Knowledge

Miller index

Source 📝

3150: 28: 763: 20: 2238: 3543: 2185: 1374: 3555: 296:(the vector indicating a reciprocal lattice point from the reciprocal lattice origin) is the wavevector of a plane wave in the Fourier series of a spatial function (e.g., electronic density function) which periodicity follows the original Bravais lattice, so wavefronts of the plane wave are coincident with parallel lattice planes of the original lattice. Since a measured scattering vector in 1818: 1601: 2169: 970: 163: 366: 2425:. Thus, integer Miller indices implicitly include indices with all rational ratios. The reason why planes where the components (in the reciprocal-lattice basis) have rational ratios are of special interest is that these are the 2307:: the condensation of a material means that the atoms, ions or molecules are more stable if they are surrounded by other similar species; the surface tension of an interface thus varies according to the density on the surface 510:. In this case the integers are not necessarily in lowest terms, and can be thought of as corresponding to planes spaced such that the reflections from adjacent planes would have a phase difference of exactly one wavelength (2 2026:
instead. Thus as you can see, four-index zone indices in square or angle brackets sometimes mix a single direct-lattice index on the right with reciprocal-lattice indices (normally in round or curly brackets) on the left.
2557:"Ueber eine verbesserte Methode für die Bezeichnung der verschiedenen Flächen eines Krystallisationssystems, nebst Bemerkungen über den Zustand der Polarisierung der Seiten in den Linien der krystallinischen Structur" 1187: 1572: 272: 1320: 2456:. This construction corresponds precisely to the standard "cut-and-project" method of defining a quasicrystal, using a plane with irrational-ratio Miller indices. (Although many quasicrystals, such as the 1813:{\displaystyle h\mathbf {b} _{1}+k\mathbf {b} _{2}+\ell \mathbf {b} _{3}={\frac {2}{3a^{2}}}(2h+k)\mathbf {a} _{1}+{\frac {2}{3a^{2}}}(h+2k)\mathbf {a} _{2}+{\frac {1}{c^{2}}}(\ell )\mathbf {a} _{3}.} 2036: 983:
of the primitive reciprocal lattice vectors. Because the coordinates are integers, this normal is itself always a reciprocal lattice vector. The requirement of lowest terms means that it is the
1106: 403: 437: 1031:
of the intercepts of the plane, in the basis of the lattice vectors. If one of the indices is zero, it means that the planes do not intersect that axis (the intercept is "at infinity").
3159: 668: 3420: 875: 488: 3415: 1361:
lattices, the primitive lattice vectors are not orthogonal. However, in these cases the Miller indices are conventionally defined relative to the lattice vectors of the cubic
192: 459: 294: 583: 2955: 1499:(rather than reciprocal lattice vectors or planes) with four indices. However they don't operate by similarly adding a redundant index to the regular three-index set. 883: 551: 733: 79: 3471: 303: 2370:
Ordinarily, Miller indices are always integers by definition, and this constraint is physically significant. To understand this, suppose that we allow a plane (
629: 2024: 1922: 700: 2699: 1349:
such as {100} denote a family of plane normals which are equivalent due to symmetry operations, much the way angle brackets denote a family of directions.
774:, or as the inverse intercepts along the lattice vectors. Both definitions are given below. In either case, one needs to choose the three lattice vectors 1447:
This four-index scheme for labeling planes in a hexagonal lattice makes permutation symmetries apparent. For example, the similarity between (110) ≡ (11
754:
The Miller indices are defined with respect to any choice of unit cell and not only with respect to primitive basis vectors, as is sometimes stated.
2301:: adsorption and chemical reactions can occur at atoms or molecules on crystal surfaces, these phenomena are thus sensitive to the density of nodes; 1326:
Because of the symmetry of cubic crystals, it is possible to change the place and sign of the integers and have equivalent directions and planes:
1121: 2269:
linking nodes. Some directions and planes have a higher density of nodes; these dense planes have an influence on the behavior of the crystal:
1509: 209: 206:
for the given Bravais lattice. (Note that the plane is not always orthogonal to the linear combination of direct or original lattice vectors
1244: 3289: 3476: 3201: 3367: 2659: 2352:
the dislocation line tends to follow a dense direction, the dislocation line is often a straight line, a dislocation loop is often a
751:
since 1817. The method was also historically known as the Millerian system, and the indices as Millerian, although this is now rare.
2615: 1046:
between adjacent lattice planes is related to the (shortest) reciprocal lattice vector orthogonal to the planes by the formula:
274:
because the direct lattice vectors need not be mutually orthogonal.) This is based on the fact that a reciprocal lattice vector
3466: 3458: 3519: 3497: 2460:, are formed by "cuts" of periodic lattices in more than three dimensions, involving the intersection of more than one such 2164:{\displaystyle d_{hk\ell }={\frac {a}{\sqrt {{\tfrac {4}{3}}\left(h^{2}+k^{2}+hk\right)+{\tfrac {a^{2}}{c^{2}}}\ell ^{2}}}}} 3512: 3362: 3028: 2893: 2742: 2634: – A collection of routines for rotation / orientation manipulation, including special tools for crystal orientations. 3502: 3400: 3096: 2749: 2483: 1338:
of directions which are equivalent due to symmetry operations, such as , , or the negative of any of those directions.
1208:
For the special case of simple cubic crystals, the lattice vectors are orthogonal and of equal length (usually denoted
1049: 3524: 3382: 3352: 3281: 2594: 2224: 3559: 3234: 1492: 371: 408: 3507: 3430: 3304: 2903: 3342: 3264: 2531: 2334:
the dislocation core tends to spread on dense planes (the elastic perturbation is "diluted"); this reduces the
2206: 3357: 3347: 2652: 2202: 795:
that define the unit cell (note that the conventional unit cell may be larger than the primitive cell of the
641: 3481: 3129: 2754: 2732: 1462:
In the figure at right, the (001) plane has a 3-fold symmetry: it remains unchanged by a rotation of 1/3 (2
3033: 2787: 2682: 1386: 830: 468: 3390: 2687: 439:
as the incoming (toward the crystal lattice) X-ray wavevector, is equal to a reciprocal lattice vector
2556: 803:
illustrate). Given these, the three primitive reciprocal lattice vectors are also determined (denoted
168: 3405: 3334: 2792: 2782: 2339: 3586: 3547: 3271: 3167: 3040: 3003: 2918: 2797: 2777: 2645: 2422: 2362:
For all these reasons, it is important to determine the planes and thus to have a notation system.
1382: 76:), and denote the family of (parallel) lattice planes (of the given Bravais lattice) orthogonal to 442: 277: 3395: 3239: 3184: 2933: 2898: 2195: 965:{\displaystyle \mathbf {g} _{hk\ell }=h\mathbf {b} _{1}+k\mathbf {b} _{2}+\ell \mathbf {b} _{3}.} 740: 503: 2349:) is along a dense direction: the shift of one node in a dense direction is a lesser distortion; 158:{\displaystyle \mathbf {g} _{hk\ell }=h\mathbf {b} _{1}+k\mathbf {b} _{2}+\ell \mathbf {b} _{3}} 3149: 3091: 2908: 2298: 980: 766:
Examples of determining indices for a plane using intercepts with axes; left (111), right (221)
748: 556: 195: 770:
There are two equivalent ways to define the meaning of the Miller indices: via a point in the
361:{\displaystyle \Delta \mathbf {k} =\mathbf {k} _{\mathrm {out} }-\mathbf {k} _{\mathrm {in} }} 3448: 3244: 3206: 3013: 2965: 2561:
Abhandlungen der physikalischen Klasse der Königlich-Preussischen Akademie der Wissenschaften
2365: 1217: 712: 524: 507: 297: 2620: 2288:
thus varies according to the directions, whether the atoms are close or far; this gives the
3172: 3045: 2881: 2772: 1192:
That is, it uses the direct lattice basis instead of the reciprocal lattice. Note that is
1212:), as are those of the reciprocal lattice. Thus, in this common case, the Miller indices ( 8: 3189: 3177: 3052: 3018: 2998: 2328: 2281: 2262: 1362: 1358: 1354: 1574:. For hexagonal crystals this may be expressed in terms of direct-lattice basis-vectors 3438: 3249: 3194: 2737: 2488: 2317: 2246: 771: 599: 203: 2610: 1935: 1830: 673: 3581: 3372: 3211: 3139: 3119: 2839: 2709: 2590: 2537: 2527: 2520: 2473: 2445: 2285: 2421:
appropriately: divide by the largest of the three numbers, and then multiply by the
27: 3410: 3216: 3134: 3124: 2923: 2856: 2827: 2820: 2405:
ratios, then the same family of planes can be written in terms of integer indices (
1224: 495: 3299: 3294: 3259: 3079: 2978: 2913: 2876: 2871: 2722: 2668: 2429:: they are the only planes whose intersections with the crystal are 2d-periodic. 2402: 2304: 796: 762: 199: 43: 39: 1027:, or some multiple thereof. That is, the Miller indices are proportional to the 3109: 3074: 3062: 3057: 3023: 2993: 2983: 2942: 2886: 2810: 2764: 2457: 2346: 1389: 631:
with square instead of round brackets, denotes a direction in the basis of the
462: 1506:) as suggested above can be written in terms of reciprocal lattice vectors as 3575: 3254: 3067: 2866: 2478: 2448:
ratios, on the other hand, the intersection of the plane with the crystal is
2426: 2289: 50: 19: 2960: 2950: 2844: 2453: 506:
should be 1. Miller indices are also used to designate reflections in
2541: 2366:
Integer versus irrational Miller indices: Lattice planes and quasicrystals
2237: 1182:{\displaystyle h\mathbf {a} _{1}+k\mathbf {a} _{2}+\ell \mathbf {a} _{3}.} 502:
for −3. The integers are usually written in lowest terms, i.e. their
3443: 3114: 2988: 2815: 2631: 2324: 2311: 1567:{\displaystyle h\mathbf {b} _{1}+k\mathbf {b} _{2}+\ell \mathbf {b} _{3}} 267:{\displaystyle h\mathbf {a} _{1}+k\mathbf {a} _{2}+\ell \mathbf {a} _{3}} 405:
as the outgoing (scattered from a crystal lattice) X-ray wavevector and
3008: 2694: 2461: 2294: 2209: in this section. Unsourced material may be challenged and removed. 2030:
And, note that for hexagonal interplanar distances, they take the form
465:, the measured scattered X-ray peak at each measured scattering vector 1315:{\displaystyle d_{hk\ell }={\frac {a}{\sqrt {h^{2}+k^{2}+\ell ^{2}}}}} 2717: 2493: 514:), regardless of whether there are atoms on all these planes or not. 2184: 3314: 3084: 2832: 2335: 2258: 739:
Miller indices were introduced in 1839 by the British mineralogist
2637: 2626: 3324: 2353: 1466:/3 rad, 120°). The , and the directions are really similar. If 1373: 54: 1368: 2273: 1487: 3319: 2314:
tend to have straight grain boundaries following dense planes
2277: 2573: 1823:
Hence zone indices of the direction perpendicular to plane (
877:
denotes planes orthogonal to the reciprocal lattice vector:
2250: 53:
of a given (direct) Bravais lattice is determined by three
3421:
Zeitschrift für Kristallographie – New Crystal Structures
2254: 2174: 670:
denotes the set of all directions that are equivalent to
3416:
Zeitschrift für Kristallographie – Crystalline Materials
1200:) planes, except in a cubic lattice as described below. 2621:
Online tutorial about lattice planes and Miller indices
1459:
10) is more obvious when the redundant index is shown.
1440:
are identical to the corresponding Miller indices, and
3309: 2342:), the sliding occurs more frequently on dense planes; 2123: 2066: 1038:) planes intersecting one or more lattice points (the 635:
lattice vectors instead of the reciprocal lattice; and
527: 23:
Planes with different Miller indices in cubic crystals
2039: 1938: 1833: 1604: 1512: 1365:
and hence are again simply the Cartesian directions.
1247: 1124: 1052: 886: 833: 715: 676: 644: 602: 559: 553:
denotes the set of all planes that are equivalent to
471: 445: 411: 374: 306: 280: 212: 171: 82: 2627:
MTEX – Free MATLAB toolbox for Texture Analysis
2452:periodic. It forms an aperiodic pattern known as a 1827:) are, in suitably normalized triplet form, simply 1470:is the intercept of the plane with the axis, then 994:) denotes a plane that intercepts the three points 2587:Practical electron microscopy in materials science 2519: 2163: 2018: 1916: 1812: 1566: 1314: 1181: 1100: 987:reciprocal lattice vector in the given direction. 964: 869: 735:lacks any bracketing when designating a reflection 727: 694: 662: 623: 577: 545: 482: 453: 431: 397: 360: 288: 266: 186: 157: 2589:(N. V. Philips' Gloeilampenfabrieken, Eindhoven) 2386:(defined as above) are not necessarily integers. 979:) simply indicates a normal to the planes in the 3573: 1216:) and both simply denote normals/directions in 1101:{\displaystyle d=2\pi /|\mathbf {g} _{hk\ell }|} 747:) had already been used by German mineralogist 593:(not planes), the corresponding notations are: 2517: 2653: 2345:the perturbation carried by the dislocation ( 1369:Case of hexagonal and rhombohedral structures 800: 398:{\displaystyle \mathbf {k} _{\mathrm {out} }} 2518:Ashcroft, Neil W.; Mermin, N. David (1976). 2280:"jumps" from one atom to the other with the 2261:) of a crystal. Similarly, crystallographic 1502:For example, the reciprocal lattice vector ( 657: 645: 540: 528: 432:{\displaystyle \mathbf {k} _{\mathrm {in} }} 3490: 1203: 2660: 2646: 517:There are also several related notations: 16:Notation system for crystal lattice planes 2611:IUCr Online Dictionary of Crystallography 2225:Learn how and when to remove this message 2526:. New York: Holt, Rinehart and Winston. 2236: 1372: 761: 26: 18: 1928:are used for the zone normal to plane ( 743:, although an almost identical system ( 663:{\displaystyle \langle hk\ell \rangle } 3574: 2763: 2632:http://sourceforge.net/projects/orilib 2616:Miller index description with diagrams 2175:Crystallographic planes and directions 1932:), however, the literature often uses 2641: 2554: 2513: 2511: 2509: 827:Then, given the three Miller indices 3554: 2894:Phase transformation crystallography 2207:adding citations to reliable sources 2178: 3401:Journal of Chemical Crystallography 2667: 1495:literature) for indexing hexagonal 870:{\displaystyle h,k,\ell ,(hk\ell )} 706:Note, for Laue–Bragg interferences 483:{\displaystyle \Delta \mathbf {k} } 13: 2506: 1111:The related notation denotes the 472: 423: 420: 389: 386: 383: 352: 349: 332: 329: 326: 307: 14: 3598: 2604: 1396:system, which uses four indices ( 1238:) lattice planes is (from above) 3553: 3542: 3541: 3148: 2574:Oxford English Dictionary Online 2555:Weiss, Christian Samuel (1817). 2245:Crystallographic directions are 2183: 1797: 1756: 1701: 1646: 1628: 1610: 1554: 1536: 1518: 1493:transmission electron microscopy 1166: 1148: 1130: 1077: 949: 931: 913: 889: 476: 447: 414: 377: 343: 320: 311: 282: 254: 236: 218: 187:{\displaystyle \mathbf {b} _{i}} 174: 145: 127: 109: 85: 2194:needs additional citations for 585:by the symmetry of the lattice. 3343:Bilbao Crystallographic Server 2579: 2567: 2548: 2013: 2004: 1989: 1986: 1972: 1939: 1911: 1902: 1887: 1884: 1870: 1834: 1792: 1786: 1751: 1736: 1696: 1681: 1094: 1071: 1042:), the perpendicular distance 864: 852: 689: 677: 615: 603: 572: 560: 498:are written with a bar, as in 1: 2499: 2374:) where the Miller "indices" 2241:Dense crystallographic planes 757: 200:primitive translation vectors 1392:, it is possible to use the 454:{\displaystyle \mathbf {g} } 289:{\displaystyle \mathbf {g} } 7: 3391:Crystal Growth & Design 2683:Timeline of crystallography 2467: 1409:) that obey the constraint 49:In particular, a family of 10: 3603: 3202:Nuclear magnetic resonance 589:In the context of crystal 44:crystal (Bravais) lattices 38:form a notation system in 3537: 3457: 3429: 3406:Journal of Crystal Growth 3381: 3333: 3280: 3227: 3158: 3146: 2941: 2932: 2855: 2708: 2675: 1196:generally normal to the ( 578:{\displaystyle (hk\ell )} 3272:Single particle analysis 3130:Hermann–Mauguin notation 2432:For a plane (abc) where 2423:least common denominator 1223:For cubic crystals with 1204:Case of cubic structures 638:similarly, the notation 546:{\textstyle \{hk\ell \}} 3396:Crystallography Reviews 3240:Isomorphous replacement 3034:Lomer–Cottrell junction 2276:: in condensed matter, 1334:such as ⟨100⟩ denote a 741:William Hallowes Miller 728:{\displaystyle hk\ell } 504:greatest common divisor 2909:Spinodal decomposition 2585:J. W. Edington (1976) 2242: 2165: 2020: 1918: 1814: 1568: 1444:is a redundant index. 1378: 1377:Miller–Bravais indices 1316: 1183: 1102: 966: 871: 767: 749:Christian Samuel Weiss 729: 696: 664: 625: 579: 547: 484: 455: 433: 399: 362: 290: 268: 188: 159: 42:for lattice planes in 32: 31:Examples of directions 24: 3449:Gregori Aminoff Prize 3245:Molecular replacement 2340:Peierls–Nabarro force 2240: 2166: 2021: 1919: 1815: 1569: 1491:schemes (e.g. in the 1376: 1317: 1218:Cartesian coordinates 1184: 1103: 967: 872: 765: 730: 697: 665: 626: 580: 548: 508:X-ray crystallography 485: 456: 434: 400: 363: 298:X-ray crystallography 291: 269: 189: 160: 30: 22: 2755:Structure prediction 2576:(Consulted May 2007) 2203:improve this article 2037: 1936: 1831: 1602: 1510: 1245: 1122: 1050: 884: 831: 713: 674: 642: 600: 557: 525: 469: 443: 409: 372: 304: 278: 210: 169: 80: 72:. They are written ( 3019:Cottrell atmosphere 2999:Partial dislocation 2743:Restriction theorem 2522:Solid state physics 2329:plastic deformation 2282:Rayleigh scattering 1359:body-centered cubic 1355:face-centered cubic 3439:Carl Hermann Medal 3250:Molecular dynamics 3097:Defects in diamond 3092:Stone–Wales defect 2738:Reciprocal lattice 2700:Biocrystallography 2489:Reciprocal lattice 2274:optical properties 2243: 2161: 2146: 2075: 2016: 1914: 1810: 1564: 1379: 1312: 1234:between adjacent ( 1179: 1098: 1034:Considering only ( 962: 867: 772:reciprocal lattice 768: 725: 692: 660: 621: 575: 543: 480: 451: 429: 395: 358: 286: 264: 204:reciprocal lattice 184: 155: 33: 25: 3569: 3568: 3533: 3532: 3140:Thermal ellipsoid 3105: 3104: 3014:Frank–Read source 2974: 2973: 2840:Aperiodic crystal 2806: 2805: 2688:Crystallographers 2474:Crystal structure 2286:velocity of light 2235: 2234: 2227: 2159: 2158: 2145: 2074: 1784: 1734: 1679: 1310: 1309: 624:{\displaystyle ,} 496:negative integers 494:. By convention, 461:as stated by the 3594: 3557: 3556: 3545: 3544: 3488: 3487: 3411:Kristallografija 3265:Gerchberg–Saxton 3160:Characterisation 3152: 3135:Structure factor 2939: 2938: 2924:Ostwald ripening 2761: 2760: 2706: 2705: 2662: 2655: 2648: 2639: 2638: 2598: 2583: 2577: 2571: 2565: 2564: 2552: 2546: 2545: 2525: 2515: 2230: 2223: 2219: 2216: 2210: 2187: 2179: 2170: 2168: 2167: 2162: 2160: 2157: 2156: 2147: 2144: 2143: 2134: 2133: 2124: 2118: 2114: 2104: 2103: 2091: 2090: 2076: 2067: 2064: 2060: 2055: 2054: 2025: 2023: 2022: 2019:{\displaystyle } 2017: 2012: 2011: 1999: 1982: 1923: 1921: 1920: 1917:{\displaystyle } 1915: 1910: 1909: 1897: 1880: 1819: 1817: 1816: 1811: 1806: 1805: 1800: 1785: 1783: 1782: 1770: 1765: 1764: 1759: 1735: 1733: 1732: 1731: 1715: 1710: 1709: 1704: 1680: 1678: 1677: 1676: 1660: 1655: 1654: 1649: 1637: 1636: 1631: 1619: 1618: 1613: 1573: 1571: 1570: 1565: 1563: 1562: 1557: 1545: 1544: 1539: 1527: 1526: 1521: 1465: 1458: 1454: 1450: 1321: 1319: 1318: 1313: 1311: 1308: 1307: 1295: 1294: 1282: 1281: 1272: 1268: 1263: 1262: 1225:lattice constant 1188: 1186: 1185: 1180: 1175: 1174: 1169: 1157: 1156: 1151: 1139: 1138: 1133: 1107: 1105: 1104: 1099: 1097: 1092: 1091: 1080: 1074: 1069: 971: 969: 968: 963: 958: 957: 952: 940: 939: 934: 922: 921: 916: 904: 903: 892: 876: 874: 873: 868: 745:Weiss parameters 734: 732: 731: 726: 701: 699: 698: 695:{\displaystyle } 693: 669: 667: 666: 661: 630: 628: 627: 622: 584: 582: 581: 576: 552: 550: 549: 544: 513: 501: 489: 487: 486: 481: 479: 460: 458: 457: 452: 450: 438: 436: 435: 430: 428: 427: 426: 417: 404: 402: 401: 396: 394: 393: 392: 380: 367: 365: 364: 359: 357: 356: 355: 346: 337: 336: 335: 323: 314: 295: 293: 292: 287: 285: 273: 271: 270: 265: 263: 262: 257: 245: 244: 239: 227: 226: 221: 193: 191: 190: 185: 183: 182: 177: 164: 162: 161: 156: 154: 153: 148: 136: 135: 130: 118: 117: 112: 100: 99: 88: 3602: 3601: 3597: 3596: 3595: 3593: 3592: 3591: 3587:Crystallography 3572: 3571: 3570: 3565: 3529: 3486: 3453: 3425: 3377: 3329: 3300:CrystalExplorer 3276: 3260:Phase retrieval 3223: 3154: 3153: 3144: 3101: 3080:Schottky defect 2979:Perfect crystal 2970: 2966:Abnormal growth 2928: 2914:Supersaturation 2877:Miscibility gap 2858: 2851: 2802: 2759: 2723:Bravais lattice 2704: 2671: 2669:Crystallography 2666: 2607: 2602: 2601: 2584: 2580: 2572: 2568: 2553: 2549: 2534: 2516: 2507: 2502: 2470: 2368: 2305:surface tension 2249:linking nodes ( 2231: 2220: 2214: 2211: 2200: 2188: 2177: 2152: 2148: 2139: 2135: 2129: 2125: 2122: 2099: 2095: 2086: 2082: 2081: 2077: 2065: 2059: 2044: 2040: 2038: 2035: 2034: 2007: 2003: 1995: 1978: 1937: 1934: 1933: 1905: 1901: 1893: 1876: 1832: 1829: 1828: 1801: 1796: 1795: 1778: 1774: 1769: 1760: 1755: 1754: 1727: 1723: 1719: 1714: 1705: 1700: 1699: 1672: 1668: 1664: 1659: 1650: 1645: 1644: 1632: 1627: 1626: 1614: 1609: 1608: 1603: 1600: 1599: 1594: 1587: 1580: 1558: 1553: 1552: 1540: 1535: 1534: 1522: 1517: 1516: 1511: 1508: 1507: 1497:lattice vectors 1485:There are also 1463: 1456: 1452: 1448: 1390:lattice systems 1371: 1303: 1299: 1290: 1286: 1277: 1273: 1267: 1252: 1248: 1246: 1243: 1242: 1206: 1170: 1165: 1164: 1152: 1147: 1146: 1134: 1129: 1128: 1123: 1120: 1119: 1093: 1081: 1076: 1075: 1070: 1065: 1051: 1048: 1047: 1022: 1011: 1000: 990:Equivalently, ( 953: 948: 947: 935: 930: 929: 917: 912: 911: 893: 888: 887: 885: 882: 881: 832: 829: 828: 823: 816: 809: 797:Bravais lattice 794: 787: 780: 760: 714: 711: 710: 675: 672: 671: 643: 640: 639: 601: 598: 597: 558: 555: 554: 526: 523: 522: 511: 499: 475: 470: 467: 466: 446: 444: 441: 440: 419: 418: 413: 412: 410: 407: 406: 382: 381: 376: 375: 373: 370: 369: 348: 347: 342: 341: 325: 324: 319: 318: 310: 305: 302: 301: 281: 279: 276: 275: 258: 253: 252: 240: 235: 234: 222: 217: 216: 211: 208: 207: 178: 173: 172: 170: 167: 166: 149: 144: 143: 131: 126: 125: 113: 108: 107: 89: 84: 83: 81: 78: 77: 40:crystallography 17: 12: 11: 5: 3600: 3590: 3589: 3584: 3567: 3566: 3564: 3563: 3551: 3538: 3535: 3534: 3531: 3530: 3528: 3527: 3522: 3517: 3516: 3515: 3510: 3505: 3494: 3492: 3485: 3484: 3479: 3474: 3469: 3463: 3461: 3455: 3454: 3452: 3451: 3446: 3441: 3435: 3433: 3427: 3426: 3424: 3423: 3418: 3413: 3408: 3403: 3398: 3393: 3387: 3385: 3379: 3378: 3376: 3375: 3370: 3365: 3360: 3355: 3350: 3345: 3339: 3337: 3331: 3330: 3328: 3327: 3322: 3317: 3312: 3307: 3302: 3297: 3292: 3286: 3284: 3278: 3277: 3275: 3274: 3269: 3268: 3267: 3257: 3252: 3247: 3242: 3237: 3235:Direct methods 3231: 3229: 3225: 3224: 3222: 3221: 3220: 3219: 3214: 3204: 3199: 3198: 3197: 3192: 3182: 3181: 3180: 3175: 3164: 3162: 3156: 3155: 3147: 3145: 3143: 3142: 3137: 3132: 3127: 3122: 3120:Ewald's sphere 3117: 3112: 3106: 3103: 3102: 3100: 3099: 3094: 3089: 3088: 3087: 3082: 3072: 3071: 3070: 3065: 3063:Frenkel defect 3060: 3058:Bjerrum defect 3050: 3049: 3048: 3038: 3037: 3036: 3031: 3026: 3024:Peierls stress 3021: 3016: 3011: 3006: 3001: 2996: 2994:Burgers vector 2986: 2984:Stacking fault 2981: 2975: 2972: 2971: 2969: 2968: 2963: 2958: 2953: 2947: 2945: 2943:Grain boundary 2936: 2930: 2929: 2927: 2926: 2921: 2916: 2911: 2906: 2901: 2896: 2891: 2890: 2889: 2887:Liquid crystal 2884: 2879: 2874: 2863: 2861: 2853: 2852: 2850: 2849: 2848: 2847: 2837: 2836: 2835: 2825: 2824: 2823: 2818: 2807: 2804: 2803: 2801: 2800: 2795: 2790: 2785: 2780: 2775: 2769: 2767: 2758: 2757: 2752: 2750:Periodic table 2747: 2746: 2745: 2740: 2735: 2730: 2725: 2714: 2712: 2703: 2702: 2697: 2692: 2691: 2690: 2679: 2677: 2673: 2672: 2665: 2664: 2657: 2650: 2642: 2636: 2635: 2629: 2624: 2618: 2613: 2606: 2605:External links 2603: 2600: 2599: 2578: 2566: 2547: 2532: 2504: 2503: 2501: 2498: 2497: 2496: 2491: 2486: 2481: 2476: 2469: 2466: 2458:Penrose tiling 2427:lattice planes 2367: 2364: 2360: 2359: 2358: 2357: 2350: 2347:Burgers vector 2343: 2322: 2321: 2320: 2315: 2302: 2292: 2233: 2232: 2191: 2189: 2182: 2176: 2173: 2172: 2171: 2155: 2151: 2142: 2138: 2132: 2128: 2121: 2117: 2113: 2110: 2107: 2102: 2098: 2094: 2089: 2085: 2080: 2073: 2070: 2063: 2058: 2053: 2050: 2047: 2043: 2015: 2010: 2006: 2002: 1998: 1994: 1991: 1988: 1985: 1981: 1977: 1974: 1971: 1968: 1965: 1962: 1959: 1956: 1953: 1950: 1947: 1944: 1941: 1913: 1908: 1904: 1900: 1896: 1892: 1889: 1886: 1883: 1879: 1875: 1872: 1869: 1866: 1863: 1860: 1857: 1854: 1851: 1848: 1845: 1842: 1839: 1836: 1821: 1820: 1809: 1804: 1799: 1794: 1791: 1788: 1781: 1777: 1773: 1768: 1763: 1758: 1753: 1750: 1747: 1744: 1741: 1738: 1730: 1726: 1722: 1718: 1713: 1708: 1703: 1698: 1695: 1692: 1689: 1686: 1683: 1675: 1671: 1667: 1663: 1658: 1653: 1648: 1643: 1640: 1635: 1630: 1625: 1622: 1617: 1612: 1607: 1592: 1585: 1578: 1561: 1556: 1551: 1548: 1543: 1538: 1533: 1530: 1525: 1520: 1515: 1483: 1482: 1426: 1425: 1394:Bravais–Miller 1370: 1367: 1351: 1350: 1343:curly brackets 1339: 1332:angle brackets 1324: 1323: 1306: 1302: 1298: 1293: 1289: 1285: 1280: 1276: 1271: 1266: 1261: 1258: 1255: 1251: 1230:, the spacing 1205: 1202: 1190: 1189: 1178: 1173: 1168: 1163: 1160: 1155: 1150: 1145: 1142: 1137: 1132: 1127: 1096: 1090: 1087: 1084: 1079: 1073: 1068: 1064: 1061: 1058: 1055: 1040:lattice planes 1020: 1009: 998: 973: 972: 961: 956: 951: 946: 943: 938: 933: 928: 925: 920: 915: 910: 907: 902: 899: 896: 891: 866: 863: 860: 857: 854: 851: 848: 845: 842: 839: 836: 821: 814: 807: 801:examples below 792: 785: 778: 759: 756: 737: 736: 724: 721: 718: 704: 703: 691: 688: 685: 682: 679: 659: 656: 653: 650: 647: 636: 620: 617: 614: 611: 608: 605: 587: 586: 574: 571: 568: 565: 562: 542: 539: 536: 533: 530: 492:Miller indices 478: 474: 463:Laue equations 449: 425: 422: 416: 391: 388: 385: 379: 354: 351: 345: 340: 334: 331: 328: 322: 317: 313: 309: 284: 261: 256: 251: 248: 243: 238: 233: 230: 225: 220: 215: 181: 176: 152: 147: 142: 139: 134: 129: 124: 121: 116: 111: 106: 103: 98: 95: 92: 87: 70:Miller indices 51:lattice planes 36:Miller indices 15: 9: 6: 4: 3: 2: 3599: 3588: 3585: 3583: 3580: 3579: 3577: 3562: 3561: 3552: 3550: 3549: 3540: 3539: 3536: 3526: 3523: 3521: 3518: 3514: 3511: 3509: 3506: 3504: 3501: 3500: 3499: 3496: 3495: 3493: 3489: 3483: 3480: 3478: 3475: 3473: 3470: 3468: 3465: 3464: 3462: 3460: 3456: 3450: 3447: 3445: 3442: 3440: 3437: 3436: 3434: 3432: 3428: 3422: 3419: 3417: 3414: 3412: 3409: 3407: 3404: 3402: 3399: 3397: 3394: 3392: 3389: 3388: 3386: 3384: 3380: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3340: 3338: 3336: 3332: 3326: 3323: 3321: 3318: 3316: 3313: 3311: 3308: 3306: 3303: 3301: 3298: 3296: 3293: 3291: 3288: 3287: 3285: 3283: 3279: 3273: 3270: 3266: 3263: 3262: 3261: 3258: 3256: 3255:Patterson map 3253: 3251: 3248: 3246: 3243: 3241: 3238: 3236: 3233: 3232: 3230: 3226: 3218: 3215: 3213: 3210: 3209: 3208: 3205: 3203: 3200: 3196: 3193: 3191: 3188: 3187: 3186: 3183: 3179: 3176: 3174: 3171: 3170: 3169: 3166: 3165: 3163: 3161: 3157: 3151: 3141: 3138: 3136: 3133: 3131: 3128: 3126: 3125:Friedel's law 3123: 3121: 3118: 3116: 3113: 3111: 3108: 3107: 3098: 3095: 3093: 3090: 3086: 3083: 3081: 3078: 3077: 3076: 3073: 3069: 3068:Wigner effect 3066: 3064: 3061: 3059: 3056: 3055: 3054: 3053:Interstitials 3051: 3047: 3044: 3043: 3042: 3039: 3035: 3032: 3030: 3027: 3025: 3022: 3020: 3017: 3015: 3012: 3010: 3007: 3005: 3002: 3000: 2997: 2995: 2992: 2991: 2990: 2987: 2985: 2982: 2980: 2977: 2976: 2967: 2964: 2962: 2959: 2957: 2954: 2952: 2949: 2948: 2946: 2944: 2940: 2937: 2935: 2931: 2925: 2922: 2920: 2917: 2915: 2912: 2910: 2907: 2905: 2902: 2900: 2899:Precipitation 2897: 2895: 2892: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2869: 2868: 2867:Phase diagram 2865: 2864: 2862: 2860: 2854: 2846: 2843: 2842: 2841: 2838: 2834: 2831: 2830: 2829: 2826: 2822: 2819: 2817: 2814: 2813: 2812: 2809: 2808: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2774: 2771: 2770: 2768: 2766: 2762: 2756: 2753: 2751: 2748: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2720: 2719: 2716: 2715: 2713: 2711: 2707: 2701: 2698: 2696: 2693: 2689: 2686: 2685: 2684: 2681: 2680: 2678: 2674: 2670: 2663: 2658: 2656: 2651: 2649: 2644: 2643: 2640: 2633: 2630: 2628: 2625: 2622: 2619: 2617: 2614: 2612: 2609: 2608: 2596: 2595:1-878907-35-2 2592: 2588: 2582: 2575: 2570: 2562: 2558: 2551: 2543: 2539: 2535: 2529: 2524: 2523: 2514: 2512: 2510: 2505: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2479:Crystal habit 2477: 2475: 2472: 2471: 2465: 2463: 2459: 2455: 2451: 2447: 2443: 2439: 2435: 2430: 2428: 2424: 2420: 2416: 2412: 2409:) by scaling 2408: 2404: 2400: 2396: 2392: 2387: 2385: 2381: 2377: 2373: 2363: 2355: 2351: 2348: 2344: 2341: 2337: 2333: 2332: 2330: 2326: 2323: 2319: 2316: 2313: 2309: 2308: 2306: 2303: 2300: 2296: 2293: 2291: 2290:birefringence 2287: 2283: 2279: 2275: 2272: 2271: 2270: 2268: 2264: 2260: 2256: 2252: 2248: 2239: 2229: 2226: 2218: 2208: 2204: 2198: 2197: 2192:This section 2190: 2186: 2181: 2180: 2153: 2149: 2140: 2136: 2130: 2126: 2119: 2115: 2111: 2108: 2105: 2100: 2096: 2092: 2087: 2083: 2078: 2071: 2068: 2061: 2056: 2051: 2048: 2045: 2041: 2033: 2032: 2031: 2028: 2008: 2000: 1996: 1992: 1983: 1979: 1975: 1969: 1966: 1963: 1960: 1957: 1954: 1951: 1948: 1945: 1942: 1931: 1927: 1906: 1898: 1894: 1890: 1881: 1877: 1873: 1867: 1864: 1861: 1858: 1855: 1852: 1849: 1846: 1843: 1840: 1837: 1826: 1807: 1802: 1789: 1779: 1775: 1771: 1766: 1761: 1748: 1745: 1742: 1739: 1728: 1724: 1720: 1716: 1711: 1706: 1693: 1690: 1687: 1684: 1673: 1669: 1665: 1661: 1656: 1651: 1641: 1638: 1633: 1623: 1620: 1615: 1605: 1598: 1597: 1596: 1591: 1584: 1577: 1559: 1549: 1546: 1541: 1531: 1528: 1523: 1513: 1505: 1500: 1498: 1494: 1490: 1489: 1480: 1476: 1473: 1472: 1471: 1469: 1460: 1445: 1443: 1439: 1435: 1431: 1423: 1419: 1415: 1412: 1411: 1410: 1408: 1405: 1402: 1399: 1395: 1391: 1388: 1384: 1375: 1366: 1364: 1360: 1356: 1348: 1344: 1340: 1337: 1333: 1329: 1328: 1327: 1304: 1300: 1296: 1291: 1287: 1283: 1278: 1274: 1269: 1264: 1259: 1256: 1253: 1249: 1241: 1240: 1239: 1237: 1233: 1229: 1226: 1221: 1219: 1215: 1211: 1201: 1199: 1195: 1176: 1171: 1161: 1158: 1153: 1143: 1140: 1135: 1125: 1118: 1117: 1116: 1114: 1109: 1088: 1085: 1082: 1066: 1062: 1059: 1056: 1053: 1045: 1041: 1037: 1032: 1030: 1026: 1019: 1015: 1008: 1004: 997: 993: 988: 986: 982: 978: 959: 954: 944: 941: 936: 926: 923: 918: 908: 905: 900: 897: 894: 880: 879: 878: 861: 858: 855: 849: 846: 843: 840: 837: 834: 825: 820: 813: 806: 802: 798: 791: 784: 777: 773: 764: 755: 752: 750: 746: 742: 722: 719: 716: 709: 708: 707: 686: 683: 680: 654: 651: 648: 637: 634: 618: 612: 609: 606: 596: 595: 594: 592: 569: 566: 563: 537: 534: 531: 521:the notation 520: 519: 518: 515: 509: 505: 497: 493: 490:is marked by 464: 338: 315: 299: 259: 249: 246: 241: 231: 228: 223: 213: 205: 201: 197: 179: 150: 140: 137: 132: 122: 119: 114: 104: 101: 96: 93: 90: 75: 71: 67: 63: 59: 56: 52: 47: 45: 41: 37: 29: 21: 3558: 3546: 3491:Associations 3459:Organisation 2951:Disclination 2882:Polymorphism 2845:Quasicrystal 2788:Orthorhombic 2728:Miller index 2727: 2676:Key concepts 2597:, Appendix 2 2586: 2581: 2569: 2560: 2550: 2521: 2484:Kikuchi line 2454:quasicrystal 2449: 2441: 2437: 2433: 2431: 2418: 2414: 2410: 2406: 2398: 2394: 2390: 2388: 2383: 2379: 2375: 2371: 2369: 2361: 2325:dislocations 2312:crystallites 2266: 2244: 2221: 2212: 2201:Please help 2196:verification 2193: 2029: 1929: 1926:four indices 1925: 1824: 1822: 1589: 1582: 1575: 1503: 1501: 1496: 1486: 1484: 1478: 1474: 1467: 1461: 1446: 1441: 1437: 1433: 1429: 1427: 1421: 1417: 1413: 1406: 1403: 1400: 1397: 1393: 1387:rhombohedral 1380: 1352: 1346: 1342: 1335: 1331: 1325: 1235: 1231: 1227: 1222: 1213: 1209: 1207: 1197: 1193: 1191: 1112: 1110: 1043: 1039: 1035: 1033: 1028: 1024: 1017: 1013: 1006: 1002: 995: 991: 989: 984: 976: 974: 826: 818: 811: 804: 789: 782: 775: 769: 753: 744: 738: 705: 702:by symmetry. 632: 590: 588: 516: 491: 73: 69: 65: 61: 57: 48: 35: 34: 3444:Ewald Prize 3212:Diffraction 3190:Diffraction 3173:Diffraction 3115:Bragg plane 3110:Bragg's law 2989:Dislocation 2904:Segregation 2816:Crystallite 2733:Point group 1341:Indices in 1330:Indices in 64:, and  3576:Categories 3228:Algorithms 3217:Scattering 3195:Scattering 3178:Scattering 3046:Slip bands 3009:Cross slip 2859:transition 2793:Tetragonal 2783:Monoclinic 2695:Metallurgy 2563:: 286–336. 2533:0030839939 2500:References 2462:hyperplane 2446:irrational 2310:Pores and 2299:reactivity 2295:adsorption 975:That is, ( 758:Definition 591:directions 3335:Databases 2798:Triclinic 2778:Hexagonal 2718:Unit cell 2710:Structure 2494:Zone axis 2259:molecules 2215:July 2019 2150:ℓ 2052:ℓ 1970:ℓ 1961:− 1955:− 1868:ℓ 1790:ℓ 1642:ℓ 1550:ℓ 1451:0) and (1 1383:hexagonal 1363:supercell 1301:ℓ 1260:ℓ 1162:ℓ 1113:direction 1089:ℓ 1063:π 945:ℓ 901:ℓ 862:ℓ 847:ℓ 799:, as the 723:ℓ 687:ℓ 658:⟩ 655:ℓ 646:⟨ 613:ℓ 570:ℓ 538:ℓ 473:Δ 339:− 308:Δ 250:ℓ 141:ℓ 97:ℓ 3582:Geometry 3548:Category 3383:Journals 3315:OctaDist 3310:JANA2020 3282:Software 3168:Electron 3085:F-center 2872:Eutectic 2833:Fiveling 2828:Twinning 2821:Equiaxed 2468:See also 2403:rational 2336:friction 2318:cleavage 1029:inverses 985:shortest 194:are the 165:, where 55:integers 3560:Commons 3508:Germany 3185:Neutron 3075:Vacancy 2934:Defects 2919:GP-zone 2765:Systems 2354:polygon 1924:. When 1455:0) ≡ (1 202:of the 3503:France 3498:Europe 3431:Awards 2961:Growth 2811:Growth 2593:  2542:934604 2540:  2530:  2284:; the 2267:planes 2263:planes 1488:ad hoc 1347:braces 1336:family 1016:, and 817:, and 788:, and 633:direct 68:, the 3525:Japan 3472:IOBCr 3325:SHELX 3320:Olex2 3207:X-ray 2857:Phase 2773:Cubic 2444:have 2401:have 2278:light 2251:atoms 2247:lines 1428:Here 1381:With 981:basis 368:with 196:basis 3467:IUCr 3368:ICDD 3363:ICSD 3348:CCDC 3295:Coot 3290:CCP4 3041:Slip 3004:Kink 2591:ISBN 2538:OCLC 2528:ISBN 2440:and 2417:and 2397:and 2382:and 2297:and 2265:are 2255:ions 1588:and 1477:= 1/ 1436:and 1424:= 0. 1385:and 1357:and 1353:For 3482:DMG 3477:RAS 3373:PDB 3358:COD 3353:CIF 3305:DSR 3029:GND 2956:CSL 2464:.) 2450:not 2407:hkℓ 2389:If 2372:abc 2257:or 2205:by 1930:hkℓ 1825:hkℓ 1595:as 1504:hkℓ 1345:or 1236:hkℓ 1214:hkℓ 1198:hkℓ 1194:not 1036:hkℓ 992:hkℓ 977:hkℓ 824:). 198:or 74:hkℓ 3578:: 3520:US 3513:UK 2559:. 2536:. 2508:^ 2436:, 2413:, 2393:, 2378:, 2331:) 2253:, 1581:, 1432:, 1420:+ 1416:+ 1220:. 1115:: 1108:. 1005:, 810:, 781:, 300:, 60:, 46:. 2661:e 2654:t 2647:v 2623:. 2544:. 2442:c 2438:b 2434:a 2419:c 2415:b 2411:a 2399:c 2395:b 2391:a 2384:c 2380:b 2376:a 2356:. 2338:( 2327:( 2228:) 2222:( 2217:) 2213:( 2199:. 2154:2 2141:2 2137:c 2131:2 2127:a 2120:+ 2116:) 2112:k 2109:h 2106:+ 2101:2 2097:k 2093:+ 2088:2 2084:h 2079:( 2072:3 2069:4 2062:a 2057:= 2049:k 2046:h 2042:d 2014:] 2009:2 2005:) 2001:c 1997:/ 1993:a 1990:( 1987:) 1984:2 1980:/ 1976:3 1973:( 1967:, 1964:k 1958:h 1952:, 1949:k 1946:, 1943:h 1940:[ 1912:] 1907:2 1903:) 1899:c 1895:/ 1891:a 1888:( 1885:) 1882:2 1878:/ 1874:3 1871:( 1865:, 1862:k 1859:2 1856:+ 1853:h 1850:, 1847:k 1844:+ 1841:h 1838:2 1835:[ 1808:. 1803:3 1798:a 1793:) 1787:( 1780:2 1776:c 1772:1 1767:+ 1762:2 1757:a 1752:) 1749:k 1746:2 1743:+ 1740:h 1737:( 1729:2 1725:a 1721:3 1717:2 1712:+ 1707:1 1702:a 1697:) 1694:k 1691:+ 1688:h 1685:2 1682:( 1674:2 1670:a 1666:3 1662:2 1657:= 1652:3 1647:b 1639:+ 1634:2 1629:b 1624:k 1621:+ 1616:1 1611:b 1606:h 1593:3 1590:a 1586:2 1583:a 1579:1 1576:a 1560:3 1555:b 1547:+ 1542:2 1537:b 1532:k 1529:+ 1524:1 1519:b 1514:h 1481:. 1479:S 1475:i 1468:S 1464:π 1457:2 1453:2 1449:2 1442:i 1438:ℓ 1434:k 1430:h 1422:i 1418:k 1414:h 1407:ℓ 1404:i 1401:k 1398:h 1322:. 1305:2 1297:+ 1292:2 1288:k 1284:+ 1279:2 1275:h 1270:a 1265:= 1257:k 1254:h 1250:d 1232:d 1228:a 1210:a 1177:. 1172:3 1167:a 1159:+ 1154:2 1149:a 1144:k 1141:+ 1136:1 1131:a 1126:h 1095:| 1086:k 1083:h 1078:g 1072:| 1067:/ 1060:2 1057:= 1054:d 1044:d 1025:ℓ 1023:/ 1021:3 1018:a 1014:k 1012:/ 1010:2 1007:a 1003:h 1001:/ 999:1 996:a 960:. 955:3 950:b 942:+ 937:2 932:b 927:k 924:+ 919:1 914:b 909:h 906:= 898:k 895:h 890:g 865:) 859:k 856:h 853:( 850:, 844:, 841:k 838:, 835:h 822:3 819:b 815:2 812:b 808:1 805:b 793:3 790:a 786:2 783:a 779:1 776:a 720:k 717:h 690:] 684:k 681:h 678:[ 652:k 649:h 619:, 616:] 610:k 607:h 604:[ 573:) 567:k 564:h 561:( 541:} 535:k 532:h 529:{ 512:π 500:3 477:k 448:g 424:n 421:i 415:k 390:t 387:u 384:o 378:k 353:n 350:i 344:k 333:t 330:u 327:o 321:k 316:= 312:k 283:g 260:3 255:a 247:+ 242:2 237:a 232:k 229:+ 224:1 219:a 214:h 180:i 175:b 151:3 146:b 138:+ 133:2 128:b 123:k 120:+ 115:1 110:b 105:h 102:= 94:k 91:h 86:g 66:ℓ 62:k 58:h

Index



crystallography
crystal (Bravais) lattices
lattice planes
integers
basis
primitive translation vectors
reciprocal lattice
X-ray crystallography
Laue equations
negative integers
greatest common divisor
X-ray crystallography
William Hallowes Miller
Christian Samuel Weiss

reciprocal lattice
Bravais lattice
examples below
basis
Cartesian coordinates
lattice constant
face-centered cubic
body-centered cubic
supercell

hexagonal
rhombohedral
lattice systems

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.