-echo spectrometer 1121:) is used to create a 1069:is termed spallation. 126: 1978:technical background. 1727:Spallation facilities 1254:nuclear transmutation 1159:Cosmic ray spallation 1003:planetary atmospheres 603:High-energy processes 301:– equal all the above 199:Models of the nucleus 124: 1982:How spallation works 1584:Under construction: 1449:Fast neutron therapy 1207:particle accelerator 1059:industrial processes 1009:. In the context of 639:nuclear astrophysics 43:improve this article 1921:2007Sci...315.1092T 1915:(5815): 1092–1095. 1831:1933ZPhy...82..151R 1745:ISIS neutron source 1714:Subcritical reactor 1693:neutron radiography 1642:ISIS neutron source 1634:ISIS neutron source 1430:Activation analysis 1365:Neutron diffraction 1321:Neutron temperature 1281:ISIS neutron source 621:Photodisintegration 544:Capturing processes 458:Spontaneous fission 451:Internal conversion 382:Valley of stability 377:Island of stability 211:Nuclear shell model 1998:Nuclear technology 1839:10.1007/BF01341486 1670:very high energies 1646:Nimrod synchrotron 1506:Neutron facilities 1440:Ultracold neutrons 1425:Neutron tomography 1417:Other applications 1356:Neutron scattering 1165:Earth's atmosphere 1153:Nuclear spallation 1123:compressive stress 1073:In solid mechanics 918:Physics portal 712:Quark–gluon plasma 495:Radiogenic nuclide 127: 1622: 1621: 1482:Neutron moderator 1269:energy efficiency 987:planetary physics 968: 967: 654: 400:Radioactive decay 356:Nuclear stability 183:Nuclear structure 119: 118: 111: 93: 2010: 1949: 1948: 1902: 1896: 1895: 1893: 1891: 1885: 1879:. Archived from 1866: 1857: 1851: 1850: 1825:(3–4): 151–178. 1814: 1808: 1807: 1805: 1804: 1790: 1735:Grenoble, France 1709:Energy amplifier 1658:depleted uranium 1650:particle physics 1614: 1607: 1600: 1486:Neutron optics: 1474:Research reactor 1308: 1293: 1292: 1258:high level waste 1242:Glenn T. Seaborg 1131:wave propagation 1097:Laser spallation 1083:tensile strength 1067:peristaltic pump 979:impact mechanics 960: 953: 946: 933: 928: 927: 920: 916: 915: 792:Skłodowska-Curie 652: 468:Neutron emission 236:' classification 188:Nuclear reaction 143: 129: 128: 114: 107: 103: 100: 94: 92: 51: 27: 19: 16:Physical process 2018: 2017: 2013: 2012: 2011: 2009: 2008: 2007: 2003:Neutron sources 1988: 1987: 1958: 1953: 1952: 1903: 1899: 1889: 1887: 1883: 1864: 1858: 1854: 1815: 1811: 1802: 1800: 1792: 1791: 1787: 1782: 1729: 1705: 1678:liquid hydrogen 1618: 1470:Neutron sources 1291: 1277: 1235:nuclear reactor 1231:nuclear fission 1161: 1155: 1099: 1075: 1043:nuclear physics 964: 923: 910: 909: 902: 901: 737: 727: 726: 707: 697: 696: 641: 637: 634:Nucleosynthesis 626: 625: 604: 596: 595: 545: 537: 536: 510: 508:Nuclear fission 500: 499: 473:Proton emission 402: 392: 391: 357: 349: 348: 250: 237: 226: 225: 201: 133:Nuclear physics 115: 104: 98: 95: 52: 50: 40: 28: 17: 12: 11: 5: 2016: 2006: 2005: 2000: 1986: 1985: 1979: 1973: 1968: 1957: 1956:External links 1954: 1951: 1950: 1897: 1852: 1809: 1784: 1783: 1781: 1778: 1777: 1776: 1771: 1770:Oak Ridge, USA 1765: 1759: 1753: 1748: 1742: 1736: 1728: 1725: 1724: 1723: 1717: 1711: 1704: 1701: 1620: 1619: 1617: 1616: 1609: 1602: 1594: 1591: 1590: 1589: 1588: 1582: 1572: 1546: 1536: 1530: 1509: 1508: 1502: 1501: 1500: 1499: 1494: 1484: 1464: 1463: 1462:Infrastructure 1459: 1458: 1457: 1456: 1451: 1446: 1444:Interferometry 1436: 1427: 1419: 1418: 1414: 1413: 1412: 1411: 1410: 1409: 1404: 1399: 1394: 1384: 1383: 1382: 1377: 1372: 1359: 1358: 1352: 1351: 1350: 1349: 1336: 1323: 1315: 1314: 1310: 1309: 1301: 1300: 1276: 1273: 1227:chain reaction 1154: 1151: 1098: 1095: 1074: 1071: 966: 965: 963: 962: 955: 948: 940: 937: 936: 935: 934: 921: 904: 903: 900: 899: 894: 889: 884: 879: 874: 869: 864: 859: 854: 849: 844: 839: 834: 829: 824: 819: 814: 809: 804: 799: 794: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 738: 733: 732: 729: 728: 725: 724: 719: 714: 708: 703: 702: 699: 698: 695: 694: 693: 692: 687: 682: 673: 672: 671: 670: 665: 660: 649: 648: 646:Nuclear fusion 642: 632: 631: 628: 627: 624: 623: 618: 617: 616: 605: 602: 601: 598: 597: 594: 593: 592: 591: 586: 576: 575: 574: 569: 559: 558: 557: 546: 543: 542: 539: 538: 535: 534: 529: 528: 527: 517: 511: 506: 505: 502: 501: 498: 497: 492: 487: 482: 476: 475: 470: 465: 460: 455: 454: 453: 448: 438: 433: 432: 431: 426: 425: 424: 409: 403: 398: 397: 394: 393: 390: 389: 387:Stable nuclide 384: 379: 374: 369: 364: 362:Binding energy 358: 355: 354: 351: 350: 347: 346: 345: 344: 334: 329: 324: 318: 317: 303: 302: 295: 294: 278: 277: 265: 264: 252: 251: 238: 232: 231: 228: 227: 224: 223: 218: 213: 208: 202: 197: 196: 193: 192: 191: 190: 185: 180: 175: 173:Nuclear matter 170: 169: 168: 163: 153: 145: 144: 136: 135: 117: 116: 31: 29: 22: 15: 9: 6: 4: 3: 2: 2015: 2004: 2001: 1999: 1996: 1995: 1993: 1983: 1980: 1977: 1974: 1972: 1969: 1967: 1963: 1960: 1959: 1946: 1942: 1938: 1934: 1930: 1926: 1922: 1918: 1914: 1910: 1909: 1901: 1886:on 2019-03-03 1882: 1878: 1874: 1870: 1863: 1856: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1813: 1799: 1795: 1789: 1785: 1775: 1772: 1769: 1766: 1764:, Switzerland 1763: 1760: 1757: 1754: 1752: 1749: 1747:, Harwell, UK 1746: 1743: 1740: 1737: 1734: 1731: 1730: 1721: 1718: 1715: 1712: 1710: 1707: 1706: 1700: 1698: 1694: 1690: 1686: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1615: 1610: 1608: 1603: 1601: 1596: 1595: 1593: 1592: 1587: 1583: 1581: 1577: 1573: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1545: 1541: 1537: 1535: 1531: 1529: 1525: 1521: 1517: 1513: 1512: 1511: 1510: 1507: 1504: 1503: 1498: 1495: 1493: 1489: 1485: 1483: 1479: 1475: 1471: 1468: 1467: 1466: 1465: 1461: 1460: 1455: 1452: 1450: 1447: 1445: 1441: 1437: 1435: 1431: 1428: 1426: 1423: 1422: 1421: 1420: 1416: 1415: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1389: 1388: 1385: 1381: 1380:Reflectometry 1378: 1376: 1373: 1371: 1368: 1367: 1366: 1363: 1362: 1361: 1360: 1357: 1354: 1353: 1348: 1344: 1340: 1339:Cross section 1337: 1335: 1331: 1327: 1324: 1322: 1319: 1318: 1317: 1316: 1312: 1311: 1307: 1303: 1302: 1299: 1296:Science with 1295: 1294: 1290: 1286: 1282: 1272: 1270: 1266: 1263: 1259: 1255: 1251: 1247: 1243: 1240: 1236: 1232: 1228: 1224: 1220: 1216: 1212: 1208: 1203: 1201: 1197: 1193: 1189: 1185: 1181: 1178: 1174: 1170: 1166: 1160: 1150: 1148: 1144: 1140: 1136: 1132: 1128: 1125:pulse in the 1124: 1120: 1116: 1112: 1108: 1104: 1094: 1092: 1088: 1084: 1080: 1070: 1068: 1064: 1063:bioprocessing 1060: 1056: 1055:atomic weight 1052: 1048: 1044: 1040: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 996: 995:stellar winds 992: 988: 984: 980: 976: 972: 961: 956: 954: 949: 947: 942: 941: 939: 938: 932: 922: 919: 914: 908: 907: 906: 905: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 739: 736: 731: 730: 723: 720: 718: 715: 713: 710: 709: 706: 701: 700: 691: 688: 686: 683: 681: 678: 677: 675: 674: 669: 666: 664: 661: 659: 656: 655: 651: 650: 647: 644: 643: 640: 635: 630: 629: 622: 619: 615: 614:by cosmic ray 612: 611: 610: 607: 606: 600: 599: 590: 587: 585: 582: 581: 580: 577: 573: 570: 568: 565: 564: 563: 560: 556: 553: 552: 551: 548: 547: 541: 540: 533: 530: 526: 525:pair breaking 523: 522: 521: 518: 516: 513: 512: 509: 504: 503: 496: 493: 491: 490:Decay product 488: 486: 483: 481: 478: 477: 474: 471: 469: 466: 464: 463:Cluster decay 461: 459: 456: 452: 449: 447: 444: 443: 442: 439: 437: 434: 430: 427: 423: 420: 419: 418: 415: 414: 413: 410: 408: 405: 404: 401: 396: 395: 388: 385: 383: 380: 378: 375: 373: 370: 368: 365: 363: 360: 359: 353: 352: 343: 340: 339: 338: 335: 333: 330: 328: 325: 323: 320: 319: 316: 312: 308: 307:Mirror nuclei 305: 304: 300: 297: 296: 293: 292: 289: −  288: 283: 280: 279: 276: 275: 270: 267: 266: 263: 262: 257: 254: 253: 249: 248: 243: 240: 239: 235: 230: 229: 222: 219: 217: 214: 212: 209: 207: 204: 203: 200: 195: 194: 189: 186: 184: 181: 179: 178:Nuclear force 176: 174: 171: 167: 164: 162: 159: 158: 157: 154: 152: 149: 148: 147: 146: 142: 138: 137: 134: 131: 130: 123: 113: 110: 102: 99:December 2015 91: 88: 84: 81: 77: 74: 70: 67: 63: 60: –  59: 55: 54:Find sources: 48: 44: 38: 37: 32:This article 30: 26: 21: 20: 1912: 1906: 1900: 1888:. Retrieved 1881:the original 1868: 1855: 1822: 1818: 1812: 1801:. Retrieved 1797: 1788: 1687: 1676:filled with 1623: 1477: 1261: 1204: 1162: 1147:shear stress 1100: 1076: 1031:anthropology 970: 969: 608: 532:Photofission 480:Decay energy 407:Alpha α 314: 310: 290: 286: 273: 260: 246: 105: 96: 86: 79: 72: 65: 58:"Spallation" 53: 41:Please help 36:verification 33: 1890:October 20, 1626:accelerator 1532:Australia: 1492:Supermirror 1313:Foundations 1265:criticality 1135:nanoseconds 1117:(typically 1093:) charges. 999:cosmic rays 837:Oppenheimer 515:Spontaneous 485:Decay chain 436:K/L capture 412:Beta β 282:Isodiaphers 206:Liquid drop 1992:Categories 1803:2015-12-12 1780:References 1758:Los Alamos 1720:Sputtering 1680:or liquid 1674:moderators 1638:SINQ (PSI) 1574:Historic: 1514:America: 1478:Spallation 1347:Activation 1343:Absorption 1279:See also: 1262:just below 1177:Cosmogenic 1169:meteorites 1157:See also: 1143:thin films 1111:substrates 1107:thin films 1079:cavitation 1035:arrowheads 1023:mine shaft 991:meteoritic 983:projectile 971:Spallation 867:Strassmann 857:Rutherford 735:Scientists 690:Artificial 685:Cosmogenic 680:Primordial 676:Nuclides: 653:Processes: 609:Spallation 69:newspapers 1847:121427439 1654:injectors 1497:Detection 1488:Reflector 1334:Transport 1330:Radiation 1188:beryllium 1184:aluminium 1127:substrate 1019:rock face 872:Świątecki 787:Pi. Curie 782:Fr. Curie 777:Ir. Curie 772:Cockcroft 747:Becquerel 668:Supernova 372:Drip line 367:p–n ratio 342:Borromean 221:Ab initio 1945:42506679 1937:17322053 1877:28796927 1703:See also 1666:tungsten 1662:tantalum 1548:Europe: 1524:NIST CNR 1298:neutrons 1239:Nobelist 1219:tantalum 1211:neutrons 1192:chlorine 1180:isotopes 1171:and the 1103:adhesion 1051:particle 1047:nucleons 1039:knapping 1007:surfaces 931:Category 832:Oliphant 817:Lawrence 797:Davisson 767:Chadwick 663:Big Bang 550:electron 520:Products 441:Isomeric 332:Even/odd 309: – 284:– equal 271:– equal 269:Isotones 258:– equal 244:– equal 242:Isotopes 234:Nuclides 156:Nucleons 1964:in the 1917:Bibcode 1908:Science 1827:Bibcode 1682:methane 1215:mercury 1015:geology 887:Thomson 877:Szilárd 847:Purcell 827:Meitner 762:N. Bohr 757:A. Bohr 742:Alvarez 658:Stellar 562:neutron 446:Gamma γ 299:Isomers 256:Isobars 151:Nucleus 83:scholar 1943:  1935:  1875:  1845:  1798:Psi.ch 1756:LANSCE 1751:J-PARC 1697:X-rays 1554:FRM II 1550:BER II 1544:HANARO 1540:J-PARC 1538:Asia: 1520:LANSCE 1375:GISANS 1287:, and 1250:MYRRHA 1196:iodine 1119:Nd:YAG 1011:mining 929:  897:Wigner 892:Walton 882:Teller 812:Jensen 579:proton 322:Stable 85:  78:  71:  64:  56:  1941:S2CID 1884:(PDF) 1873:S2CID 1865:(PDF) 1843:S2CID 1233:in a 1139:laser 1115:laser 1109:with 1087:spall 1057:. In 1041:. In 985:. In 975:spall 862:Soddy 842:Proca 822:Mayer 802:Fermi 752:Bethe 327:Magic 90:JSTOR 76:books 1933:PMID 1892:2019 1580:HFBR 1576:IPNS 1570:SINQ 1566:JINR 1534:OPAL 1516:HFIR 1326:Flux 1289:SINQ 1223:lead 1200:neon 1198:and 1173:Moon 1091:HESH 1061:and 1027:rust 1005:and 997:and 852:Rabi 807:Hahn 717:RHIC 337:Halo 62:news 1925:doi 1913:315 1835:doi 1664:or 1586:ESS 1558:ILL 1528:SNS 1256:of 1229:of 1182:of 1105:of 1037:by 1013:or 1001:on 722:LHC 636:and 45:by 1994:: 1939:. 1931:. 1923:. 1911:. 1867:. 1841:. 1833:. 1823:82 1821:. 1796:. 1699:. 1578:, 1568:, 1564:, 1560:, 1556:, 1552:, 1542:, 1522:, 1518:, 1490:, 1480:, 1476:, 1472:: 1442:, 1432:, 1345:, 1341:, 1332:, 1328:, 1283:, 1221:, 1217:, 1194:, 1190:, 1186:, 589:rp 555:2× 422:0v 417:2β 313:↔ 1947:. 1927:: 1919:: 1894:. 1849:. 1837:: 1829:: 1806:. 1613:e 1606:t 1599:v 1526:- 959:e 952:t 945:v 584:p 572:r 567:s 429:β 315:N 311:Z 291:Z 287:N 274:N 261:A 247:Z 166:n 161:p 112:) 106:( 101:) 97:( 87:· 80:· 73:· 66:· 39:.

Index


verification
improve this article
adding citations to reliable sources
"Spallation"
news
newspapers
books
scholar
JSTOR
Learn how and when to remove this message

Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.