Knowledge

Transmission Electron Aberration-corrected Microscope Project

Source đź“ť

1255: 27: 1267: 89:
It has long been known that the best achievable spatial resolution of an optical microscope, that is the smallest feature it can observe, is of the order of the wavelength of the light λ, which is about 550 nm for green light. One route to improve this resolution is to use particles with smaller
110:
because of their similarity to aberrations in optical lenses. Those aberrations are reduced by installing in a microscope a set of specially designed auxiliary "lenses" which are called aberration correctors.
178:—not only the atoms, but also the chemical bonds could be observed. A movie has been recorded inside the microscope showing hopping of individual carbon atoms around a hole punched in a graphene sheet. 81:. The project was started in 2004; the operational microscope was built in 2008 and achieved the 0.05 nm resolution target in 2009. The microscope is a shared facility available to external users. 130:
with a relatively low energy spread of 0.8 eV at 300 keV. In order to reduce chromatic aberrations, this spread is further lowered to 0.13 eV at 300 keV and 0.08 eV at 80 keV using a
123:(STEM) modes. To minimize the mechanical vibrations, the microscope is located in a separate room within a sound-proof enclosure and is operated remotely. The electron source is a 20: 102:. The resolution of electron microscopes is limited not by the electron wavelength, but by intrinsic imperfections of electron lenses. These are referred to as 150:
camera. The filter makes it possible to select electrons scattered by specific chemical elements and so identify individual atoms in the sample being studied.
899: 882: 877: 119:
The TEAM is based on a commercial FEI Titan 80–300 electron microscope, which can be operated at voltages between 80 and 300 keV, both in TEM and
1026: 729: 38:
is a collaborative research project between four US laboratories and two companies. The project's main activity is design and application of a
1016: 619: 146:) are equipped with fifth-order spherical aberration correctors. The electrons are further energy filtered by a GIF filter and detected by a 919: 892: 390:"Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-Ă… Information Limit" 827: 70: 887: 120: 1031: 30:
Evolution of spatial resolution achieved with optical, transmission (TEM) and aberration-corrected electron microscopes (ACTEM).
847: 19:
This article is about the TEAM 0.5 and TEAM I microscopes. For all aberration-corrected transmission electron microscopes, see
971: 837: 784: 54: 253: 1271: 1226: 954: 939: 865: 976: 809: 662: 612: 447: 964: 959: 857: 832: 799: 195: 39: 547:
J. C. Meyer; et al. (2008). "Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes".
1036: 1021: 1001: 1231: 804: 739: 647: 1221: 170:() and others, and reaching the spatial resolution below 0.05 nm (about 0.045 nm). In the images of 981: 944: 789: 66: 389: 1293: 1259: 819: 605: 333:"Present status and future prospects of spherical aberration corrected TEM/STEM for study of nanomaterials" 124: 62: 1298: 1006: 924: 239: 78: 90:λ, such as high-energy electrons. Practical limitations set a convenient electron energy to 100–300 1185: 1011: 934: 870: 744: 703: 138:. Both the illumination lens, which is located above the sample and is conventionally called the 1124: 139: 1129: 949: 147: 1134: 693: 556: 505: 462: 404: 344: 287: 158:
The TEAM has been tested on various crystalline solids, resolving individual atoms in GaN (
107: 103: 58: 496:
C. O. Girit; et al. (27 March 2009). "Graphene at the Edge: Stability and Dynamics".
240:"Berkeley Scientists Produce First Live Action Movie of Individual Carbon Atoms in Action" 8: 1099: 1084: 991: 986: 929: 794: 776: 708: 698: 642: 628: 257: 560: 509: 466: 408: 348: 291: 1170: 749: 713: 529: 428: 365: 356: 332: 308: 299: 275: 218: 143: 127: 1114: 1109: 572: 521: 478: 420: 370: 313: 1201: 533: 432: 222: 1064: 996: 564: 513: 474: 470: 412: 360: 352: 303: 295: 210: 592: 1119: 1074: 688: 416: 16:
Aberration-correction microscopes in the Lawrence Berkeley National Laboratory
1287: 1150: 1094: 754: 135: 91: 517: 1211: 1175: 1069: 1059: 734: 683: 576: 525: 482: 424: 374: 317: 159: 194:
Pennycook, S.J.; Varela, M.; Hetherington, C.J.D.; Kirkland, A.I. (2011).
1155: 1089: 1079: 131: 74: 1236: 1216: 657: 652: 26: 597: 568: 214: 1104: 759: 196:"Materials Advances through Aberration-Corrected Electron Microscopy" 163: 99: 43: 36:
Transmission Electron Aberration-Corrected Microscope (TEAM) Project
1206: 672: 193: 175: 171: 47: 1160: 842: 1180: 21:
Aberration-Corrected Transmission Electron Microscopy (AC-TEM)
1165: 448:"Atomic-Resolution Imaging with a Sub-50-pm Electron Probe" 167: 69:
and Frederick Seitz Materials Research Laboratory at the
276:"Optics of high-performance electron Microscopes" 1285: 46:, which is roughly half the size of an atom of 1027:Serial block-face scanning electron microscopy 730:Detectors for transmission electron microscopy 387: 613: 280:Science and Technology of Advanced Materials 77:and CEOS companies, and is supported by the 546: 495: 42:(TEM) with a spatial resolution below 0.05 620: 606: 273: 71:University of Illinois at Urbana-Champaign 364: 330: 307: 121:scanning transmission electron microscopy 84: 25: 627: 445: 234: 232: 1286: 269: 267: 142:, and the collection lens (called the 601: 55:Lawrence Berkeley National Laboratory 1266: 388:C. Kisielowski; et al. (2008). 229: 439: 264: 13: 14: 1310: 663:Timeline of microscope technology 586: 381: 1265: 1254: 1253: 40:transmission electron microscope 1022:Precession electron diffraction 153: 540: 489: 475:10.1103/PhysRevLett.102.096101 324: 246: 187: 1: 446:R. Erni; et al. (2009). 181: 67:Oak Ridge National Laboratory 397:Microscopy and Microanalysis 357:10.1088/1468-6996/9/1/014111 300:10.1088/0031-8949/9/1/014107 53:The project is based at the 7: 114: 63:Argonne National Laboratory 10: 1315: 1007:Immune electron microscopy 925:Annular dark-field imaging 740:Everhart–Thornley detector 254:"The TEM project timeline" 18: 1249: 1194: 1161:Hitachi High-Technologies 1143: 1052: 1045: 912: 856: 818: 775: 768: 722: 671: 635: 417:10.1017/S1431927608080902 256:. lbl.gov. Archived from 79:U.S. Department of Energy 1186:Thermo Fisher Scientific 1012:Geometric phase analysis 900:Aberration-Corrected TEM 457:(Submitted manuscript). 337:Sci. Technol. Adv. Mater 935:Charge contrast imaging 745:Field electron emission 518:10.1126/science.1166999 455:Physical Review Letters 1125:Thomas Eugene Everhart 593:TEAM Project main site 31: 1130:Vernon Ellis Cosslett 950:Dark-field microscopy 108:chromatic aberrations 98: = 3.7–2.0 85:Scientific background 29: 1135:Vladimir K. Zworykin 785:Correlative light EM 694:Electron diffraction 94:that corresponds to 59:Berkeley, California 1294:Electron microscopy 1100:Manfred von Ardenne 1085:Gerasimos Danilatos 992:Electron tomography 987:Electron holography 930:Cathodoluminescence 709:Secondary electrons 699:Electron scattering 643:Electron microscopy 629:Electron microscopy 561:2008NanoL...8.3582M 510:2009Sci...323.1705G 467:2009PhRvL.102i6101E 409:2008MiMic..14..469K 349:2008STAdM...9a4111T 292:2008STAdM...9a4107R 274:H. H. Rose (2008). 174:—a single sheet of 1222:Digital Micrograph 828:Environmental SEM 750:Field emission gun 714:X-ray fluorescence 331:N. Tanaka (2008). 128:field emission gun 32: 1299:Research projects 1281: 1280: 1245: 1244: 1115:Nestor J. Zaluzec 1110:Maximilian Haider 908: 907: 569:10.1021/nl801386m 242:. March 26, 2009. 215:10.1557/mrs2006.4 1306: 1269: 1268: 1257: 1256: 1065:Bodo von Borries 1050: 1049: 810:Photoemission EM 773: 772: 622: 615: 608: 599: 598: 581: 580: 544: 538: 537: 504:(5922): 1705–8. 493: 487: 486: 452: 443: 437: 436: 394: 385: 379: 378: 368: 328: 322: 321: 311: 271: 262: 261: 250: 244: 243: 236: 227: 226: 200: 191: 1314: 1313: 1309: 1308: 1307: 1305: 1304: 1303: 1284: 1283: 1282: 1277: 1241: 1190: 1139: 1120:Ondrej Krivanek 1041: 904: 852: 814: 800:Liquid-Phase EM 764: 723:Instrumentation 718: 676: 667: 631: 626: 589: 584: 545: 541: 494: 490: 450: 444: 440: 392: 386: 382: 329: 325: 272: 265: 252: 251: 247: 238: 237: 230: 198: 192: 188: 184: 156: 117: 87: 24: 17: 12: 11: 5: 1312: 1302: 1301: 1296: 1279: 1278: 1276: 1275: 1263: 1250: 1247: 1246: 1243: 1242: 1240: 1239: 1234: 1229: 1227:Direct methods 1224: 1219: 1214: 1209: 1204: 1198: 1196: 1192: 1191: 1189: 1188: 1183: 1178: 1173: 1168: 1163: 1158: 1153: 1147: 1145: 1141: 1140: 1138: 1137: 1132: 1127: 1122: 1117: 1112: 1107: 1102: 1097: 1092: 1087: 1082: 1077: 1075:Ernst G. Bauer 1072: 1067: 1062: 1056: 1054: 1047: 1043: 1042: 1040: 1039: 1034: 1029: 1024: 1019: 1014: 1009: 1004: 999: 994: 989: 984: 979: 974: 969: 968: 967: 957: 952: 947: 942: 937: 932: 927: 922: 916: 914: 910: 909: 906: 905: 903: 902: 897: 896: 895: 885: 880: 875: 874: 873: 862: 860: 854: 853: 851: 850: 845: 840: 835: 830: 824: 822: 816: 815: 813: 812: 807: 802: 797: 792: 787: 781: 779: 770: 766: 765: 763: 762: 757: 752: 747: 742: 737: 732: 726: 724: 720: 719: 717: 716: 711: 706: 701: 696: 691: 689:Bremsstrahlung 686: 680: 678: 669: 668: 666: 665: 660: 655: 650: 645: 639: 637: 633: 632: 625: 624: 617: 610: 602: 596: 595: 588: 587:External links 585: 583: 582: 555:(11): 3582–6. 539: 488: 438: 403:(5): 469–477. 380: 323: 263: 260:on 2011-07-16. 245: 228: 185: 183: 180: 155: 152: 144:objective lens 140:condenser lens 116: 113: 86: 83: 15: 9: 6: 4: 3: 2: 1311: 1300: 1297: 1295: 1292: 1291: 1289: 1274: 1273: 1264: 1262: 1261: 1252: 1251: 1248: 1238: 1235: 1233: 1230: 1228: 1225: 1223: 1220: 1218: 1215: 1213: 1210: 1208: 1205: 1203: 1200: 1199: 1197: 1193: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1151:Carl Zeiss AG 1149: 1148: 1146: 1144:Manufacturers 1142: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1095:James Hillier 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1057: 1055: 1051: 1048: 1044: 1038: 1035: 1033: 1030: 1028: 1025: 1023: 1020: 1018: 1015: 1013: 1010: 1008: 1005: 1003: 1000: 998: 995: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 966: 963: 962: 961: 958: 956: 953: 951: 948: 946: 943: 941: 938: 936: 933: 931: 928: 926: 923: 921: 918: 917: 915: 911: 901: 898: 894: 891: 890: 889: 886: 884: 881: 879: 876: 872: 869: 868: 867: 864: 863: 861: 859: 855: 849: 848:Ultrafast SEM 846: 844: 841: 839: 836: 834: 831: 829: 826: 825: 823: 821: 817: 811: 808: 806: 805:Low-energy EM 803: 801: 798: 796: 793: 791: 788: 786: 783: 782: 780: 778: 774: 771: 767: 761: 758: 756: 755:Magnetic lens 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 727: 725: 721: 715: 712: 710: 707: 705: 704:Kikuchi lines 702: 700: 697: 695: 692: 690: 687: 685: 682: 681: 679: 674: 670: 664: 661: 659: 656: 654: 651: 649: 646: 644: 641: 640: 638: 634: 630: 623: 618: 616: 611: 609: 604: 603: 600: 594: 591: 590: 578: 574: 570: 566: 562: 558: 554: 550: 543: 535: 531: 527: 523: 519: 515: 511: 507: 503: 499: 492: 484: 480: 476: 472: 468: 464: 461:(9): 096101. 460: 456: 449: 442: 434: 430: 426: 422: 418: 414: 410: 406: 402: 398: 391: 384: 376: 372: 367: 362: 358: 354: 350: 346: 343:(1): 014111. 342: 338: 334: 327: 319: 315: 310: 305: 301: 297: 293: 289: 286:(1): 014107. 285: 281: 277: 270: 268: 259: 255: 249: 241: 235: 233: 224: 220: 216: 212: 208: 204: 197: 190: 186: 179: 177: 173: 169: 165: 161: 151: 149: 145: 141: 137: 136:monochromator 133: 129: 126: 125:Schottky type 122: 112: 109: 105: 101: 97: 93: 82: 80: 76: 73:, as well as 72: 68: 64: 61:and involves 60: 56: 51: 49: 45: 41: 37: 28: 22: 1270: 1258: 1212:EM Data Bank 1176:Nion Company 1070:Dennis Gabor 1060:Albert Crewe 838:Confocal SEM 735:Electron gun 684:Auger effect 552: 548: 542: 501: 497: 491: 458: 454: 441: 400: 396: 383: 340: 336: 326: 283: 279: 258:the original 248: 206: 203:MRS Bulletin 202: 189: 157: 154:Applications 118: 95: 88: 52: 35: 33: 1156:FEI Company 1090:Harald Rose 1080:Ernst Ruska 769:Microscopes 677:with matter 675:interaction 160:orientation 132:Wien-filter 1288:Categories 1237:Multislice 1053:Developers 913:Techniques 658:Microscope 653:Micrograph 182:References 44:nanometers 1105:Max Knoll 760:Stigmator 549:Nano Lett 209:: 36–43. 164:germanium 104:spherical 1260:Category 1207:CrysTBox 1195:Software 866:Cryo-TEM 673:Electron 577:18563938 534:24762146 526:19325110 483:19392535 433:12689183 425:18793491 375:27877937 318:27877933 223:41889433 176:graphite 172:graphene 115:Hardware 48:hydrogen 1272:Commons 920:4D STEM 893:4D STEM 871:Cryo-ET 843:SEM-XRF 833:CryoSEM 790:Cryo-EM 648:History 557:Bibcode 506:Bibcode 498:Science 463:Bibcode 405:Bibcode 366:5099806 345:Bibcode 309:5099802 288:Bibcode 1217:EMsoft 1202:CASINO 1181:TESCAN 1046:Others 945:cryoEM 636:Basics 575:  532:  524:  481:  431:  423:  373:  363:  316:  306:  221:  1171:Leica 1017:PINEM 883:HRTEM 878:EFTEM 530:S2CID 451:(PDF) 429:S2CID 393:(PDF) 219:S2CID 199:(PDF) 134:type 1232:IUCr 1166:JEOL 1037:WBDF 1032:WDXS 982:EBIC 977:EELS 972:ECCI 960:EBSD 940:CBED 888:STEM 573:PMID 522:PMID 479:PMID 421:PMID 371:PMID 314:PMID 168:gold 166:(), 106:and 34:The 1002:FEM 997:FIB 965:TKD 955:EDS 858:TEM 820:SEM 795:EMP 565:doi 514:doi 502:323 471:doi 459:102 413:doi 361:PMC 353:doi 304:PMC 296:doi 211:doi 162:), 148:CCD 92:keV 75:FEI 57:in 1290:: 777:EM 571:. 563:. 551:. 528:. 520:. 512:. 500:. 477:. 469:. 453:. 427:. 419:. 411:. 401:14 399:. 395:. 369:. 359:. 351:. 339:. 335:. 312:. 302:. 294:. 282:. 278:. 266:^ 231:^ 217:. 207:31 205:. 201:. 100:pm 65:, 50:. 621:e 614:t 607:v 579:. 567:: 559:: 553:8 536:. 516:: 508:: 485:. 473:: 465:: 435:. 415:: 407:: 377:. 355:: 347:: 341:9 320:. 298:: 290:: 284:9 225:. 213:: 96:λ 23:.

Index

Aberration-Corrected Transmission Electron Microscopy (AC-TEM)

transmission electron microscope
nanometers
hydrogen
Lawrence Berkeley National Laboratory
Berkeley, California
Argonne National Laboratory
Oak Ridge National Laboratory
University of Illinois at Urbana-Champaign
FEI
U.S. Department of Energy
keV
pm
spherical
chromatic aberrations
scanning transmission electron microscopy
Schottky type
field emission gun
Wien-filter
monochromator
condenser lens
objective lens
CCD
orientation
germanium
gold
graphene
graphite
"Materials Advances through Aberration-Corrected Electron Microscopy"

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑