Knowledge

Transition radiation

Source 📝

149:
of the electric and magnetic fields of the moving particle in each medium separately. In other words, since the electric field of the particle is different in each medium, the particle has to "shake off" the difference when it crosses the boundary. The total energy loss of a charged particle on the
672:
and angular characteristics. This allows a much higher number of photons to be obtained in a smaller angular "volume". Applications of this x-ray source are limited by the fact that the radiation is emitted in a cone, with a minimum intensity at the center. X-ray focusing devices (crystals/mirrors)
87:
of the particle. After the first observation of the transition radiation in the optical region, many early studies indicated that the application of the optical transition radiation for the detection and identification of individual particles seemed to be severely limited due to the inherent low
448: 70:
in 1945. They showed the existence of Transition radiation when a charged particle perpendicularly passed through a boundary between two different homogeneous media. The frequency of radiation emitted in the backwards direction relative to the particle was mainly in the range of
835:
Interference phenomenon in optical transition radiation and its application to particle beam diagnostics and multiple-scattering measurements, L. Wartski et al., Journal of Applied Physics -- August 1975 -- Volume 46, Issue 8, pp.
286: 657:= 2×10, about 0.8 x-ray photons are detected. Usually several layers of alternating materials or composites are used to collect enough transition radiation photons for an adequate measurement—for example, one layer of 115:, were directly proportional to the Lorentz factor of the particle. Theoretical discovery of x-ray transition radiation, which was directly proportional to the Lorentz factor, made possible further use of TR in 617: 676:
A special type of transition radiation is diffusive radiation. It is emitted provided that a charged particle crosses a medium with randomly inhomogeneous dielectric permittivity^{9,10,11}.
825:
11. ^ Zh.S.Gevorkian, C.P.Chen and Chin-Kun Hu, New Mechanism of X-ray radiation from a relativistic charged particle in a dielectric random medium, Phys.Rev.Lett. v.86,3324,(2001).
279: 183:
Optical transition radiation is emitted both in the forward direction and reflected by the interface surface. In case of a foil having an angle at 45 degrees with respect to a
769: 246: 220: 541: 187:, the particle beam's shape can be visually seen at an angle of 90 degrees. More elaborate analysis of the emitted visual radiation may allow for the determination of 819:
9. ^S.R.Atayan and Zh.S.Gevorkian, Pseudophoton diffusion and radiation of a charged particle in a randomly inhomogeneous medium, Sov.Phys.JETP,v.71(5),862,(1990).\\
510: 490: 470: 443:{\displaystyle {\frac {dI}{d\nu }}\approx {\frac {z^{2}e^{2}\gamma \omega _{p}}{\pi c}}{\bigg (}(1+2\nu ^{2})\ln(1+{\frac {1}{\nu ^{2}}})-2{\bigg )}} 822:
10. ^Zh.S.Gevorkian, Radiation of a relativistic charged particle in a system with one-dimensional randomness, Phys.Rev.E,v.57,2338,(1998).\\
552: 863: 848: 806: 32: 174:
relative to the particle's path. The intensity of the emitted radiation is roughly proportional to the particle's energy
40: 99:
region for ultrarelativistic particles. His theory predicted some remarkable features for transition radiation in the
685: 251: 122:
Thus, from 1959 intensive theoretical and experimental research of TR, and x-ray TR in particular began.
868: 622: 24: 781: 653:. However, the number of produced photons per interface crossing is very small: for particles with 547:. This divergences at low frequencies where the approximations fail. The total energy emitted is: 225: 199: 145:. The emitted radiation is the homogeneous difference between the two inhomogeneous solutions of 519: 108: 718: 706:"Radiation of a uniformly moving electron due to its transition from one medium into another" 495: 146: 138: 51: 8: 787:, Brookhaven National Laboratory, p.2, Upton, New York, USA and CERN, Geneva, Switzerland 665: 142: 116: 104: 92: 76: 36: 784: 475: 455: 757: 802: 744: 661:
material followed by one layer of detector (e.g. microstrip gas chamber), and so on.
658: 544: 28: 731: 63: 513: 151: 84: 47: 35:
media, such as a boundary between two different media. This is in contrast to
857: 664:
By placing interfaces (foils) of very precise thickness and foil separation,
184: 72: 141:
charged particles when they cross the interface of two media of different
760:, Nuclear Instruments and Methods in Physics Research A326 (1993) 434-469 111:
particle, when emitting TR while passing the boundary between media and
646: 67: 43: 834: 705: 80: 167:
and is mostly directed forward, peaking at an angle of the order of
719:"Optical transition radiation from protons entering metal surfaces" 669: 649:
in the x-ray range, with energies typically in the range from 5 to
626: 708:, JETP (USSR) 16 (1946) 15-28; Journ.Phys. USSR 9 (1945) 353-362 642: 630: 625:
makes it suitable for particle discrimination, particularly of
112: 100: 96: 747:, JETP (USSR) 37 (1959) 527-533; Sov.Phys.JETP 10 (1960) 372 612:{\displaystyle I={\frac {z^{2}e^{2}\gamma \omega _{p}}{3c}}} 125: 782:"Some New Developments on Transition Radiation Detectors" 734:, JETP (USSR) 33 (1957) 1403; Sov.Phys.JETP 6 (1958) 1079 745:"Transition Radiation Effects in Particle Energy Losses" 39:, which occurs when a charged particle passes through a 62:
Transition radiation was demonstrated theoretically by
555: 522: 498: 478: 458: 289: 254: 228: 202: 732:"Contribution to the Theory of Transition Radiation" 95:
showed that the radiation should also appear in the
673:are not easy to build for such radiation patterns. 611: 535: 504: 484: 464: 442: 273: 240: 214: 91:Interest in transition radiation was renewed when 435: 362: 855: 801:. John Wiley & Sons, Inc. pp. 646–654. 770:"Health Physics Division annual progress report" 107:showed theoretically that energy losses of an 196:In the approximation of relativistic motion ( 772:, Oak Ridge National Laboratory, p.137, 1959 281:), the energy spectrum can be expressed as: 131:Transition radiation in the x-ray region 126:Transition radiation in the x-ray region 796: 668:will modify the transition radiation's 856: 274:{\displaystyle \omega \gg \omega _{p}} 46:medium at a speed greater than the 13: 14: 880: 842: 758:"Transition radiation detectors" 849:Article on transition radiation 790: 775: 763: 750: 737: 724: 711: 698: 633:in the momentum range between 492:is the charge of an electron, 424: 398: 389: 367: 1: 864:Experimental particle physics 691: 686:Transition radiation detector 621:The characteristics of this 241:{\displaystyle \theta \ll 1} 215:{\displaystyle \gamma \gg 1} 88:intensity of the radiation. 7: 717:P.Goldsmith and J.V.Jelley, 704:V.L.Ginzburg and I.M.Frank 679: 645:produced by electrons have 641:. The transition radiation 536:{\displaystyle \omega _{p}} 10: 885: 828: 721:, Philos.Mag. 4 (1959) 836 150:transition depends on its 57: 799:Classical Electrodynamics 623:electromagnetic radiation 25:electromagnetic radiation 505:{\displaystyle \gamma } 797:Jackson, John (1999). 613: 537: 506: 486: 472:is the atomic charge, 466: 444: 275: 248:) and high frequency ( 242: 216: 614: 538: 507: 487: 467: 445: 276: 243: 217: 52:electromagnetic waves 553: 520: 496: 476: 456: 287: 252: 226: 200: 143:dielectric constants 83:proportional to the 17:Transition radiation 147:Maxwell's equations 117:high-energy physics 37:Cherenkov radiation 609: 533: 502: 482: 462: 440: 271: 238: 212: 808:978-0-471-30932-1 756:Boris Dolgoshein 666:coherence effects 607: 485:{\displaystyle e} 465:{\displaystyle z} 422: 358: 308: 222:), small angles ( 137:) is produced by 109:ultrarelativistic 103:region. In 1959 79:of radiation was 876: 869:Particle physics 813: 812: 794: 788: 779: 773: 767: 761: 754: 748: 741: 735: 728: 722: 715: 709: 702: 656: 652: 640: 636: 618: 616: 615: 610: 608: 606: 598: 597: 596: 584: 583: 574: 573: 563: 545:Plasma Frequency 542: 540: 539: 534: 532: 531: 511: 509: 508: 503: 491: 489: 488: 483: 471: 469: 468: 463: 449: 447: 446: 441: 439: 438: 423: 421: 420: 408: 388: 387: 366: 365: 359: 357: 349: 348: 347: 335: 334: 325: 324: 314: 309: 307: 299: 291: 280: 278: 277: 272: 270: 269: 247: 245: 244: 239: 221: 219: 218: 213: 192: 179: 173: 166: 54:in that medium. 29:charged particle 884: 883: 879: 878: 877: 875: 874: 873: 854: 853: 845: 831: 817: 816: 809: 795: 791: 780: 776: 768: 764: 755: 751: 742: 738: 729: 725: 716: 712: 703: 699: 694: 682: 654: 650: 638: 634: 599: 592: 588: 579: 575: 569: 565: 564: 562: 554: 551: 550: 527: 523: 521: 518: 517: 497: 494: 493: 477: 474: 473: 457: 454: 453: 434: 433: 416: 412: 407: 383: 379: 361: 360: 350: 343: 339: 330: 326: 320: 316: 315: 313: 300: 292: 290: 288: 285: 284: 265: 261: 253: 250: 249: 227: 224: 223: 201: 198: 197: 193:and emittance. 188: 175: 168: 154: 128: 81:logarithmically 60: 31:passes through 27:emitted when a 23:) is a form of 12: 11: 5: 882: 872: 871: 866: 852: 851: 844: 843:External links 841: 840: 839: 830: 827: 815: 814: 807: 789: 774: 762: 749: 736: 723: 710: 696: 695: 693: 690: 689: 688: 681: 678: 639:100 GeV/c 605: 602: 595: 591: 587: 582: 578: 572: 568: 561: 558: 530: 526: 514:Lorentz factor 501: 481: 461: 437: 432: 429: 426: 419: 415: 411: 406: 403: 400: 397: 394: 391: 386: 382: 378: 375: 372: 369: 364: 356: 353: 346: 342: 338: 333: 329: 323: 319: 312: 306: 303: 298: 295: 268: 264: 260: 257: 237: 234: 231: 211: 208: 205: 152:Lorentz factor 127: 124: 85:Lorentz factor 59: 56: 48:phase velocity 9: 6: 4: 3: 2: 881: 870: 867: 865: 862: 861: 859: 850: 847: 846: 837: 833: 832: 826: 823: 820: 810: 804: 800: 793: 786: 783: 778: 771: 766: 759: 753: 746: 743:G.M.Garibyan 740: 733: 730:G.M.Garibyan 727: 720: 714: 707: 701: 697: 687: 684: 683: 677: 674: 671: 667: 662: 660: 648: 644: 632: 628: 624: 619: 603: 600: 593: 589: 585: 580: 576: 570: 566: 559: 556: 548: 546: 528: 524: 515: 499: 479: 459: 450: 430: 427: 417: 413: 409: 404: 401: 395: 392: 384: 380: 376: 373: 370: 354: 351: 344: 340: 336: 331: 327: 321: 317: 310: 304: 301: 296: 293: 282: 266: 262: 258: 255: 235: 232: 229: 209: 206: 203: 194: 191: 186: 185:particle beam 181: 178: 172: 165: 161: 157: 153: 148: 144: 140: 136: 132: 123: 120: 118: 114: 110: 106: 102: 98: 94: 89: 86: 82: 78: 74: 73:visible light 69: 65: 55: 53: 49: 45: 42: 38: 34: 33:inhomogeneous 30: 26: 22: 18: 824: 821: 818: 798: 792: 777: 765: 752: 739: 726: 713: 700: 675: 663: 635:1 GeV/c 620: 549: 451: 283: 195: 189: 182: 176: 170: 163: 159: 155: 139:relativistic 134: 130: 129: 121: 90: 61: 20: 16: 15: 651:15 keV 647:wavelengths 41:homogeneous 858:Categories 785:L. C. Yuan 692:References 44:dielectric 836:3644-3653 627:electrons 590:ω 586:γ 525:ω 500:γ 428:− 414:ν 396:⁡ 381:ν 352:π 341:ω 337:γ 311:≈ 305:ν 263:ω 259:≫ 256:ω 233:≪ 230:θ 207:≫ 204:γ 77:intensity 680:See also 670:spectral 105:Garibian 93:Garibian 64:Ginzburg 829:Sources 643:photons 631:hadrons 543:is the 512:is the 58:History 805:  452:Where 113:vacuum 75:. The 659:inert 101:x-ray 97:x-ray 68:Frank 803:ISBN 637:and 629:and 66:and 50:of 860:: 516:, 393:ln 180:. 169:1/ 164:mc 158:= 135:TR 119:. 21:TR 838:. 811:. 655:γ 604:c 601:3 594:p 581:2 577:e 571:2 567:z 560:= 557:I 529:p 480:e 460:z 436:) 431:2 425:) 418:2 410:1 405:+ 402:1 399:( 390:) 385:2 377:2 374:+ 371:1 368:( 363:( 355:c 345:p 332:2 328:e 322:2 318:z 302:d 297:I 294:d 267:p 236:1 210:1 190:γ 177:E 171:γ 162:/ 160:E 156:γ 133:( 19:(

Index

electromagnetic radiation
charged particle
inhomogeneous
Cherenkov radiation
homogeneous
dielectric
phase velocity
electromagnetic waves
Ginzburg
Frank
visible light
intensity
logarithmically
Lorentz factor
Garibian
x-ray
x-ray
Garibian
ultrarelativistic
vacuum
high-energy physics
relativistic
dielectric constants
Maxwell's equations
Lorentz factor
particle beam
Lorentz factor
Plasma Frequency
electromagnetic radiation
electrons

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.