Knowledge

Grazing-incidence small-angle scattering

Source 📝

168:
are facilitated. Specifically self-organization during MBE growth and re-organization processes in block copolymer films under the influence of solvent vapor have been characterized on the relevant timescales ranging from seconds to minutes. Ultimately the time resolution is limited by the x-ray flux on the samples necessary to collect an image and the read-out time of the area detector.
152:(DWBA). However, while diffuse reflectivity remains confined to the incident plane (the plane given by the incident beam and the surface normal), GISAS explores the whole scattering from the surface in all directions, typically utilizing an area detector. Thus GISAS gains access to a wider range of lateral and vertical structures and, in particular, is sensitive to the morphology and 164:
strength as the incident beam and thus the scattering from the reflected beam from the film structure can give rise to a doubling of scattering features in the perpendicular direction. This as well as interference between the scattering from the direct and the reflected beam can be fully accounted for by the DWBA scattering theory.
160:
scattering vector with respect to the substrate while the parallel component is unaffected. Thus parallel scattering can often be interpreted within the kinematic theory of SAS, while refractive corrections apply to the scattering along perpendicular cuts of the scattering image, for instance along a scattering rod.
148:
substrate and film, and the two-dimensional character of the scattering, giving rise to diffuse rods of scattering intensity perpendicular to the surface. With diffuse (off-specular) reflectometry it shares phenomena like the Yoneda/Vinyard peak at the critical angle of the sample, and the scattering theory, the
167:
These complications are often more than offset by the fact that the dynamic enhancement of the scattering intensity is significant. In combination with the straightforward scattering geometry, where all relevant information is contained in a single scattering image, in-situ and real-time experiments
73:
Geometry of a GISAS experiment. The incident beam strikes the sample under a small angle close to the critical angle of total external x-ray reflection. The intense reflected beam as well as the intense scattering in the incident plane are attenuated by a rod-shaped beam stop. The diffuse scattering
147:
As a hybrid technique, GISAS combines concepts from transmission small-angle scattering (SAS), from grazing-incidence diffraction (GID), and from diffuse reflectometry. From SAS it uses the form factors and structure factors. From GID it uses the scattering geometry close to the critical angles of
205:
GISAS does not require any specific sample preparation other than thin film deposition techniques. Film thicknesses may range from a few nm to several 100 nm, and such thin films are still fully penetrated by the x-ray beam. The film surface, the film interior, as well as the substrate-film
163:
In the interpretation of GISAS images some complication arises in the scattering from low-Z films e.g. organic materials on silicon wafers, when the incident angle is in between the critical angles of the film and the substrate. In this case, the reflected beam from the substrate has a similar
159:
As a particular consequence of the DWBA, the refraction of x-rays or neutrons has to be always taken into account in the case of thin film studies, due to the fact that scattering angles are small, often less than 1 deg. The refraction correction applies to the perpendicular component of the
74:
from the sample (red arrow) is recorded with an area detector. As an example the scattering from a block copolymer film with perpendicular lamellae is shown in the detector plane. The two lobes of scattering correspond to the lateral lamellar period of about 80 nm.
70: 882:
Busch, P.; Rauscher, M.; Smilgies, D.-M.; Posselt, D.; Papadakis, C. M. (2006-05-10). "Grazing-incidence small-angle X-ray scattering from thin polymer films with lamellar structures – the scattering cross section in the distorted-wave Born approximation".
106:
GISAXS was introduced by Levine and Cohen to study the dewetting of gold deposited on a glass surface. The technique was further developed by Naudon and coworkers to study metal agglomerates on surfaces and in buried interfaces. With the advent of
835:
Lee, Byeongdu; Park, Insun; Yoon, Jinhwan; Park, Soojin; Kim, Jehan; Kim, Kwang-Woo; Chang, Taihyun; Ree, Moonhor (2005). "Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-ray Scattering".
374:
Gibaud, A.; Grosso, D.; Smarsly, B.; Baptiste, A.; Bardeau, J. F.; Babonneau, F.; Doshi, D. A.; Chen, Z.; Brinker, C. Jeffrey; Sanchez, C. (2003). "Evaporation-Controlled Self-Assembly of Silica Surfactant Mesophases".
1205: 223:
Metzger, T.H.; Kegel, I.; Paniago, R.; Lorke, A.; Peisl, J.; et al. (1998). "Shape, size, strain and correlations in quantum dot systems studied by grazing incidence X-ray scattering methods".
331:
Smilgies, Detlef‐M.; Busch, Peter; Papadakis, Christine M.; Posselt, Dorthe (2002). "Characterization of polymer thin films with small‐angle X‐ray scattering under grazing incidence (GISAXS)".
127:
films and other self-organized nanostructured thin films that have become indispensable for nanoscience and technology. Future challenges of GISAS may lie in biological applications, such as
1242: 17: 749:
Rauscher, M.; Salditt, T.; Spohn, H. (1995-12-15). "Small-angle x-ray scattering under grazing incidence: The cross section in the distorted-wave Born approximation".
95:
in thin films. Systems studied by GISAS include quantum dot arrays, growth instabilities formed during in-situ growth, self-organized nanostructures in thin films of
563:
Levine, J. R.; Cohen, J. B.; Chung, Y. W.; Georgopoulos, P. (1989-12-01). "Grazing-incidence small-angle X-ray scattering: new tool for studying thin film growth".
650:
Gutmann, J.S.; MĂŒller-Buschbaum, P.; Schubert, D.W.; Stribeck, N.; Smilgies, D.; Stamm, M. (2000). "Roughness correlations in ultra-thin polymer blend films".
269:
Renaud, G.; Lazzari, RĂ©mi; Revenant, Christine; Barbier, Antoine; Noblet, Marion; et al. (2003-05-30). "Real-Time Monitoring of Growing Nanoparticles".
410:
Chatterjee, P.; Hazra, S.; Amenitsch, H. (2012). "Substrate and drying effect in shape and ordering of micelles inside CTAB–silica mesostructured films".
512:
Saunders, Aaron E.; Ghezelbash, Ali; Smilgies, Detlef-M.; Sigman, Michael B.; Korgel, Brian A. (2006). "Columnar Self-Assembly of Colloidal Nanodisks".
1259: 933: 189: 188:, National Synchrotron Light Source II (NSLS-II), Pohang Light Source (South Korea), SOLEIL (France), Shanghai Synchrotron (PR China), 1300: 800:
Lazzari, RĂ©mi (2002-07-18). "IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands".
597:
A. Naudon in H. Brumberger (ed.): "Modern Aspects of Small-Angle Scattering", (Kluwer Academic Publishers, Amsterdam, 1995), p. 191.
1310: 1456: 982: 185: 115:
on semiconductor surfaces and the in-situ characterization of metal deposits on oxide surfaces. This was soon to be followed by
1222: 1237: 1320: 1315: 607:
Hazra, S; Gibaud, A; DĂ©sert, A; Sella, C; Naudon, A (2000). "Morphology of nanocermet thin films: X-ray scattering study".
939: 1393: 1378: 1247: 34:) is a scattering technique used to study nanostructured surfaces and thin films. The scattered probe is either photons ( 149: 1295: 1274: 1461: 59: 1325: 1290: 63: 1388: 1358: 1217: 1190: 206:
interface are all accessible. By varying the incidence angle the various contributions can be identified.
1466: 1368: 1335: 1305: 1269: 975: 1414: 1254: 1142: 195: 177: 1081: 1471: 1383: 1232: 968: 181: 153: 51: 1343: 1212: 1020: 199: 1180: 1112: 1045: 845: 758: 707: 659: 616: 521: 478: 419: 278: 232: 8: 1451: 1132: 1107: 1086: 111:
other applications evolved quickly, first in hard matter such as the characterization of
849: 762: 711: 663: 620: 525: 482: 423: 282: 236: 1373: 1152: 1117: 1050: 443: 356: 310: 921: 671: 628: 244: 1421: 1353: 1348: 1175: 1147: 1040: 900: 861: 817: 782: 774: 731: 723: 675: 632: 580: 545: 537: 494: 435: 392: 360: 348: 302: 294: 248: 88: 447: 1137: 1015: 892: 853: 809: 766: 715: 698:; Stanley, H. B. (1988-08-01). "X-ray and neutron scattering from rough surfaces". 667: 624: 572: 529: 486: 427: 384: 340: 314: 286: 240: 96: 92: 1446: 1409: 1264: 1127: 1091: 1010: 198:, GISANS is increasingly used, typically on small-angle (SANS) instruments or on 124: 951: 695: 277:(5624). American Association for the Advancement of Science (AAAS): 1416–1419. 896: 813: 770: 576: 344: 1440: 1185: 904: 865: 821: 778: 727: 719: 679: 636: 584: 541: 498: 439: 396: 352: 298: 252: 100: 84: 948:
modelling and fitting software by Scientific Computing Group of MLZ Garching
290: 1227: 1122: 1035: 1025: 549: 461:
Hazra, S.; Gibaud, A.; Sella, C. (2004-07-19). "Tunable absorption of Au–Al
306: 112: 786: 735: 1076: 116: 108: 1200: 1066: 649: 431: 857: 533: 490: 388: 927: 1071: 945: 180:(for instance Advanced Light Source (ALS), Australian Synchrotron, 132: 128: 1195: 136: 120: 960: 511: 176:
Dedicated or partially dedicated GISAXS beamlines exist at most
1030: 1005: 991: 891:(3). International Union of Crystallography (IUCr): 433–442. 808:(4). International Union of Crystallography (IUCr): 406–421. 571:(6). International Union of Crystallography (IUCr): 528–532. 330: 156:
of nanoscale objects at the surface or inside the thin film.
881: 562: 268: 955: 373: 55: 83:
A typical application of GISAS is the characterisation of
69: 693: 409: 222: 606: 757:(23). American Physical Society (APS): 16855–16863. 748: 844:(10). American Chemical Society (ACS): 4311–4323. 520:(12). American Chemical Society (ACS): 2959–2963. 383:(25). American Chemical Society (ACS): 6114–6118. 50:). GISAS combines the accessible length scales of 706:(4). American Physical Society (APS): 2297–2311. 1438: 460: 44:grazing-incidence small-angle neutron scattering 18:Grazing-incidence small-angle neutron scattering 834: 418:(10). Royal Society of Chemistry (RSC): 2956. 36:grazing-incidence small-angle X-ray scattering 976: 954:Massively Parallel GISAXS simulation code by 942:modelling/fitting software by David Babonneau 469:nanocermet thin films and its morphology". 983: 969: 936:modelling/fitting software by RĂ©mi Lazzari 326: 324: 139:attached to surfaces or in lipid layers. 877: 875: 264: 262: 171: 68: 28:Grazing-incidence small-angle scattering 799: 321: 14: 1439: 600: 964: 872: 454: 403: 367: 259: 377:The Journal of Physical Chemistry B 24: 924:by Detlef Smilgies - Updated Link! 885:Journal of Applied Crystallography 802:Journal of Applied Crystallography 565:Journal of Applied Crystallography 25: 1483: 990: 915: 184:, ELETTRA (Italy), Diamond (UK), 150:distorted wave Born approximation 142: 62:) and the surface sensitivity of 339:(5). Informa UK Limited: 35–42. 828: 793: 742: 687: 643: 78: 1457:Synchrotron-related techniques 591: 556: 505: 477:(3). AIP Publishing: 395–397. 216: 13: 1: 694:Sinha, S. K.; Sirota, E. B.; 672:10.1016/s0921-4526(99)01888-8 629:10.1016/s0921-4526(99)01899-2 245:10.1016/s0040-6090(98)01290-5 209: 64:grazing incidence diffraction 615:(1–3). Elsevier BV: 97–102. 7: 658:(1–3). Elsevier BV: 40–44. 652:Physica B: Condensed Matter 609:Physica B: Condensed Matter 196:neutron research facilities 10: 1488: 1255:X-Ray Fluorescence Imaging 1143:Anomalous X-ray scattering 922:GISAXS and GIWAXS tutorial 333:Synchrotron Radiation News 119:systems such as ultrathin 1402: 1334: 1283: 1168: 1161: 1100: 1059: 998: 897:10.1107/s0021889806012337 814:10.1107/s0021889802006088 771:10.1103/physrevb.52.16855 577:10.1107/s002188988900717x 345:10.1080/08940880208602975 231:(1–2). Elsevier BV: 1–8. 178:synchrotron light sources 99:, silica mesophases, and 1082:Synchrotron light source 720:10.1103/physrevb.38.2297 1101:Interaction with matter 1060:Sources and instruments 684:(Proceedings of SXNS–6) 471:Applied Physics Letters 291:10.1126/science.1082146 123:films, polymer blends, 1233:Diffraction tomography 154:preferential alignment 75: 52:small-angle scattering 1462:Scientific techniques 1344:X-ray crystallography 1213:Soft x-ray microscopy 1181:Panoramic radiography 1021:Synchrotron radiation 172:Experimental practice 72: 1113:Photoelectric effect 1046:Characteristic X-ray 1133:Photodisintegration 1108:Rayleigh scattering 1087:Free-electron laser 850:2005MaMol..38.4311L 763:1995PhRvB..5216855R 712:1988PhRvB..38.2297S 664:2000PhyB..283...40G 621:2000PhyB..283...97H 526:2006NanoL...6.2959S 483:2004ApPhL..85..395H 424:2012SMat....8.2956C 283:2003Sci...300.1416R 237:1998TSF...336....1M 1467:Neutron scattering 1374:X-ray reflectivity 1153:X-ray fluorescence 1118:Compton scattering 1051:High-energy X-rays 432:10.1039/c2sm06982b 76: 1434: 1433: 1430: 1429: 1422:X-ray lithography 1354:Backscatter X-ray 1349:X-ray diffraction 1176:X-ray radiography 1148:X-ray diffraction 1041:Siegbahn notation 858:10.1021/ma047562d 751:Physical Review B 700:Physical Review B 534:10.1021/nl062419e 491:10.1063/1.1774250 389:10.1021/jp027612l 89:self-organization 16:(Redirected from 1479: 1260:X-ray holography 1166: 1165: 1138:Radiation damage 985: 978: 971: 962: 961: 909: 908: 879: 870: 869: 832: 826: 825: 797: 791: 790: 746: 740: 739: 691: 685: 683: 647: 641: 640: 604: 598: 595: 589: 588: 560: 554: 553: 509: 503: 502: 458: 452: 451: 407: 401: 400: 371: 365: 364: 328: 319: 318: 266: 257: 256: 225:Thin Solid Films 220: 97:block copolymers 21: 1487: 1486: 1482: 1481: 1480: 1478: 1477: 1476: 1437: 1436: 1435: 1426: 1410:X-ray astronomy 1398: 1330: 1279: 1265:X-ray telescope 1157: 1128:Photoionization 1096: 1092:X-ray nanoprobe 1055: 1011:Absorption edge 999:Characteristics 994: 989: 918: 913: 912: 880: 873: 833: 829: 798: 794: 747: 743: 692: 688: 648: 644: 605: 601: 596: 592: 561: 557: 510: 506: 468: 464: 459: 455: 408: 404: 372: 368: 329: 322: 267: 260: 221: 217: 212: 174: 145: 125:block copolymer 81: 42:) or neutrons ( 23: 22: 15: 12: 11: 5: 1485: 1475: 1474: 1472:Nanotechnology 1469: 1464: 1459: 1454: 1449: 1432: 1431: 1428: 1427: 1425: 1424: 1419: 1418: 1417: 1406: 1404: 1400: 1399: 1397: 1396: 1391: 1386: 1381: 1376: 1371: 1366: 1361: 1356: 1351: 1346: 1340: 1338: 1332: 1331: 1329: 1328: 1323: 1318: 1313: 1308: 1303: 1298: 1293: 1287: 1285: 1281: 1280: 1278: 1277: 1272: 1267: 1262: 1257: 1252: 1251: 1250: 1245: 1240: 1230: 1225: 1220: 1215: 1210: 1209: 1208: 1203: 1193: 1188: 1183: 1178: 1172: 1170: 1163: 1159: 1158: 1156: 1155: 1150: 1145: 1140: 1135: 1130: 1125: 1120: 1115: 1110: 1104: 1102: 1098: 1097: 1095: 1094: 1089: 1084: 1079: 1074: 1069: 1063: 1061: 1057: 1056: 1054: 1053: 1048: 1043: 1038: 1033: 1028: 1023: 1018: 1013: 1008: 1002: 1000: 996: 995: 988: 987: 980: 973: 965: 959: 958: 949: 943: 937: 931: 930:by Kevin Yager 925: 917: 916:External links 914: 911: 910: 871: 838:Macromolecules 827: 792: 741: 686: 642: 599: 590: 555: 504: 466: 462: 453: 402: 366: 320: 258: 214: 213: 211: 208: 200:reflectometers 173: 170: 144: 143:Interpretation 141: 80: 77: 9: 6: 4: 3: 2: 1484: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1444: 1442: 1423: 1420: 1416: 1413: 1412: 1411: 1408: 1407: 1405: 1401: 1395: 1392: 1390: 1387: 1385: 1382: 1380: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1347: 1345: 1342: 1341: 1339: 1337: 1333: 1327: 1324: 1322: 1319: 1317: 1314: 1312: 1309: 1307: 1304: 1302: 1299: 1297: 1294: 1292: 1289: 1288: 1286: 1282: 1276: 1273: 1271: 1268: 1266: 1263: 1261: 1258: 1256: 1253: 1249: 1246: 1244: 1241: 1239: 1236: 1235: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1211: 1207: 1204: 1202: 1199: 1198: 1197: 1194: 1192: 1189: 1187: 1186:Tomosynthesis 1184: 1182: 1179: 1177: 1174: 1173: 1171: 1167: 1164: 1160: 1154: 1151: 1149: 1146: 1144: 1141: 1139: 1136: 1134: 1131: 1129: 1126: 1124: 1121: 1119: 1116: 1114: 1111: 1109: 1106: 1105: 1103: 1099: 1093: 1090: 1088: 1085: 1083: 1080: 1078: 1075: 1073: 1070: 1068: 1065: 1064: 1062: 1058: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1022: 1019: 1017: 1016:Moseley's law 1014: 1012: 1009: 1007: 1004: 1003: 1001: 997: 993: 992:X-ray science 986: 981: 979: 974: 972: 967: 966: 963: 957: 953: 950: 947: 944: 941: 938: 935: 932: 929: 926: 923: 920: 919: 906: 902: 898: 894: 890: 886: 878: 876: 867: 863: 859: 855: 851: 847: 843: 839: 831: 823: 819: 815: 811: 807: 803: 796: 788: 784: 780: 776: 772: 768: 764: 760: 756: 752: 745: 737: 733: 729: 725: 721: 717: 713: 709: 705: 701: 697: 690: 681: 677: 673: 669: 665: 661: 657: 653: 646: 638: 634: 630: 626: 622: 618: 614: 610: 603: 594: 586: 582: 578: 574: 570: 566: 559: 551: 547: 543: 539: 535: 531: 527: 523: 519: 515: 508: 500: 496: 492: 488: 484: 480: 476: 472: 457: 449: 445: 441: 437: 433: 429: 425: 421: 417: 413: 406: 398: 394: 390: 386: 382: 378: 370: 362: 358: 354: 350: 346: 342: 338: 334: 327: 325: 316: 312: 308: 304: 300: 296: 292: 288: 284: 280: 276: 272: 265: 263: 254: 250: 246: 242: 238: 234: 230: 226: 219: 215: 207: 203: 201: 197: 192: 191: 187: 183: 179: 169: 165: 161: 157: 155: 151: 140: 138: 134: 130: 126: 122: 118: 114: 110: 104: 102: 101:nanoparticles 98: 94: 90: 86: 85:self-assembly 71: 67: 65: 61: 57: 53: 49: 45: 41: 37: 33: 29: 19: 1363: 1284:Spectroscopy 1228:Ptychography 1162:Applications 1123:Auger effect 1026:Water window 888: 884: 841: 837: 830: 805: 801: 795: 754: 750: 744: 703: 699: 689: 655: 651: 645: 612: 608: 602: 593: 568: 564: 558: 517: 514:Nano Letters 513: 507: 474: 470: 456: 415: 411: 405: 380: 376: 369: 336: 332: 274: 270: 228: 224: 218: 204: 193: 175: 166: 162: 158: 146: 113:quantum dots 105: 82: 79:Applications 47: 43: 39: 35: 31: 27: 26: 1077:Synchrotron 928:GISAXS wiki 412:Soft Matter 117:soft matter 109:nanoscience 1452:Scattering 1441:Categories 1336:Scattering 1201:Helical CT 1067:X-ray tube 696:Garoff, S. 210:References 952:HiPGISAXS 946:BornAgain 940:FitGISAXS 905:0021-8898 866:0024-9297 822:0021-8898 779:0163-1829 728:0163-1829 680:0921-4526 637:0921-4526 585:0021-8898 542:1530-6984 499:0003-6951 440:1744-683X 397:1520-6106 361:122797468 353:0894-0886 299:0036-8075 253:0040-6090 93:nanoscale 1072:Betatron 934:isGISAXS 550:17163739 448:98053328 307:12775836 133:peptides 129:proteins 1415:History 1169:Imaging 846:Bibcode 787:9981092 759:Bibcode 736:9946532 708:Bibcode 660:Bibcode 617:Bibcode 522:Bibcode 479:Bibcode 420:Bibcode 315:7244337 279:Bibcode 271:Science 233:Bibcode 137:viruses 121:polymer 91:on the 66:(GID). 1447:X-rays 1403:Others 1364:GISAXS 1036:L-edge 1031:K-edge 903:  864:  820:  785:  777:  734:  726:  678:  635:  583:  548:  540:  497:  446:  438:  395:  359:  351:  313:  305:  297:  251:  54:(SAS: 48:GISANS 40:GISAXS 1394:EDXRD 1316:XANES 1311:EXAFS 1301:ARPES 1248:3DXRD 1006:X-ray 444:S2CID 357:S2CID 311:S2CID 135:, or 32:GISAS 1379:RIXS 1369:WAXS 1359:SAXS 1270:DFXM 1238:XDCT 1223:STXM 1218:XPCI 1206:XACT 956:LBNL 901:ISSN 862:ISSN 818:ISSN 783:PMID 775:ISSN 732:PMID 724:ISSN 676:ISSN 633:ISSN 581:ISSN 546:PMID 538:ISSN 495:ISSN 436:ISSN 393:ISSN 349:ISSN 303:PMID 295:ISSN 249:ISSN 190:SSRL 186:ESRF 87:and 60:SANS 56:SAXS 1384:XRS 1326:XFH 1321:EDS 1306:AES 1296:XPS 1291:XAS 1275:DXA 1243:DCT 1191:CDI 893:doi 854:doi 810:doi 767:doi 716:doi 668:doi 656:283 625:doi 613:283 573:doi 530:doi 487:doi 428:doi 385:doi 381:107 341:doi 287:doi 275:300 241:doi 229:336 194:At 182:APS 58:or 1443:: 1389:XS 1196:CT 899:. 889:39 887:. 874:^ 860:. 852:. 842:38 840:. 816:. 806:35 804:. 781:. 773:. 765:. 755:52 753:. 730:. 722:. 714:. 704:38 702:. 674:. 666:. 654:. 631:. 623:. 611:. 579:. 569:22 567:. 544:. 536:. 528:. 516:. 493:. 485:. 475:85 473:. 442:. 434:. 426:. 414:. 391:. 379:. 355:. 347:. 337:15 335:. 323:^ 309:. 301:. 293:. 285:. 273:. 261:^ 247:. 239:. 227:. 202:. 131:, 103:. 46:, 38:, 984:e 977:t 970:v 907:. 895:: 868:. 856:: 848:: 824:. 812:: 789:. 769:: 761:: 738:. 718:: 710:: 682:. 670:: 662:: 639:. 627:: 619:: 587:. 575:: 552:. 532:: 524:: 518:6 501:. 489:: 481:: 467:3 465:O 463:2 450:. 430:: 422:: 416:8 399:. 387:: 363:. 343:: 317:. 289:: 281:: 255:. 243:: 235:: 30:( 20:)

Index

Grazing-incidence small-angle neutron scattering
small-angle scattering
SAXS
SANS
grazing incidence diffraction

self-assembly
self-organization
nanoscale
block copolymers
nanoparticles
nanoscience
quantum dots
soft matter
polymer
block copolymer
proteins
peptides
viruses
distorted wave Born approximation
preferential alignment
synchrotron light sources
APS
ESRF
SSRL
neutron research facilities
reflectometers
Bibcode
1998TSF...336....1M
doi

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑