Knowledge

T2K experiment

Source 📝

796:
modules outside the cross. The height and width of the arms are 10 metres (33 ft). A single module consists of alternating layers of iron and a plastic scintillator. An additional 4 veto layers of the scintillator surround the module on the sides to distinguish particles entering from the outside from those produced by interactions inside the module. The total mass of iron in one module is 7.1 tons and constitutes 96% of the module weight. On the neutrino beam axis, in the middle of the cross between the vertical and horizontal arm, there is an additional module built only from layers of the plastic scintillator (Proton Module) with a mass of 0.55 tons. Its purpose is to register quasielastic interactions and compare the obtained results with the simulations.
2013:. The fraction of neutrons that will be captured in SK is 50% for 0.01% Gd concentration and 90% for 0.1% concentration – the planned final Gd concentration in SK. The signal from neutron capture is delayed by a fraction of a millisecond (the time the neutron travels across the water before the capture plus the time when Gd remains in the excited state) with respect to the charged lepton signal and usually appears within a distance of 50 cm (the distance travelled by the neutron before the capture) from the neutrino interaction point. Such a double flash event (the first flash from the charged lepton, the second flash from the Gd deexcitation photons) is a signature of an antineutrino interaction. 1713:
additional final state particles: high angle particles thanks to the increased angular acceptance, and less energetic particles because of lower detection thresholds. This detector acceptance improvement is important to cover almost the same phase space available at the far detector (SK). In addition, final state particles will allow probing nuclear effects which are essential for constraining the systematic effects of the oscillation analysis. It is an important step as well in the transition to using semi-inclusive or exclusive models in neutrino oscillation physics, as opposed to current inclusive models which use only the final state lepton in their predictions.
881:) Detector (P0D) contains 40 plastic scintillator module planes, which in the central part are interleaved with 2.8 cm thick bags fillable of water and thick brass sheets, and in two peripheral regions scintillator modules are sandwiched with lead sheets. By comparison of the amount of interaction between modes with and without water in the bags, it is possible to extract the number of neutrino interactions occurring on the water – the target material inside the far detector Super-Kamiokande. The size of the entire active P0D volume is around 2.1 m × 2.2 m × 2.4 m (X×Y×Z) and its mass with and without water is 15.8 and 12.9 tons respectively. 106:. The properties and composition of the neutrino flux are first measured by a system of near detectors located 280 metres (920 ft) from the beam production place at the J-PARC site, and then again in the Super-Kamiokande detector. Comparison of the content of different neutrino flavours in these two locations allows measurement of the oscillations probability on the way between near and far detectors. Super-Kamiokande is able to detect interactions of both, muon and electron neutrinos, and thus measure the disappearance of muon neutrino flux, as well as electron neutrino appearance in the beam. 1182: 1627:
maintain their sandwiched structure and continue to detect forward going leptons and high momentum hadrons. The upstream part which now hosts the P0D sub-detector will be replaced by three novel sub-detectors: a scintillating 3D target (Super Fine-Grained Detector or SuperFGD), two new TPCs on top and below the SuperFGD (High-Angle TPCs or HATPCs), and six Time-of-Flight (TOF) detectors surrounding the new structure. Each of these sub-detectors is briefly described below. The installation of the new sub-detectors into ND280 will be done in 2022.
551: 1054: 565: 539: 856: 822: 810: 1564: 757: 1587:, as well as too high momentum threshold to reconstruct a large part of produced pions and knocked-out nucleons (protons and neutrons). In Charged Current Quasi-Elastic (CCQE) interactions, the dominating interaction in the ND280 near detector, kinematics of produced lepton is enough in the reconstruction of the incoming neutrino energy. However, other types of neutrino interactions in which additional particles ( 1663: 1019:
scintillator layers only, while the second FGD is composed of alternating layers of scintillator and water. The second FGD is partially composed of water because the Super-Kamiokande detector is water-based. Cross sections on carbon and on the water can be determined from a comparison of neutrino interactions in the two FGDs.
1985:) is proportional to the particle mass, and in water it equals 0.8 MeV for electrons, 160 MeV for muons and 1400 MeV for protons. Thus, protons released in neutrino interactions often fall below the threshold and remain undetected. Neutron, as a neutral particle, does not produce Cherenkov light. However, it can be 1274:, respectively. Due to relatively large mass, muons usually do not change their direction and thus produce a well-defined cone of Cherenkov light observed by PMTs as a clear, sharp ring. In contrast, electrons, because of smaller mass, are more susceptible to scattering and almost always produce electromagnetic 1626:
The Upgrade of the ND280 detector (ND280 Upgrade) addresses these requirements by replacing a part of the P0D sub-detector with three types of new sub-detectors. The existing downstream part, consisting of two Fine-Grained scintillation Detectors (FGDs) and three Time Projection Chambers (TPCs), will
1521:
In February 2020, the proton beam power reached 515 kW with 2.7x10 protons per pulse and with 2.48 seconds between pulses (so-called repetition cycle). To reach 750 kW, the repetition cycle will be reduced to 1.32 s with 2.0x10 protons per pulse, while for 1.3 MW the repetition cycle has to
1379:
The construction of the neutrino beamline started in 2004 and it was successfully commissioned in 2009. Construction of the entire INGRID detector and majority of the ND280 detector (without barrel part of the electromagnetic calorimeter) was completed in 2009. The missing part of the calorimeter was
1649:
designed to detect the light emitted by the particles produced during the interactions in the target. Unlike the current FGDs, the SuperFGD has a three-fold projective 2D readouts providing a quasi-3D readout. This readout configuration increases the detection of short tracks almost uniformly in all
1538:
will also be increased from 250 kA to 320 kA. This will increase the amount of right-sign neutrinos (neutrinos in the neutrino mode beam and anti-neutrinos in the anti-neutrino mode beam) by 10%, and reduce the amount of wrong-sign neutrinos (anti-neutrinos in the neutrino-mode beam and neutrinos in
1157:
The new detector will provide measurements of various charged-current neutrino interaction channels with high precision, lower momentum threshold and full angular acceptance. These will constrain flux and cross-section models uncertainties for the particles produced at high angles. These assets will
1027:
The Electromagnetic Calorimeter (ECal) surrounds the inner detectors (P0D, TPCs, FGDs) and consists of scintillator layers sandwiched with lead absorber sheets. Its role is to detect neutral particles, especially photons, and measure their energy and direction, as well as to detect charged particles
795:
The main purpose of the INGRID detector is the monitoring of the direction and intensity of the beam on a daily basis by direct detection of neutrino interactions. The INGRID detector consists of 16 identical modules arranged in the shape of a cross, 7 in a vertical and 7 in a horizontal arm, plus 2
721:
far detector and one of the near detectors, ND280. The average energy of neutrinos decreases with the deviation from the beam axis. The off-axis angle was chosen to 2.5° to maximize the probability of oscillation at a distance corresponding to the far detector, which for 295 kilometres (183 mi)
1118:
modules like a sandwich. The modules can be rearranged easily to adapt the magnetic field to the particular needs of the experiment. The magnetic field is created only inside the ferrite so it is very power efficient compared to magnets that have to magnetize empty spaces around them like the ND280
1036:
The Side Muon Range Detector (SMRD) consists of scintillator modules which are inserted into the gaps in the magnet. The SMRD records muons escaping the inner parts of the detector at large angles with respect to the beam direction. The remaining types of particles (except for neutrinos) are mostly
834:
The ND280 detector is used to measure the flux, energy spectrum and electron neutrino beam pollution for the same off-axis angle as for the far detector. ND280 also investigates various types of muon and electron neutrino and antineutrino interactions. All this allows estimating the expected number
997:
the gas along their track. The ionisation electrons drift from the cathode to the sides of the TPC, where they are detected by the MicroMegas providing a 3D image of a path of the traversing charged particle. Y and Z coordinates are based on the position of the detected ionisation electrons on the
726:
quasielastic interactions, for which it is possible to reconstruct the energy of the interacting neutrino only on the basis of the momentum and direction of the produced charged lepton. The higher neutrino energies are suppressed by the off-axis configuration, decreasing the number of interactions
1712:
The impact the ND280 Upgrade will have on the analyses at T2K is two-fold. Firstly, an increase in statistics thanks to the 2 ton SuperFGD target will allow to nearly double the amount of data in certain samples. Secondly and more relevant, the new configuration will allow for better detection of
838:
ND280 is composed of the set of inner sub-detectors: Pi-Zero detector and a tracker with 2 Fine-Grained Detectors interleaved with 3 Time Projection Chambers, placed inside of a metal frame called a basket. The basket is surrounded by the electromagnetic calorimeter and a magnet recycled from the
1417:
loaded into the Super-Kamiokande far detector was taken. In 2021–2022 a major upgrade of the neutrino beamline and the ND280 near detector will be performed. From 2023 till 2026 neutrino data will be taken within the second phase of the T2K experiment (T2K-II). In 2027, the successor of the T2K
1018:
Two Fine-Grained Detectors (FGDs) are placed after the first and second TPCs. Together the FGDs and TPCs make up the tracker of ND280. The FGDs provide the active target mass for the neutrino interactions and are able to measure the short tracks of proton recoil. The first FGD is composed of
1161:
Location at the same distance of 280 meters from the graphite target as ND280 and INGRID detectors, but at a different off-axis angle of 1.5 degrees, causes that the energy spectrum of the neutrino beam is peaked around different energies for each of the off-axis angles corresponding to the
1158:
also facilitate detection of low momentum hadrons produced in the interaction of the neutrino with bounded states of 2 nucleons or through reinteractions inside the target nucleus of particles produced by the neutrino, and thus better modelling of such interactions in the far detector.
1404:
in March 2011. The proton beam power, and thus the neutrino beam intensity, was constantly growing, reaching by February 2020 the power of 515 kW and a total number of accumulated protons on target of 3.6×10 protons with 55% of data in neutrino-mode and 45% in antineutrino-mode.
746:
WAGASCI-BabyMIND (WAter Grid SCIntillator Detector – prototype Magnetized Iron Neutrino Detector) is a magnetised neutrino detector located at 1.5° off-axis angle, built to explore the energy spectrum variation with the off-axis angle and cross-sections at higher average neutrino
1546:
and a minor upgrade of the focusing horn power supplies, all of which will be installed during the long shutdown in 2021. Increasing the horn current will require using an additional (third) horn power supply. Meanwhile, the higher proton beam power demands enhancement of the
346:, rejecting at the 3σ (99.7%) significance level almost half of the possible values, ruling out the both CP conserving points at the significance level of 95% and giving a strong hint that CP violation may be large in the neutrino sector. The CP violation is one of the 488:, which is in slight tension with the T2K result. The T2K best-fit point lies in the region disfavoured by NOvA at the confidence level of 90%. There are ongoing works to obtain a joint fit to data from both experiments to quantify consistency between them. 735:
The near detector complex is located at a distance of 280 metres (920 ft) from the graphite target. Its purpose is to measure the neutrino flux before oscillations and to study neutrino interactions. The system consists of three main detectors:
328:(i.e. from −180° to 180°) and can be measured by comparing oscillations of neutrinos to those of antineutrinos. The CP symmetry would be conserved, and thus the oscillation probabilities would be the same for neutrinos and antineutrinos, for 1703:
for each crossing track with a timing resolution of the order of 140 ps. The capability to determine track direction sense has been proven in the actual ND280 to be critical to reduce background generated outside the active inner detectors.
1621:
Finally, the total fiducial volume (the mass available for neutrino interactions) of the tracker part of the ND280 detector, characterised with a better reconstruction ability, needs to be enlarged in order to increase the rate of neutrino
2137:
Veto is a part of a detector where no activity should be registered to accept an event. Such requirement allows constraining the number of background events in a selected sample; here the background from particles produced outside of the
2108:
will be built. Part of the beam related upgrade works and the upgrade of the ND280 detector will be performed yet before the start of phase II of the T2K experiment. The HK experiment is expected to start operation around the year 2027.
1399:
T2K experiment started to take neutrino data for a physics analysis in January 2010, initially with an incomplete ND280 detector, and starting from November 2010 with the full setup. The data taking was interrupted for one year by the
370:
in quark section was confirmed already in 1964, but it is too small to explain the observed matter-antimatter imbalance. The strong CP violation in the neutrino sector could lead to matter excess production through the process called
1113:
One BabyMIND (prototype Magnetized Iron Neutrino Detector) that is a magnetized muon spectrometer to detect forward-going muons. BabyMIND sports an original configuration of scintillation modules intertwined with magnetized
972:
decay can be mis-reconstructed as an electron in the Super-Kamiokande detector, thus this reaction can mimic electron neutrino interactions and constitute an important background in electron neutrino appearance measurement.
786:
located at one or both ends of the fibres. Scintillator bars are organised into layers, where bars in two neighbouring layers are perpendicular to each other providing together 3D information about the traversing particles.
6843: 1617:
High-angle and backwards-going tracks must be well-reconstructed. This is achieved by increasing the angular acceptance and the efficiency of the discrimination between backward from forward going tracks using timing
1678:
modules technology for track reconstruction. The main novel feature of the HATPCs, aside from their high angle coverage, is the use of the resistive MicroMegas technology. The latter consists of applying a layer of
1473:(matter-antimatter) asymmetry. Achievement of these goals requires the reduction of statistical and systematic errors. Thus a significant upgrade of the beamline and the ND280 detector, doping of SK water with 1683:
material to increase the charge-sharing capabilities of the MicroMegas modules. This reduces the number of readout channels and allows for a spatial resolution which is as good as the one in the current TPCs.
2045:) into SK water was done in July–August 2020 and lead to a 0.011% concentration of Gd. T2K collected its first data with Gd in SK in March–April 2021. Usage of gadolinium-doped water will allow studying 1434:
Phase II of the T2K experiment is expected to start at the beginning of 2023 and last until 2026, following by the commencement of the HK experiment. The physics goals of T2K-II are a measurement of the
1080:
detectors (WAGASCI, WAter-Grid-SCIntillator-Detector) that act as the main water targets and particle trackers. The 3D grid-like structure of scintillator bars creates hollow cavities filled with water.
510:
parameters, cross-section measurements which will extend our understanding of neutrino interactions and thus improve theoretical models used in neutrino generators, as well as further constrain on the
1150:
O cross-section estimate from the CH one. The fraction of water in WAGASCI water-scintillator modules is 80% enabling a measurement of the charged-current neutrino cross-section ratio between water (H
3713: 6772: 46:
by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized
6869: 6485: 6294: 3576:
T2K Collaboration (September 2019). "Measurement of the muon neutrino charged-current cross sections on water, hydrocarbon and iron, and their ratios, with the T2K on-axis detectors".
3166:
T2K Collaboration (21 June 2016). "Measurement of double-differential muon neutrino charged-current interactions on C8H8 without pions in the final state using the T2K off-axis beam".
1583:), but it also has a number of limitations, like low reconstruction efficiency of particles produced almost perpendicular and backward with respect to the direction of the interacting 2100:(HK) experiment, will use the upgraded system of the currently used accelerator and neutrino beamline and upgraded set of the near detector. Apart from that, a new far detector, the 469:
oscillation channels. NOvA is conducted in the United States and measures accelerator neutrino oscillation at the distance of 810 km on the way between beam production place in
1650:
directions. Due to its geometry and coupled with the TOF and the HATPCs, the SuperFGD has the capability to detect fast-neutrons, which could be useful in the reconstruction of the
617:
and directed into a tunnel called the decay volume. Depending on the horns polarity, either positive or negative particles are focused. Positive pions and kaons decay mainly into
3300:
T2K Collaboration (21 February 2020). "First combined measurement of the muon neutrino and antineutrino charged-current cross section without pions in the final state at T2K".
6838: 5233:
Hyper-Kamiokande Proto-Collaboration (19 May 2015). "Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande".
4598:
Hyper-Kamiokande Proto-Collaboration (19 May 2015). "Physics Potential of a Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande".
1635:
The SuperFGD is a 2 by 2 by 0.5 metres (6 ft 7 in × 6 ft 7 in × 1 ft 8 in) detector consisting of approximately 2 million 1 cm
835:
and type of interactions in the far detector, reducing the systematic error in the neutrino oscillations analysis associated with models of neutrino interactions and flux.
1426:
detector. The building of an additional Intermediate Water Cherenkov detector at a distance of around 2 kilometres (1.2 mi) is also considered for the HK experiment.
1522:
be further decreased to 1.16 s and the number of protons per pulse has to increase to 3.2x10. In addition to increasing the primary proton beam power, the current in the
1674:(HATPCs) will surround the SuperFGD in the plane perpendicular to the incoming neutrino beam. Their design is similar to that of the existing TPCs, as they both use the 4574: 3367:
T2K Collaboration (26 January 2017). "First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector".
2967:
T2K Collaboration (27 February 2020). "Measurement of the charged-current electron (Anti-)neutrino inclusive cross-sections at the T2K off-axis near detector ND280".
2039: 3509:
T2K Collaboration (31 October 2014). "Measurement of the neutrino-oxygen neutral-current interaction cross section by observing nuclear deexcitation gamma rays".
6848: 4909:"Characterization of charge spreading and gain of encapsulated resistive Micromegas detectors for the upgrade of the T2K Near Detector Time Projection Chambers" 5328: 2439:
T2K Collaboration (2015). "Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6E20 protons on target".
474: 6813: 83:
in neutrino oscillations. The measurement of the neutrino-antineutrino oscillation asymmetry may bring us closer to the explanation of the existence of our
3783: 1119:
one. However, the magnetic field is not homogeneous over the travel volume of the muons, and this poses a still open challenge for momentum reconstruction.
6495: 6391: 6095: 4538: 1614:
The detector needs to efficiently detect the nucleons in the final state of neutrino interactions. For this, the detection thresholds need to be lowered.
3705: 3099:
T2K Collaboration (7 May 2013). "Measurement of the inclusive numu charged current cross section on carbon in the near detector of the T2K experiment".
6014: 6722: 6365: 5601: 3233:
T2K Collaboration (11 December 2015). "Measurement of the numu charged-current quasielastic cross section on carbon with the ND280 detector at T2K".
589:: first to 400 MeV energy by the Linac linear accelerator, then up to 3 GeV by the RCS (Rapid Cycle Synchrotron), and finally up to 30 GeV by the MR 6642: 2070:'s are the most reactive in SK but were yet indistinguishable from neutrinos from other sources. It will also improve the detector performance for 5130: 6099: 4844: 4799: 4703: 4520: 4314: 4247: 4188: 3964: 3876: 3621: 3562: 3495: 3420: 3353: 3286: 3219: 3152: 3085: 3020: 2953: 2886: 2819: 2752: 2484: 2425: 2347: 998:
MicroMegas modules, and X coordinate is based on the electrons drift time. In the magnetic field, the curvature of this path allows to determine
701:
are stopped by a 75-ton block of graphite (so-called beam dump) and in the ground, while neutrinos travel underground towards the far detector.
2005:, which then produce Cherenkov light. Gadolinium is a naturally occurring element with the highest cross-section on the capture of neutrons at 6462: 1733:
of the registered particle. That means it is not possible to distinguish neutrino from antineutrino interaction based on a charge of produced
6692: 6566: 6334: 2900:
T2K Collaboration (30 April 2019). "Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km".
6141: 2364:
T2K Collaboration (2014). "Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam".
1603:
in the reconstructed neutrino energy spectrum. Thus, it is essential to optimize the detector to be sensitive to additional particles and
6370: 2222: 1201:
Super-Kamiokande detector is located 1000 m underground in the Mozumi Mine, under Mount Ikeno in the Kamioka area of Hida city. It is a
6607: 5321: 1380:
installed in the fall of 2010. T2K far detector is the large Super-Kamiokande detector, which has been running since 1996 and studying
1106:
Two WallMRD (Wall Muon Range Detector) that are non-magnetized muon spectrometers to detect side going muons. They are made of passive
1166:
of measurements from these detectors will provide an improved constraint on the neutrino cross-sections as a function of their energy.
6951: 6712: 6591: 6581: 6299: 5713: 5439: 2192: 6956: 6803: 4682:
T2K Collaboration and J-PARC Neutrino Facility Group (14 August 2019). "J-PARC Neutrino Beamline Upgrade Technical Design Report".
3744: 517:
phase and confirmation if the CP symmetry is conserved or violated in the neutrino oscillation at the 3σ significance level in the
6470: 5211: 2286:
T2K Collaboration (2011). "Indication of Electron Neutrino Appearance from an Accelerator-produced Off-axis Muon Neutrino Beam".
2262: 50:
experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking (
6687: 2558: 5156:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
4913:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
4383:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
4330:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
4204:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
4145:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
4092:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
2701:
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
6717: 5314: 4563: 4443: 2046: 1680: 1518:
power until the start of the HK experiment. The beam power should reach 750 kW in 2022 and then grow to 1.3 MW by 2029.
1278:, observed by PMTs as a ring with fuzzy edges. Neutrino energy is calculated based on the direction and energy of a charged 722:
is maximal for around 600 MeV neutrinos. In this neutrino energy range, the dominant type of neutrino interactions are
6742: 6571: 6360: 6164: 5593: 2163: 1372:
and were consistent with the previous measurements of oscillation parameters measured by the Super-Kamiokande detector for
1065:
interaction studies. It provided the first neutrino beam data using a full detector setup during the 2019/2020 winter run.
94:
facility (Japan Proton Accelerator Research Complex) in Tokai on the east coast of Japan. The beam is directed towards the
6920: 6284: 5786: 1542:
Reduction of the repetition cycle will require a series of hardware upgrades, including a major upgrade of the Main Ring
1006:
of the particle, and the amount of the ionisation electrons per unit distance is used to identify particles based on the
6879: 6798: 3434:
T2K Collaboration (4 November 2016). "Measurement of Coherent π+ Production in Low Energy Neutrino-Carbon Scattering".
1057:
The predicted T2K neutrino flux at the site of the WAGASCI-BabyMIND (red line) and of the ND280 (black line) detectors
347: 6966: 6874: 6833: 5346: 280:(CC) interactions, CC interactions without pions and with single pion in the final state, coherent pion production, 6808: 6737: 6452: 6191: 6134: 210:
Since the start of the data taking in 2010, the T2K experiment succeeded to provide a list of world-class results:
1555:
target, the magnetic horns and the beam dump, as well as disposal of a larger amount of irradiated cooling water.
1360:
detector, located 250 km away. The K2K experiment results confirmed at the confidence level of 99.9985% (4.3
2101: 2002: 1495:/ discrimination in the far detector, as well as improvements in the software and analysis methods will be done. 775:. The light produced by traversing charged particles in the plastic scintillator bars and planes is collected by 4822: 3767: 3036:"Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi0 detector" 1123:
All the active material in the detectors is made up of plastic scintillator and is read as explained in section
6752: 6647: 6344: 5753: 5370: 4534: 4041:"The new experiment WAGASCI for water to hydrocarbon neutrino cross section measurement using the J-PARC beam" 252:), which was the first time when neutrinos produced in one flavour was explicitly observed in another flavour. 6818: 3805:
NOvA Collaboration (2022). "Improved measurement of neutrino oscillation parameters by the NOvA experiment".
2833:
T2K Collaboration (16 March 2015). "Search for short baseline nue disappearance with the T2K near detector".
1462:
or more of the matter-antimatter asymmetry in the neutrino sector in a wide range of possible true values of
6793: 1571:
The current design of the ND280 detector is optimized for the detection and reconstruction of forward-going
6930: 6762: 6672: 6622: 6319: 6150: 5621: 5557: 5525: 4261:
T2K UK Collaboration (17 October 2013). "The electromagnetic calorimeter for the T2K near detector ND280".
3997:
Antonova, M.; et al. (April 2017). "Baby MIND: A magnetised spectrometer for the WAGASCI experiment".
6910: 6314: 6309: 6127: 5826: 5545: 2105: 5122: 2766:
T2K Collaboration (5 August 2013). "Evidence of electron neutrino appearance in a muon neutrino beam".
1038: 1224:
emitted by charged particles moving in water faster than light in this medium. Its goal is to measure
6961: 5531: 1418:
experiment – the Hyper-Kamiokande (HK) experiment – will be launched with the new, 250,000-ton water
1045:. Finally, it can help identify beam interactions in the surrounding walls and in the magnet itself. 4957: 4859: 6662: 6002: 1134:
analysis, which will be achieved thanks to its complementarity with respect to the ND280 detector:
6119: 5469: 4467:
K2K Collaboration (12 October 2006). "Measurement of neutrino oscillation by the K2K experiment".
6039: 5900: 5775: 5707: 5605: 4908: 3667: 1671: 1401: 1130:
The main goal of the WAGASCI-BabyMIND detector is a reduction of the systematic error in the T2K
982: 783: 765: 273: 203: 2009:
energy. For 25 meV neutrons, the cross-section for gadolinium is about 10 times higher than for
743:
ND280 detector located 2.5° away from the beam axis, i.e. at the same angle as the far detector.
6168: 6053: 5886: 4143:
T2K ND280 TPC collaboration (May 2011). "Time projection chambers for the T2K near detectors".
727:
with meson production, which are background in the oscillation analysis in the T2K experiment.
2214: 1181: 1061:
WAGASCI-BabyMIND is a new detector located next to the INGRID and ND280 detectors, devoted to
375:
and thus such measurement would be important step to understand how the Universe were formed.
6324: 4838: 4514: 4308: 4241: 4182: 3958: 3615: 3556: 3489: 3414: 3347: 3280: 3213: 3146: 3079: 3014: 2947: 2880: 2813: 2746: 2478: 2419: 2341: 269:
oscillation parameters based on studies in the near ND280 and far Super-Kamiokande detectors.
39: 35: 1413:
The T2K experiment operated in the current form until 2020. In 2021 the first data run with
6677: 6551: 6245: 5996: 5860: 5679: 5629: 5252: 5173: 5154:
The Super-Kamiokande Collaboration (2022). "First gadolinium loading to Super-Kamiokande".
5083: 5028: 4930: 4733: 4656:
Hyper-Kamiokande Proto-Collaboration (28 November 2018). "Hyper-Kamiokande Design Report".
4617: 4486: 4390: 4347: 4280: 4221: 4162: 4109: 4052: 3930: 3855:
T2K Collaboration (13 September 2016). "Proposal for an Extended Run of T2K to 20E21 POT".
3676: 3595: 3528: 3453: 3386: 3319: 3252: 3185: 3118: 3057: 2986: 2919: 2852: 2785: 2718: 2634: 2589: 2526: 2383: 2305: 2079: 1692:
The six Time-of-Flight (TOF) detectors surrounding the HATPCs and SuperFGD are a series of
1508: 1458:
with a precision of 1.7° and 1%, respectively, as well as a confirmation at the level of 3
1436: 1393: 1365: 1341: 1321: 1213: 1131: 768:
in ND280, the entire active material (enabling particle tracking) of the near detectors is
710: 586: 578: 156: 2184: 556:
Superconducting magnets under construction in 2008 to veer the proton beam towards Kamioka
8: 6915: 6702: 6682: 6289: 6019: 5980: 5870: 5207: 5096: 5071: 4983: 4885: 4793: 4746: 4721: 4697: 4065: 4040: 3870: 3635: 2118: 1982: 1822: 1675: 1419: 1221: 986: 5256: 5177: 5087: 5032: 4934: 4737: 4621: 4490: 4394: 4351: 4292: 4284: 4225: 4166: 4113: 4090:
Assylbekov, S; et al. (September 2012). "The T2K ND280 off-axis pi–zero detector".
4056: 3934: 3736: 3680: 3599: 3532: 3457: 3390: 3323: 3256: 3189: 3122: 3061: 2990: 2923: 2856: 2789: 2722: 2638: 2593: 2530: 2387: 2309: 1699:
layers designed to identify the particle direction sense through the measurement of the
713:
was realized. The neutrino beam at J-PARC is designed so that it can be directed 2 to 3
6828: 6617: 6556: 6276: 6195: 6073: 5984: 5866: 5703: 5653: 5617: 5535: 5503: 5422: 5337: 5242: 5189: 5163: 5101: 5052: 5018: 4969: 4920: 4871: 4779: 4683: 4657: 4607: 4502: 4476: 4449: 4421: 4363: 4337: 4296: 4270: 4211: 4152: 4125: 4099: 4002: 3946: 3920: 3891: 3856: 3832: 3814: 3585: 3544: 3518: 3477: 3443: 3402: 3376: 3335: 3309: 3268: 3242: 3201: 3175: 3134: 3108: 3047: 3002: 2976: 2935: 2909: 2868: 2842: 2801: 2775: 2734: 2708: 2650: 2624: 2550: 2516: 2505:"Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations" 2466: 2448: 2407: 2373: 2329: 2295: 1998: 1459: 1361: 1163: 1084:
Thanks to such a structure, a high water to scintillator mass ratio was obtained (80% H
985:(TPCs) are gas-tight rectangular boxes, with a cathode plane in the centre and readout 776: 6788: 6250: 4402: 2646: 2254: 1324:
parameters relevant for muon neutrino disappearance and electron neutrino appearance.
6396: 6375: 6222: 5988: 5962: 5908: 5856: 5814: 5794: 5643: 5639: 5449: 5398: 5388: 5193: 5105: 5009:(24 September 2012). "From eV to EeV: Neutrino cross sections across energy scales". 4987: 4889: 4751: 4633: 4453: 4439: 4367: 4129: 3890:
Hyper-Kamiokande Collaboration (28 November 2018). "Hyper-Kamiokande Design Report".
3836: 3639: 3469: 3339: 3272: 3006: 2939: 2654: 2615:
Mohapatra, R N; et al. (1 November 2007). "Theory of neutrinos: a white paper".
2601: 2554: 2542: 2399: 2321: 1813:). In (anti)neutrino-nucleus interactions, apart from a charged lepton production, a 1604: 1600: 1088:
O + 20% CH) and the acceptance is high and approximately constant in all directions.
847:
and instrumented with scintillator planes constituting the Side Muon Range Detector.
740:
INGRID detector (Interactive Neutrino GRID) located on the axis of the neutrino beam,
62: 54:) is expected to start in 2023 and last until commencement of the successor of T2K – 6031: 5291: 5056: 4778:
T2K Collaboration (11 January 2019). "T2K ND280 Upgrade – Technical Design Report".
4681: 4506: 4300: 3950: 3548: 3481: 3406: 3205: 3138: 2872: 2805: 2738: 2504: 2470: 2411: 2333: 23: 6823: 6747: 6576: 6531: 6475: 6447: 6339: 6107: 6057: 6027: 5958: 5952: 5926: 5852: 5840: 5802: 5743: 5723: 5633: 5515: 5499: 5461: 5416: 5358: 5286: 5260: 5181: 5091: 5044: 5036: 4979: 4938: 4881: 4741: 4625: 4494: 4431: 4398: 4355: 4288: 4229: 4170: 4117: 4070: 4060: 3938: 3824: 3775: 3684: 3603: 3536: 3465: 3461: 3394: 3327: 3260: 3193: 3126: 3065: 2994: 2927: 2860: 2793: 2726: 2642: 2597: 2534: 2458: 2395: 2391: 2317: 2313: 2097: 2091: 2006: 1423: 1357: 1349: 1194: 1176: 718: 363: 276:
measurements of electron and muon neutrinos and antineutrinos, including inclusive
266: 192: 95: 84: 31: 4381:
The Super-Kamiokande Collaboration (April 2003). "The Super-Kamiokande detector".
1981:
Cherenkov energy threshold (minimal total energy of a charged particle to produce
1053: 585:
facility using a proton beam gradually accelerated to 30 GeV by a system of three
6612: 6416: 6103: 6083: 6069: 6043: 6006: 5918: 5914: 5896: 5882: 5848: 5834: 5830: 5822: 5757: 5737: 5719: 5685: 5541: 5507: 5491: 5354: 2580:
Fukugita, M.; Yanagida, T. (June 1986). "Barygenesis without grand unification".
1986: 1730: 1535: 1381: 1275: 1233: 1202: 999: 889: 723: 654:, forming a muon neutrino beam, while negative pions and kaons decay mainly into 550: 351: 281: 277: 196: 103: 4435: 4328:
Aoki, S; et al. (January 2013). "The T2K Side Muon Range Detector (SMRD)".
3828: 3331: 2998: 2159: 6889: 6884: 6864: 6697: 6091: 6065: 6061: 5970: 5944: 5810: 5798: 5699: 5689: 5661: 5625: 5609: 5473: 5392: 5306: 5185: 5040: 4942: 4498: 4359: 4233: 4202:
T2K ND280 FGD Collaboration (December 2012). "The T2K fine-grained detectors".
4174: 4121: 3942: 3706:"Skewed neutrino behavior could help explain matter's dominion over antimatter" 3689: 3643: 3540: 3398: 3264: 3197: 3130: 3070: 3035: 2931: 2864: 2797: 2730: 2462: 1818: 1729:, which so far was filled with ultra-pure water. SK is not able to measure the 1700: 1389: 1385: 1373: 1337: 1333: 1115: 844: 840: 714: 5301: 5296: 2538: 1721:
The third element to be improved within T2K – phase II is the introduction of
6945: 6087: 6035: 5966: 5892: 5874: 5844: 5765: 5761: 5727: 5669: 5597: 5567: 5549: 5511: 5481: 5457: 5428: 5410: 5382: 4991: 4893: 4755: 4637: 1990: 1646: 1523: 1515: 1369: 1007: 855: 779: 614: 69: 66: 27: 993:-based drift gas under atmospheric pressure. Charged particles crossing TPC 954:
This reaction can mimic electron neutrino interactions because photons from
538: 491:
Future upgrades of T2K is expected to provide more precise measurements of Δ
214:
The confirmation of electron neutrino appearance in the muon neutrino beam (
6637: 6047: 5992: 5974: 5940: 5936: 5806: 5657: 5575: 5465: 3779: 3473: 2546: 2403: 2325: 1696: 1651: 1636: 1543: 1470: 1100: 1077: 772: 564: 382:
experiment is the other neutrino oscillation experiment capable to measure
372: 367: 355: 307: 206:
for different types of neutrinos and targets in an energy range of few GeV.
80: 5264: 4629: 3607: 114:
T2K experiment was proposed in 2003 with the following measurement goals:
5948: 5930: 5904: 5878: 5818: 5647: 5589: 5585: 5495: 5366: 5362: 1997:. High energy photons (for gadolinium their total energy is about 8 MeV) 1825:, for neutrinos it is mostly a proton and for antineutrinos – a neutron: 1639: 1042: 590: 5048: 4906: 821: 6657: 6561: 6401: 5922: 5771: 5665: 5571: 5553: 5477: 5404: 5006: 4481: 4426: 4075: 2629: 1722: 1474: 1414: 994: 809: 99: 72:. It also provided the world best measurement of oscillation parameter 6406: 1563: 98:
far detector located 295 kilometres (183 mi) away in the city of
6411: 6079: 6010: 5519: 5453: 4814: 2075: 2071: 1994: 478: 5232: 4655: 4597: 3911:
T2K Collaboration (2 January 2013). "T2K neutrino flux prediction".
1567:
Scheme of the inner part of the ND280 detector after planned upgrade
1028:
providing additional information relevant for their identification.
989:
modules at both sides parallel to the cathode. TPCs are filled with
6894: 6767: 6757: 6490: 6304: 6149: 5376: 5247: 5168: 4974: 4925: 4876: 4812: 4784: 4688: 4662: 4612: 4007: 3896: 3861: 3819: 3590: 3448: 3381: 3314: 3180: 3052: 2981: 2914: 2521: 2453: 2010: 1584: 1580: 1552: 1229: 1208:
tank of about 40 m height and diameter, filled with 50,000 tons of
1205: 1186: 1062: 1003: 598: 470: 359: 5153: 5023: 4380: 4342: 4275: 4216: 4157: 4104: 3925: 3523: 3247: 3113: 2847: 2780: 2713: 2378: 2300: 884:
The main goal of the Pi-Zero Detector is a measurement of neutral
760:
Principle of operation of a scintillator in the T2K near detectors
6732: 5302:
Inside Japan's Big Physics | Part one: Super Kamiokande – YouTube
5281: 2042: 1814: 1693: 1596: 1548: 1146:
O) forces us to rely on cross-section models to disentangle the H
1097: 769: 1103:(CH) bars, that acts as the main CH target and particle tracker. 6925: 6707: 6667: 6652: 6586: 6526: 6500: 5747: 4860:"A fully-active fine-grained detector with three readout views" 4857: 1734: 1572: 1512: 1504: 1279: 756: 698: 694: 594: 582: 285: 159:, and thus the confirmation that the last unknown mixing angle 91: 3889: 3766:
Himmel, Alex; et al. (NOvA Collaboration) (2 July 2020).
1662: 1610:
Three main measures need to be taken to address these issues:
1599:) were lost, may be mis-reconstructed as CCQE and introduce a 1503:
The beam upgrade plan requires one year long shut down of the
61:
T2K was the first experiment which observed the appearance of
6727: 6632: 6627: 6510: 6505: 6480: 6329: 6218: 2030: 1353: 1209: 1073: 990: 709:
T2K is the first experiment in which the concept of off-axis
602: 339:. T2K provided the first and the strongest yet constraint on 289: 43: 4722:"J-PARC accelerator and neutrino beamline upgrade programme" 4571:
The 20th Lomonosov Conference on Elementary Particle Physics
4416:
Oyama, Yuichi (2006). "Results from K2K and status of T2K".
6426: 6421: 5579: 5072:"Supernova Neutrino Detection in Water Cherenkov Detectors" 4564:"Physics and status of SuperFGDdetector for T2K experiment" 4201: 4142: 1642: 1592: 1588: 1576: 1531: 1527: 1225: 1217: 1190: 1107: 885: 610: 606: 379: 293: 47: 4955: 4420:. NATO Security through Science Series. pp. 113–124. 1551:
capacity of the secondary beamline components such as the
1539:
the anti-neutrino mode beam) by around 5 - 10%.
1320:
spectra are determined, leading to the measurement of the
1707: 1345: 4958:"A 4π time-of-flight detector for the ND280/T2K upgrade" 1511:
in 2021, followed by a constant gradual increase of the
1068:
The WAGASCI-BabyMIND consists of several sub-detectors:
4715: 4713: 3634: 2215:"RE13/T2K : The long-baseline neutrino experiment" 1138:
Different target material between ND280 (80% CH + 20% H
358:
the excess of matter with respect to antimatter at the
195:
oscillations, which could be observed as a deficit of
90:
The intense beam of muon neutrinos is produced in the
5208:"The Hyper-Kamiokande project is officially approved" 4813:
The T2K ND280 Upgrade Working Group (June 19, 2020).
4710: 4260: 4038: 3996: 2255:"The status of T2K and Hyper-Kamiokande experiments" 1666:
TPC for the ND280 Upgrade of T2K experiment in Japan
1336:) experiment, which ran from 1999 till 2004. In the 1110:
planes intertwined with active scintillator planes.
1037:stopped in the calorimeter. SMRD can also act as a 169:
Precise measurement of the oscillation parameters Δ
4806: 4773: 4771: 4769: 4767: 4765: 3850: 3848: 3846: 3804: 3768:"New Oscillation Results from the NOvA Experiment" 3737:"Biggest cosmic mystery 'step closer' to solution" 2160:"T2K experiment official page – T2K collaboration" 2078:and study better matter-antimatter differences in 693:, forming a muon antineutrino beam. All remaining 4777: 4677: 4675: 4673: 4466: 3910: 3854: 3575: 3508: 3433: 3366: 3299: 3232: 3165: 3098: 3033: 2966: 2899: 2832: 2765: 2698: 2438: 2363: 2285: 6943: 5336: 5235:Progress of Theoretical and Experimental Physics 4600:Progress of Theoretical and Experimental Physics 4557: 4555: 4089: 4039:Ovsiannikova, T; et al. (5 February 2016). 4001:(NUPHYS2016-HALLSJO, FERMILAB-CONF-17-270-APC). 3578:Progress of Theoretical and Experimental Physics 2699:T2K Collaboration (2011). "The T2K Experiment". 2614: 2579: 522: 284:interactions, etc. on different targets such as 55: 6151:Neutrino detectors, experiments, and facilities 5297:Neutrino physics – The T2K experiment – YouTube 5004: 4762: 3843: 3628: 2502: 1282:produced in the CCQE interaction. In this way, 4670: 2085: 1022: 577:T2K uses a muon neutrino or muon antineutrino 481:. NOvA provided a less precise measurement of 6135: 5322: 4552: 5200: 5117: 5115: 4843:: CS1 maint: numeric names: authors list ( 4798:: CS1 maint: numeric names: authors list ( 4702:: CS1 maint: numeric names: authors list ( 4535:"T2K experiment official page – T2K Run 10" 4519:: CS1 maint: numeric names: authors list ( 4313:: CS1 maint: numeric names: authors list ( 4246:: CS1 maint: numeric names: authors list ( 4187:: CS1 maint: numeric names: authors list ( 3992: 3990: 3988: 3986: 3984: 3982: 3980: 3978: 3976: 3974: 3963:: CS1 maint: numeric names: authors list ( 3875:: CS1 maint: numeric names: authors list ( 3620:: CS1 maint: numeric names: authors list ( 3561:: CS1 maint: numeric names: authors list ( 3494:: CS1 maint: numeric names: authors list ( 3419:: CS1 maint: numeric names: authors list ( 3352:: CS1 maint: numeric names: authors list ( 3285:: CS1 maint: numeric names: authors list ( 3218:: CS1 maint: numeric names: authors list ( 3151:: CS1 maint: numeric names: authors list ( 3084:: CS1 maint: numeric names: authors list ( 3019:: CS1 maint: numeric names: authors list ( 2952:: CS1 maint: numeric names: authors list ( 2885:: CS1 maint: numeric names: authors list ( 2818:: CS1 maint: numeric names: authors list ( 2751:: CS1 maint: numeric names: authors list ( 2483:: CS1 maint: numeric names: authors list ( 2424:: CS1 maint: numeric names: authors list ( 2359: 2357: 2346:: CS1 maint: numeric names: authors list ( 2281: 2279: 2248: 2246: 2244: 2242: 2240: 1031: 976: 613:, which are then focused by a set of three 6911:BNO (Baksan or Baxan Neutrino Observatory) 6142: 6128: 5329: 5315: 4034: 4032: 4030: 4028: 4026: 4024: 4022: 4020: 4018: 3883: 2694: 2692: 2690: 2688: 2686: 2684: 2498: 2496: 2494: 2253:Vilela, Cristovao (September 5–10, 2021). 1332:T2K is a successor of the KEK to Kamioka ( 16:Long-baseline neutrino experiment in Japan 5714:The Event Horizon Telescope Collaboration 5246: 5167: 5095: 5069: 5022: 4973: 4924: 4875: 4783: 4745: 4687: 4661: 4651: 4649: 4647: 4611: 4480: 4425: 4341: 4274: 4215: 4156: 4103: 4074: 4064: 4006: 3924: 3895: 3860: 3818: 3688: 3589: 3522: 3447: 3380: 3313: 3246: 3179: 3112: 3069: 3051: 2980: 2913: 2846: 2779: 2759: 2712: 2682: 2680: 2678: 2676: 2674: 2672: 2670: 2668: 2666: 2664: 2628: 2520: 2452: 2377: 2299: 2096:The successor of the T2K experiment, the 1013: 5112: 4327: 3971: 2354: 2276: 2237: 1661: 1562: 1180: 1052: 854: 755: 299:The first significant constraint on the 188:via muon neutrino disappearance studies. 5149: 5147: 4825:from the original on September 29, 2021 4561: 4015: 3904: 2491: 1989:by another nucleus, which goes into an 1645:. The cubes are woven with a series of 6944: 5214:from the original on 27 September 2020 4719: 4644: 3765: 3734: 2661: 2503:Abe, K.; et al. (15 April 2020). 2252: 1708:Impact on Neutrino Oscillation Physics 1092:One Proton Module, the same as in the 544:Bird's-eye view of the entire facility 6123: 5310: 5076:Journal of Physics: Conference Series 4726:Journal of Physics: Conference Series 4415: 4045:Journal of Physics: Conference Series 1726: 1154:O) and plastic (CH) with 3% accuracy. 5144: 4562:Kudenko, Yury (August 19–25, 2021). 4418:Nuclear Science and Safety in Europe 1469:– the parameter responsible for the 1236:quasielastic interactions (CCQE) of 1212:and instrumented with around 13,000 1093: 255:The most precise measurement of the 202:Measurements of various interaction 5123:"Super-Kamiokande Official Website" 4821:. CERN-SPSC-2020-008. SPSC-SR-267. 3703: 1170: 1124: 1048: 850: 843:producing 0.2 T uniform horizontal 827:Exploded view of the ND280 detector 13: 5070:Scholberg, Kate (10 August 2011). 4956:Korzenev, A.; et al. (2022). 3747:from the original on 18 April 2020 3716:from the original on 20 April 2020 3644:"Evidence for the 2π decay of the 3034:T2K Collaboration (19 June 2015). 2561:from the original on 16 April 2020 2225:from the original on 30 April 2020 2195:from the original on 22 April 2019 2016:The first loading of 13 tons of Gd 1344:of muon neutrinos was produced at 790: 350:proposed by the Russian physicist 109: 14: 6978: 6875:Long Baseline Neutrino Experiment 5292:Super-Kamiokande Realtime Monitor 5287:Super-Kamiokande Official Website 5275: 4907:Ambrosi, L.; et al. (2023). 4858:Blondel, A.; et al. (2018). 3786:from the original on 5 March 2021 1993:and during deexcitation produced 799: 751: 730: 42:. The experiment is conducted in 6952:Accelerator neutrino experiments 2185:"Recognized Experiments at CERN" 1558: 892:neutrino interactions on water: 820: 808: 704: 563: 549: 537: 528: 6957:Science and technology in Japan 5282:T2K Experiment Official Website 5226: 5133:from the original on 2021-10-07 5063: 4998: 4949: 4900: 4851: 4819:CERN Scientific Committee Paper 4591: 4580:from the original on 2021-09-29 4541:from the original on 2020-05-03 4527: 4460: 4409: 4374: 4321: 4254: 4195: 4136: 4083: 3798: 3759: 3728: 3697: 3569: 3502: 3427: 3360: 3293: 3226: 3159: 3092: 3027: 2960: 2893: 2826: 2608: 2265:from the original on 2021-09-29 2219:The CERN Experimental Programme 2189:The CERN Experimental Programme 2166:from the original on 2020-04-17 2131: 2003:produce electron-positron pairs 1498: 1408: 570:Neutrino beam production scheme 389:through the comparison between 306:parameter, responsible for the 56:the Hyper-Kamiokande experiment 5097:10.1088/1742-6596/309/1/012028 4984:10.1088/1748-0221/17/01/P01016 4886:10.1088/1748-0221/13/02/P02006 4747:10.1088/1742-6596/888/1/012042 4066:10.1088/1742-6596/675/1/012030 3735:Rincon, Paul (16 April 2020). 3466:10.1103/PhysRevLett.117.192501 2969:Journal of High Energy Physics 2617:Reports on Progress in Physics 2573: 2432: 2396:10.1103/PhysRevLett.112.181801 2318:10.1103/PhysRevLett.107.041801 2207: 2177: 2152: 1526:focusing secondary particles ( 1: 6192:Lederman–Schwartz–Steinberger 4815:"NP07: ND280 Upgrade project" 4403:10.1016/S0168-9002(03)00425-X 4293:10.1088/1748-0221/8/10/P10019 3999:Prospects in Neutrino Physics 3704:Cho, Adrian (15 April 2020). 2145: 1817:is usually realised from the 310:in the neutrino oscillations. 6931:List of neutrino experiments 5622:Sudbury Neutrino Observatory 4720:Friend, M (September 2017). 2602:10.1016/0370-2693(86)91126-3 79:and a hint of a significant 7: 5546:Supernova Cosmology Project 4436:10.1007/978-1-4020-4965-1_9 3829:10.1103/PhysRevD.106.032004 3332:10.1103/PhysRevD.101.112001 2647:10.1088/0034-4885/70/11/R02 2112: 2086:Hyper-Kamiokande experiment 1630: 1023:Electromagnetic Calorimeter 784:Multi-pixel photon counters 518: 308:matter-antimatter asymmetry 81:matter-antimatter asymmetry 51: 10: 6983: 5186:10.1016/j.nima.2021.166248 5041:10.1103/RevModPhys.84.1307 4962:Journal of Instrumentation 4943:10.1016/j.nima.2023.168534 4864:Journal of Instrumentation 4499:10.1103/PhysRevD.74.072003 4360:10.1016/j.nima.2012.10.001 4263:Journal of Instrumentation 4234:10.1016/j.nima.2012.08.020 4175:10.1016/j.nima.2011.02.036 4122:10.1016/j.nima.2012.05.028 3943:10.1103/physrevd.87.012001 3690:10.1103/PhysRevLett.13.138 3541:10.1103/PhysRevD.90.072012 3399:10.1103/PhysRevD.95.012010 3265:10.1103/PhysRevD.92.112003 3198:10.1103/PhysRevD.93.112012 3131:10.1103/PhysRevD.87.092003 3071:10.1103/PhysRevD.91.112010 2932:10.1103/PhysRevD.99.071103 2865:10.1103/PhysRevD.91.051102 2798:10.1103/PhysRevD.88.032002 2731:10.1016/j.nima.2011.06.067 2463:10.1103/PhysRevD.91.072010 2104:, and possibly also a new 2089: 2047:remote supernova neutrinos 1327: 1174: 782:and detected by Hamamatsu 6903: 6857: 6781: 6600: 6544: 6519: 6461: 6440: 6384: 6353: 6275: 6260: 6157: 5785: 5438: 5345: 5127:www-sk.icrr.u-tokyo.ac.jp 5011:Reviews of Modern Physics 2539:10.1038/s41586-020-2177-0 2102:Hyper-Kamiokande detector 1429: 6967:Fixed-target experiments 2124: 1716: 1672:Time Projection Chambers 1657: 1096:detector, made of plain 1032:Side Muon Range Detector 983:Time Projection Chambers 977:Time projection chambers 859:Pi-Zero detector scheme. 815:ND280 under construction 766:Time Projection Chambers 34:experiment studying the 6040:Shankar Balasubramanian 5776:Alexander Zamolodchikov 5708:Peter van Nieuwenhuizen 3668:Physical Review Letters 3436:Physical Review Letters 2999:10.1007/JHEP10(2020)114 2288:Physical Review Letters 2040:gadolinium(III) sulfate 1402:Great Tohoku Earthquake 1356:) and sent towards the 6054:Clifford P. Brangwynne 5887:Emmanuelle Charpentier 3780:10.5281/zenodo.3959581 3642:; et al. (1964). 1687: 1667: 1568: 1534:, etc.) with a chosen 1198: 1058: 1014:Fine-grained detectors 860: 761: 362:, which forms now our 199:neutrino interactions. 5558:High-Z Supernova Team 4870:(02): P02006–P02006. 2259:PANIC 2021 Conference 2106:intermediate detector 1665: 1566: 1374:atmospheric neutrinos 1214:photomultiplier tubes 1184: 1056: 858: 759: 364:matter-built Universe 118:The discovery of the 40:accelerator neutrinos 6246:Neutrino oscillation 5997:Virginia Man-Yee Lee 5861:Alexander Varshavsky 5680:Jocelyn Bell Burnell 5578:and contributors to 5210:. 12 February 2020. 2080:accelerator neutrino 2001:from an atom and/or 1384:and oscillations of 1216:(PMT). It detects a 473:and far detector in 6916:Kamioka Observatory 5981:Jeffrey M. Friedman 5871:Charles David Allis 5556:and members of the 5544:and members of the 5265:10.1093/ptep/ptv061 5257:2015PTEP.2015e3C02A 5178:2022NIMPA102766248A 5088:2011JPhCS.309a2028S 5033:2012RvMP...84.1307F 4935:2023NIMPA105668534A 4738:2017JPhCS.888a2042F 4630:10.1093/ptep/ptv061 4622:2015PTEP.2015e3C02A 4491:2006PhRvD..74g2003A 4395:2003NIMPA.501..418F 4352:2013NIMPA.698..135A 4285:2013JInst...8P0019A 4226:2012NIMPA.696....1A 4167:2011NIMPA.637...25A 4114:2012NIMPA.686...48A 4057:2016JPhCS.675a2030O 3935:2013PhRvD..87a2001A 3681:1964PhRvL..13..138C 3608:10.1093/ptep/ptz070 3600:2019PTEP.2019i3C02A 3533:2014PhRvD..90g2012A 3458:2016PhRvL.117s2501A 3391:2017PhRvD..95a2010A 3324:2020PhRvD.101k2001A 3257:2015PhRvD..92k2003A 3190:2016PhRvD..93k2012A 3123:2013PhRvD..87i2003A 3062:2015PhRvD..91k2010A 2991:2020JHEP...10..114T 2924:2019PhRvD..99g1103A 2857:2015PhRvD..91e1102A 2790:2013PhRvD..88c2002A 2723:2011NIMPA.659..106A 2639:2007RPPh...70.1757M 2594:1986PhLB..174...45F 2531:2020Natur.580..339T 2388:2014PhRvL.112r1801A 2310:2011PhRvL.107d1801A 2119:Kamioka Observatory 1823:charge conservation 1422:far detector – the 1008:Bethe-Bloch formula 777:wavelength-shifting 320:takes values from - 6074:Masashi Yanagisawa 5985:Franz-Ulrich Hartl 5915:Stephen J. Elledge 5867:Alim Louis Benabid 5754:Charles H. Bennett 5704:Daniel Z. Freedman 5654:Charles L. Bennett 5618:Arthur B. McDonald 5606:Kōichirō Nishikawa 5536:John Henry Schwarz 5526:Alexander Polyakov 5504:Michel Della Negra 5423:Daniel A. Spielman 5338:Breakthrough Prize 5005:Formaggio, J. A.; 4573:. pp. 17–18. 1668: 1569: 1199: 1059: 861: 762: 601:target, producing 63:electron neutrinos 6939: 6938: 6673:Heidelberg-Moscow 6540: 6539: 6397:ICARUS (Fermilab) 6117: 6116: 6096:Fredrick Van Goor 5989:Arthur L. Horwich 5963:Adrian R. Krainer 5857:Richard P. Lifton 5815:Napoleone Ferrara 5795:Cornelia Bargmann 5644:Andrew Strominger 5640:Joseph Polchinski 5450:Nima Arkani-Hamed 5399:Vincent Lafforgue 5389:Christopher Hacon 4469:Physical Review D 4445:978-1-4020-4963-7 3913:Physical Review D 3807:Physical Review D 3511:Physical Review D 3369:Physical Review D 3302:Physical Review D 3235:Physical Review D 3168:Physical Review D 3101:Physical Review D 3040:Physical Review D 2902:Physical Review D 2835:Physical Review D 2768:Physical Review D 2623:(11): 1757–1867. 2582:Physics Letters B 2515:(7803): 339–344. 1999:scatter electrons 1142:O) and SK (pure H 6974: 6962:CERN experiments 6824:Neutrino Factory 6577:Hyper-Kamiokande 6340:Super-Kamiokande 6273: 6272: 6240: 6239: 6238: 6230: 6229: 6213: 6212: 6211: 6203: 6202: 6186: 6185: 6184: 6176: 6175: 6144: 6137: 6130: 6121: 6120: 6108:Andrew Singleton 6058:Anthony A. Hyman 6028:Jeffery W. Kelly 6023: 6015:Richard J. Youle 5959:C. Frank Bennett 5953:Don W. Cleveland 5927:Yoshinori Ohsumi 5853:Robert S. Langer 5841:James P. Allison 5803:Lewis C. Cantley 5744:Hidetoshi Katori 5724:Jens H. Gundlach 5634:Super-Kamiokande 5516:Joseph Incandela 5500:Fabiola Gianotti 5462:Maxim Kontsevich 5417:Takuro Mochizuki 5359:Maxim Kontsevich 5331: 5324: 5317: 5308: 5307: 5269: 5268: 5250: 5230: 5224: 5223: 5221: 5219: 5204: 5198: 5197: 5171: 5151: 5142: 5141: 5139: 5138: 5119: 5110: 5109: 5099: 5067: 5061: 5060: 5026: 5017:(3): 1307–1341. 5002: 4996: 4995: 4977: 4953: 4947: 4946: 4928: 4904: 4898: 4897: 4879: 4855: 4849: 4848: 4842: 4834: 4832: 4830: 4810: 4804: 4803: 4797: 4789: 4787: 4775: 4760: 4759: 4749: 4717: 4708: 4707: 4701: 4693: 4691: 4679: 4668: 4667: 4665: 4653: 4642: 4641: 4615: 4595: 4589: 4588: 4586: 4585: 4579: 4568: 4559: 4550: 4549: 4547: 4546: 4531: 4525: 4524: 4518: 4510: 4484: 4464: 4458: 4457: 4429: 4413: 4407: 4406: 4389:(2–3): 418–462. 4378: 4372: 4371: 4345: 4325: 4319: 4318: 4312: 4304: 4278: 4258: 4252: 4251: 4245: 4237: 4219: 4199: 4193: 4192: 4186: 4178: 4160: 4140: 4134: 4133: 4107: 4087: 4081: 4080: 4078: 4068: 4036: 4013: 4012: 4010: 3994: 3969: 3968: 3962: 3954: 3928: 3908: 3902: 3901: 3899: 3887: 3881: 3880: 3874: 3866: 3864: 3852: 3841: 3840: 3822: 3802: 3796: 3795: 3793: 3791: 3763: 3757: 3756: 3754: 3752: 3741:BBC News website 3732: 3726: 3725: 3723: 3721: 3701: 3695: 3694: 3692: 3662: 3661: 3660: 3652: 3651: 3632: 3626: 3625: 3619: 3611: 3593: 3573: 3567: 3566: 3560: 3552: 3526: 3506: 3500: 3499: 3493: 3485: 3451: 3431: 3425: 3424: 3418: 3410: 3384: 3364: 3358: 3357: 3351: 3343: 3317: 3297: 3291: 3290: 3284: 3276: 3250: 3230: 3224: 3223: 3217: 3209: 3183: 3163: 3157: 3156: 3150: 3142: 3116: 3096: 3090: 3089: 3083: 3075: 3073: 3055: 3031: 3025: 3024: 3018: 3010: 2984: 2964: 2958: 2957: 2951: 2943: 2917: 2897: 2891: 2890: 2884: 2876: 2850: 2830: 2824: 2823: 2817: 2809: 2783: 2763: 2757: 2756: 2750: 2742: 2716: 2696: 2659: 2658: 2632: 2612: 2606: 2605: 2577: 2571: 2570: 2568: 2566: 2524: 2500: 2489: 2488: 2482: 2474: 2456: 2436: 2430: 2429: 2423: 2415: 2381: 2361: 2352: 2351: 2345: 2337: 2303: 2283: 2274: 2273: 2271: 2270: 2250: 2235: 2234: 2232: 2230: 2211: 2205: 2204: 2202: 2200: 2181: 2175: 2174: 2172: 2171: 2156: 2139: 2135: 2098:Hyper-Kamiokande 2092:Hyper-Kamiokande 2069: 2068: 2067: 2060: 2057: 2056: 2037: 1976: 1975: 1974: 1967: 1966: 1958: 1957: 1956: 1949: 1948: 1940: 1939: 1938: 1931: 1930: 1922: 1921: 1920: 1913: 1910: 1909: 1900: 1899: 1898: 1891: 1890: 1882: 1881: 1880: 1873: 1872: 1864: 1863: 1862: 1855: 1854: 1846: 1845: 1844: 1836: 1835: 1812: 1811: 1810: 1803: 1800: 1799: 1791: 1790: 1789: 1782: 1781: 1773: 1772: 1771: 1763: 1762: 1754: 1753: 1752: 1745: 1744: 1727:Super-Kamiokande 1494: 1493: 1492: 1485: 1484: 1457: 1456: 1424:Hyper-Kamiokande 1358:Super-Kamiokande 1342:accelerator beam 1319: 1318: 1317: 1309: 1308: 1300: 1299: 1298: 1290: 1289: 1273: 1272: 1271: 1263: 1262: 1254: 1253: 1252: 1244: 1243: 1195:Super-Kamiokande 1177:Super-Kamiokande 1171:Super-Kamiokande 1049:WAGASCI-BabyMIND 971: 970: 969: 962: 961: 950: 949: 948: 941: 940: 932: 931: 930: 922: 921: 913: 912: 911: 903: 902: 880: 879: 878: 871: 870: 851:Pi-Zero detector 824: 812: 719:Super-Kamiokande 692: 691: 690: 683: 680: 679: 671: 670: 669: 662: 661: 653: 652: 651: 643: 642: 634: 633: 632: 625: 624: 581:produced at the 567: 553: 541: 523:Hyper-Kamiokande 502: 501: 468: 467: 466: 459: 456: 455: 447: 446: 445: 438: 435: 434: 426: 425: 424: 416: 415: 407: 406: 405: 397: 396: 267:sterile neutrino 251: 250: 249: 241: 240: 232: 231: 230: 222: 221: 193:sterile neutrino 180: 179: 155: 154: 153: 145: 144: 136: 135: 134: 126: 125: 96:Super-Kamiokande 85:matter-dominated 32:particle physics 6982: 6981: 6977: 6976: 6975: 6973: 6972: 6971: 6942: 6941: 6940: 6935: 6899: 6853: 6777: 6596: 6536: 6515: 6457: 6436: 6380: 6349: 6268: 6266: 6264: 6262: 6256: 6237: 6234: 6233: 6232: 6228: 6226: 6225: 6224: 6223: 6210: 6207: 6206: 6205: 6201: 6199: 6198: 6197: 6196: 6183: 6180: 6179: 6178: 6174: 6172: 6171: 6170: 6169: 6153: 6148: 6118: 6113: 6104:Ellen Sidransky 6084:Michel Sadelain 6070:Emmanuel Mignot 6044:David Klenerman 6017: 6007:Catherine Dulac 5919:Harry F. Noller 5897:Karl Deisseroth 5883:Jennifer Doudna 5849:Michael N. Hall 5835:Bert Vogelstein 5831:Shinya Yamanaka 5827:Robert Weinberg 5823:Charles Sawyers 5781: 5758:Gilles Brassard 5738:Steven Weinberg 5720:Eric Adelberger 5630:Yōichirō Suzuki 5542:Saul Perlmutter 5508:Tejinder Virdee 5492:Stephen Hawking 5441: 5434: 5355:Simon Donaldson 5341: 5335: 5278: 5273: 5272: 5231: 5227: 5217: 5215: 5206: 5205: 5201: 5152: 5145: 5136: 5134: 5121: 5120: 5113: 5068: 5064: 5003: 4999: 4954: 4950: 4905: 4901: 4856: 4852: 4836: 4835: 4828: 4826: 4811: 4807: 4791: 4790: 4776: 4763: 4718: 4711: 4695: 4694: 4680: 4671: 4654: 4645: 4596: 4592: 4583: 4581: 4577: 4566: 4560: 4553: 4544: 4542: 4533: 4532: 4528: 4512: 4511: 4465: 4461: 4446: 4414: 4410: 4379: 4375: 4326: 4322: 4306: 4305: 4259: 4255: 4239: 4238: 4200: 4196: 4180: 4179: 4141: 4137: 4088: 4084: 4037: 4016: 3995: 3972: 3956: 3955: 3909: 3905: 3888: 3884: 3868: 3867: 3853: 3844: 3803: 3799: 3789: 3787: 3764: 3760: 3750: 3748: 3733: 3729: 3719: 3717: 3702: 3698: 3659: 3656: 3655: 3654: 3650: 3648: 3647: 3646: 3645: 3633: 3629: 3613: 3612: 3574: 3570: 3554: 3553: 3507: 3503: 3487: 3486: 3432: 3428: 3412: 3411: 3365: 3361: 3345: 3344: 3298: 3294: 3278: 3277: 3231: 3227: 3211: 3210: 3164: 3160: 3144: 3143: 3097: 3093: 3077: 3076: 3032: 3028: 3012: 3011: 2965: 2961: 2945: 2944: 2898: 2894: 2878: 2877: 2831: 2827: 2811: 2810: 2764: 2760: 2744: 2743: 2697: 2662: 2613: 2609: 2578: 2574: 2564: 2562: 2501: 2492: 2476: 2475: 2437: 2433: 2417: 2416: 2366:Phys. Rev. Lett 2362: 2355: 2339: 2338: 2284: 2277: 2268: 2266: 2251: 2238: 2228: 2226: 2213: 2212: 2208: 2198: 2196: 2183: 2182: 2178: 2169: 2167: 2158: 2157: 2153: 2148: 2143: 2142: 2136: 2132: 2127: 2115: 2094: 2088: 2066: 2063: 2062: 2061: 2058: 2055: 2053: 2052: 2051: 2050: 2034: 2029: 2027: 2023: 2019: 1983:Cherenkov light 1973: 1971: 1970: 1969: 1965: 1963: 1962: 1961: 1960: 1955: 1953: 1952: 1951: 1947: 1945: 1944: 1943: 1942: 1937: 1935: 1934: 1933: 1929: 1927: 1926: 1925: 1924: 1919: 1916: 1915: 1914: 1911: 1908: 1906: 1905: 1904: 1903: 1897: 1895: 1894: 1893: 1889: 1887: 1886: 1885: 1884: 1879: 1877: 1876: 1875: 1871: 1869: 1868: 1867: 1866: 1861: 1859: 1858: 1857: 1853: 1851: 1850: 1849: 1848: 1843: 1840: 1839: 1838: 1834: 1832: 1831: 1830: 1829: 1809: 1806: 1805: 1804: 1801: 1798: 1796: 1795: 1794: 1793: 1788: 1786: 1785: 1784: 1780: 1778: 1777: 1776: 1775: 1770: 1767: 1766: 1765: 1761: 1759: 1758: 1757: 1756: 1755:is produced by 1751: 1749: 1748: 1747: 1743: 1741: 1740: 1739: 1738: 1719: 1710: 1690: 1670:The High Angle 1660: 1633: 1605:nuclear effects 1561: 1536:electric charge 1501: 1491: 1489: 1488: 1487: 1483: 1481: 1480: 1479: 1478: 1468: 1455: 1452: 1451: 1450: 1445: 1432: 1411: 1382:proton lifetime 1330: 1316: 1313: 1312: 1311: 1307: 1305: 1304: 1303: 1302: 1297: 1294: 1293: 1292: 1288: 1286: 1285: 1284: 1283: 1270: 1267: 1266: 1265: 1261: 1259: 1258: 1257: 1256: 1251: 1248: 1247: 1246: 1242: 1240: 1239: 1238: 1237: 1234:charged current 1222:Cherenkov light 1203:stainless steel 1179: 1173: 1153: 1149: 1145: 1141: 1087: 1051: 1034: 1025: 1016: 979: 968: 966: 965: 964: 960: 958: 957: 956: 955: 947: 945: 944: 943: 939: 937: 936: 935: 934: 929: 926: 925: 924: 920: 918: 917: 916: 915: 910: 907: 906: 905: 901: 899: 898: 897: 896: 890:neutral current 877: 875: 874: 873: 869: 867: 866: 865: 864: 853: 832: 831: 830: 829: 828: 825: 817: 816: 813: 802: 793: 791:INGRID detector 764:Except for the 754: 733: 724:charged current 707: 689: 686: 685: 684: 681: 678: 676: 675: 674: 673: 668: 666: 665: 664: 660: 658: 657: 656: 655: 650: 647: 646: 645: 641: 639: 638: 637: 636: 631: 629: 628: 627: 623: 621: 620: 619: 618: 597:collide with a 575: 574: 573: 572: 571: 568: 559: 558: 557: 554: 546: 545: 542: 531: 516: 509: 500: 497: 496: 495: 487: 465: 462: 461: 460: 457: 454: 452: 451: 450: 449: 444: 441: 440: 439: 436: 433: 431: 430: 429: 428: 423: 420: 419: 418: 414: 412: 411: 410: 409: 404: 401: 400: 399: 395: 393: 392: 391: 390: 388: 354:, necessary to 352:Andrei Sakharov 345: 335:equal to 0 or ± 334: 319: 305: 282:neutral current 278:charged current 261: 248: 245: 244: 243: 239: 237: 236: 235: 234: 229: 226: 225: 224: 220: 218: 217: 216: 215: 197:neutral current 187: 178: 175: 174: 173: 165: 152: 149: 148: 147: 143: 141: 140: 139: 138: 133: 130: 129: 128: 124: 122: 121: 120: 119: 112: 110:Physics program 104:Gifu prefecture 78: 17: 12: 11: 5: 6980: 6970: 6969: 6964: 6959: 6954: 6937: 6936: 6934: 6933: 6928: 6923: 6918: 6913: 6907: 6905: 6901: 6900: 6898: 6897: 6892: 6887: 6885:NESTOR Project 6882: 6877: 6872: 6867: 6865:DUMAND Project 6861: 6859: 6855: 6854: 6852: 6851: 6846: 6841: 6836: 6831: 6826: 6821: 6816: 6811: 6806: 6801: 6796: 6791: 6785: 6783: 6779: 6778: 6776: 6775: 6770: 6765: 6760: 6755: 6750: 6745: 6740: 6735: 6730: 6725: 6720: 6715: 6710: 6705: 6700: 6695: 6690: 6685: 6680: 6675: 6670: 6665: 6660: 6655: 6650: 6645: 6640: 6635: 6630: 6625: 6620: 6615: 6610: 6604: 6602: 6598: 6597: 6595: 6594: 6589: 6584: 6579: 6574: 6569: 6564: 6559: 6554: 6548: 6546: 6542: 6541: 6538: 6537: 6535: 6534: 6529: 6523: 6521: 6517: 6516: 6514: 6513: 6508: 6503: 6498: 6493: 6488: 6483: 6478: 6473: 6467: 6465: 6459: 6458: 6456: 6455: 6450: 6444: 6442: 6438: 6437: 6435: 6434: 6429: 6424: 6419: 6414: 6409: 6404: 6399: 6394: 6388: 6386: 6382: 6381: 6379: 6378: 6373: 6368: 6363: 6357: 6355: 6351: 6350: 6348: 6347: 6342: 6337: 6332: 6327: 6322: 6317: 6312: 6307: 6302: 6297: 6292: 6287: 6281: 6279: 6270: 6258: 6257: 6255: 6254: 6253:neutrino burst 6248: 6243: 6235: 6227: 6216: 6208: 6200: 6189: 6181: 6173: 6161: 6159: 6155: 6154: 6147: 6146: 6139: 6132: 6124: 6115: 6114: 6112: 6111: 6092:Paul Negulescu 6077: 6062:Demis Hassabis 6051: 6032:Katalin Karikó 6025: 6000: 5978: 5971:Xiaowei Zhuang 5956: 5945:Kazutoshi Mori 5934: 5912: 5890: 5864: 5838: 5811:Titia de Lange 5799:David Botstein 5791: 5789: 5783: 5782: 5780: 5779: 5769: 5751: 5741: 5731: 5717: 5711: 5700:Sergio Ferrara 5693: 5683: 5673: 5666:Lyman Page Jr. 5662:Norman Jarosik 5651: 5637: 5626:Takaaki Kajita 5583: 5582:project (2016) 5561: 5539: 5529: 5523: 5485: 5474:Nathan Seiberg 5470:Juan Maldacena 5446: 5444: 5436: 5435: 5433: 5432: 5426: 5420: 5414: 5408: 5402: 5396: 5393:James McKernan 5386: 5380: 5374: 5371:Richard Taylor 5351: 5349: 5343: 5342: 5334: 5333: 5326: 5319: 5311: 5305: 5304: 5299: 5294: 5289: 5284: 5277: 5276:External links 5274: 5271: 5270: 5241:(5): 53C02–0. 5225: 5199: 5143: 5111: 5062: 4997: 4968:(01): P01016. 4948: 4899: 4850: 4805: 4761: 4709: 4669: 4643: 4606:(5): 53C02–0. 4590: 4551: 4526: 4482:hep-ex/0606032 4459: 4444: 4427:hep-ex/0512041 4408: 4373: 4320: 4269:(10): P10019. 4253: 4194: 4135: 4082: 4014: 3970: 3903: 3882: 3842: 3797: 3758: 3727: 3710:Science | AAAS 3696: 3675:(4): 138–140. 3657: 3649: 3627: 3568: 3501: 3442:(19): 192501. 3426: 3359: 3308:(11): 112001. 3292: 3241:(11): 112003. 3225: 3174:(11): 112012. 3158: 3091: 3046:(11): 112010. 3026: 2959: 2892: 2825: 2758: 2707:(1): 106–135. 2660: 2630:hep-ph/0510213 2607: 2572: 2490: 2431: 2372:(18): 181801. 2353: 2275: 2236: 2206: 2176: 2150: 2149: 2147: 2144: 2141: 2140: 2129: 2128: 2126: 2123: 2122: 2121: 2114: 2111: 2090:Main article: 2087: 2084: 2082:oscillations. 2074:explosions in 2064: 2054: 2032: 2025: 2021: 2017: 1979: 1978: 1972: 1964: 1954: 1946: 1936: 1928: 1917: 1907: 1901: 1896: 1888: 1878: 1870: 1860: 1852: 1841: 1833: 1807: 1797: 1787: 1779: 1768: 1760: 1750: 1742: 1718: 1715: 1709: 1706: 1701:time of flight 1689: 1686: 1659: 1656: 1647:optical fibres 1632: 1629: 1624: 1623: 1619: 1615: 1560: 1557: 1544:power supplies 1500: 1497: 1490: 1482: 1466: 1453: 1443: 1431: 1428: 1410: 1407: 1370:muon neutrinos 1338:K2K experiment 1329: 1326: 1314: 1306: 1295: 1287: 1268: 1260: 1249: 1241: 1175:Main article: 1172: 1169: 1168: 1167: 1159: 1155: 1151: 1147: 1143: 1139: 1125:Signal readout 1121: 1120: 1111: 1104: 1085: 1082: 1081: 1050: 1047: 1033: 1030: 1024: 1021: 1015: 1012: 978: 975: 967: 959: 952: 951: 946: 938: 927: 919: 908: 900: 888:production in 876: 868: 852: 849: 845:magnetic field 841:UA1 experiment 826: 819: 818: 814: 807: 806: 805: 804: 803: 801: 800:ND280 detector 798: 792: 789: 753: 752:Signal readout 750: 749: 748: 744: 741: 732: 731:Near detectors 729: 717:away from the 706: 703: 687: 677: 667: 659: 648: 640: 630: 622: 615:magnetic horns 569: 562: 561: 560: 555: 548: 547: 543: 536: 535: 534: 533: 532: 530: 527: 521:and 5σ in the 514: 507: 498: 485: 463: 453: 442: 432: 421: 413: 402: 394: 386: 360:early universe 343: 332: 317: 312: 311: 303: 297: 270: 263: 259: 253: 246: 238: 227: 219: 208: 207: 204:cross-sections 200: 189: 185: 176: 167: 163: 150: 142: 131: 123: 111: 108: 76: 15: 9: 6: 4: 3: 2: 6979: 6968: 6965: 6963: 6960: 6958: 6955: 6953: 6950: 6949: 6947: 6932: 6929: 6927: 6924: 6922: 6919: 6917: 6914: 6912: 6909: 6908: 6906: 6902: 6896: 6893: 6891: 6888: 6886: 6883: 6881: 6878: 6876: 6873: 6871: 6868: 6866: 6863: 6862: 6860: 6856: 6850: 6847: 6845: 6842: 6840: 6837: 6835: 6832: 6830: 6827: 6825: 6822: 6820: 6817: 6815: 6812: 6810: 6807: 6805: 6802: 6800: 6797: 6795: 6792: 6790: 6787: 6786: 6784: 6780: 6774: 6771: 6769: 6766: 6764: 6761: 6759: 6756: 6754: 6751: 6749: 6746: 6744: 6741: 6739: 6736: 6734: 6731: 6729: 6726: 6724: 6721: 6719: 6716: 6714: 6711: 6709: 6706: 6704: 6701: 6699: 6696: 6694: 6691: 6689: 6686: 6684: 6681: 6679: 6676: 6674: 6671: 6669: 6666: 6664: 6661: 6659: 6656: 6654: 6651: 6649: 6646: 6644: 6641: 6639: 6636: 6634: 6631: 6629: 6626: 6624: 6621: 6619: 6616: 6614: 6611: 6609: 6606: 6605: 6603: 6599: 6593: 6590: 6588: 6585: 6583: 6580: 6578: 6575: 6573: 6570: 6568: 6565: 6563: 6560: 6558: 6555: 6553: 6550: 6549: 6547: 6543: 6533: 6530: 6528: 6525: 6524: 6522: 6518: 6512: 6509: 6507: 6504: 6502: 6499: 6497: 6494: 6492: 6489: 6487: 6484: 6482: 6479: 6477: 6474: 6472: 6469: 6468: 6466: 6464: 6460: 6454: 6451: 6449: 6446: 6445: 6443: 6439: 6433: 6430: 6428: 6425: 6423: 6420: 6418: 6415: 6413: 6410: 6408: 6405: 6403: 6400: 6398: 6395: 6393: 6390: 6389: 6387: 6383: 6377: 6374: 6372: 6369: 6367: 6364: 6362: 6359: 6358: 6356: 6352: 6346: 6343: 6341: 6338: 6336: 6333: 6331: 6328: 6326: 6323: 6321: 6318: 6316: 6313: 6311: 6308: 6306: 6303: 6301: 6298: 6296: 6293: 6291: 6288: 6286: 6283: 6282: 6280: 6278: 6274: 6271: 6259: 6252: 6249: 6247: 6244: 6241: 6220: 6217: 6214: 6193: 6190: 6187: 6166: 6163: 6162: 6160: 6156: 6152: 6145: 6140: 6138: 6133: 6131: 6126: 6125: 6122: 6109: 6105: 6101: 6100:Thomas Gasser 6097: 6093: 6089: 6088:Sabine Hadida 6085: 6081: 6078: 6075: 6071: 6067: 6063: 6059: 6055: 6052: 6049: 6045: 6041: 6037: 6036:Drew Weissman 6033: 6029: 6026: 6021: 6016: 6012: 6008: 6004: 6001: 5998: 5994: 5990: 5986: 5982: 5979: 5976: 5972: 5968: 5967:Angelika Amon 5964: 5960: 5957: 5954: 5950: 5946: 5942: 5938: 5935: 5932: 5928: 5924: 5923:Roeland Nusse 5920: 5916: 5913: 5910: 5906: 5902: 5898: 5894: 5893:Edward Boyden 5891: 5888: 5884: 5880: 5876: 5875:Victor Ambros 5872: 5868: 5865: 5862: 5858: 5854: 5850: 5846: 5845:Mahlon DeLong 5842: 5839: 5836: 5832: 5828: 5824: 5820: 5816: 5812: 5808: 5804: 5800: 5796: 5793: 5792: 5790: 5788: 5787:Life sciences 5784: 5777: 5773: 5770: 5767: 5766:Peter W. Shor 5763: 5762:David Deutsch 5759: 5755: 5752: 5749: 5745: 5742: 5739: 5735: 5732: 5729: 5728:Blayne Heckel 5725: 5721: 5718: 5715: 5712: 5709: 5705: 5701: 5697: 5694: 5691: 5687: 5684: 5681: 5677: 5674: 5671: 5670:David Spergel 5667: 5663: 5659: 5655: 5652: 5649: 5645: 5641: 5638: 5635: 5631: 5627: 5623: 5619: 5615: 5611: 5607: 5603: 5599: 5598:Atsuto Suzuki 5595: 5594:Daya Bay team 5591: 5587: 5584: 5581: 5577: 5573: 5569: 5568:Ronald Drever 5565: 5562: 5559: 5555: 5551: 5550:Brian Schmidt 5547: 5543: 5540: 5537: 5533: 5532:Michael Green 5530: 5527: 5524: 5521: 5517: 5513: 5512:Guido Tonelli 5509: 5505: 5501: 5497: 5493: 5489: 5486: 5483: 5482:Edward Witten 5479: 5475: 5471: 5467: 5463: 5459: 5458:Alexei Kitaev 5455: 5451: 5448: 5447: 5445: 5443: 5437: 5430: 5429:Simon Brendle 5427: 5424: 5421: 5418: 5415: 5412: 5411:Martin Hairer 5409: 5406: 5403: 5400: 5397: 5394: 5390: 5387: 5384: 5383:Jean Bourgain 5381: 5378: 5375: 5372: 5368: 5364: 5360: 5356: 5353: 5352: 5350: 5348: 5344: 5339: 5332: 5327: 5325: 5320: 5318: 5313: 5312: 5309: 5303: 5300: 5298: 5295: 5293: 5290: 5288: 5285: 5283: 5280: 5279: 5266: 5262: 5258: 5254: 5249: 5244: 5240: 5236: 5229: 5213: 5209: 5203: 5195: 5191: 5187: 5183: 5179: 5175: 5170: 5165: 5161: 5157: 5150: 5148: 5132: 5128: 5124: 5118: 5116: 5107: 5103: 5098: 5093: 5089: 5085: 5082:(1): 012028. 5081: 5077: 5073: 5066: 5058: 5054: 5050: 5046: 5042: 5038: 5034: 5030: 5025: 5020: 5016: 5012: 5008: 5007:Zeller, G. P. 5001: 4993: 4989: 4985: 4981: 4976: 4971: 4967: 4963: 4959: 4952: 4944: 4940: 4936: 4932: 4927: 4922: 4918: 4914: 4910: 4903: 4895: 4891: 4887: 4883: 4878: 4873: 4869: 4865: 4861: 4854: 4846: 4840: 4829:September 29, 4824: 4820: 4816: 4809: 4801: 4795: 4786: 4781: 4774: 4772: 4770: 4768: 4766: 4757: 4753: 4748: 4743: 4739: 4735: 4732:(1): 012042. 4731: 4727: 4723: 4716: 4714: 4705: 4699: 4690: 4685: 4678: 4676: 4674: 4664: 4659: 4652: 4650: 4648: 4639: 4635: 4631: 4627: 4623: 4619: 4614: 4609: 4605: 4601: 4594: 4576: 4572: 4565: 4558: 4556: 4540: 4536: 4530: 4522: 4516: 4508: 4504: 4500: 4496: 4492: 4488: 4483: 4478: 4475:(7): 072003. 4474: 4470: 4463: 4455: 4451: 4447: 4441: 4437: 4433: 4428: 4423: 4419: 4412: 4404: 4400: 4396: 4392: 4388: 4384: 4377: 4369: 4365: 4361: 4357: 4353: 4349: 4344: 4339: 4335: 4331: 4324: 4316: 4310: 4302: 4298: 4294: 4290: 4286: 4282: 4277: 4272: 4268: 4264: 4257: 4249: 4243: 4235: 4231: 4227: 4223: 4218: 4213: 4209: 4205: 4198: 4190: 4184: 4176: 4172: 4168: 4164: 4159: 4154: 4150: 4146: 4139: 4131: 4127: 4123: 4119: 4115: 4111: 4106: 4101: 4097: 4093: 4086: 4077: 4072: 4067: 4062: 4058: 4054: 4051:(1): 012030. 4050: 4046: 4042: 4035: 4033: 4031: 4029: 4027: 4025: 4023: 4021: 4019: 4009: 4004: 4000: 3993: 3991: 3989: 3987: 3985: 3983: 3981: 3979: 3977: 3975: 3966: 3960: 3952: 3948: 3944: 3940: 3936: 3932: 3927: 3922: 3919:(1): 012001. 3918: 3914: 3907: 3898: 3893: 3886: 3878: 3872: 3863: 3858: 3851: 3849: 3847: 3838: 3834: 3830: 3826: 3821: 3816: 3813:(3): 032004. 3812: 3808: 3801: 3785: 3781: 3777: 3773: 3769: 3762: 3746: 3742: 3738: 3731: 3715: 3711: 3707: 3700: 3691: 3686: 3682: 3678: 3674: 3670: 3669: 3664: 3641: 3637: 3631: 3623: 3617: 3609: 3605: 3601: 3597: 3592: 3587: 3584:(9): 093C02. 3583: 3579: 3572: 3564: 3558: 3550: 3546: 3542: 3538: 3534: 3530: 3525: 3520: 3517:(7): 072012. 3516: 3512: 3505: 3497: 3491: 3483: 3479: 3475: 3471: 3467: 3463: 3459: 3455: 3450: 3445: 3441: 3437: 3430: 3422: 3416: 3408: 3404: 3400: 3396: 3392: 3388: 3383: 3378: 3375:(1): 012010. 3374: 3370: 3363: 3355: 3349: 3341: 3337: 3333: 3329: 3325: 3321: 3316: 3311: 3307: 3303: 3296: 3288: 3282: 3274: 3270: 3266: 3262: 3258: 3254: 3249: 3244: 3240: 3236: 3229: 3221: 3215: 3207: 3203: 3199: 3195: 3191: 3187: 3182: 3177: 3173: 3169: 3162: 3154: 3148: 3140: 3136: 3132: 3128: 3124: 3120: 3115: 3110: 3107:(9): 092003. 3106: 3102: 3095: 3087: 3081: 3072: 3067: 3063: 3059: 3054: 3049: 3045: 3041: 3037: 3030: 3022: 3016: 3008: 3004: 3000: 2996: 2992: 2988: 2983: 2978: 2974: 2970: 2963: 2955: 2949: 2941: 2937: 2933: 2929: 2925: 2921: 2916: 2911: 2908:(7): 071103. 2907: 2903: 2896: 2888: 2882: 2874: 2870: 2866: 2862: 2858: 2854: 2849: 2844: 2841:(5): 051102. 2840: 2836: 2829: 2821: 2815: 2807: 2803: 2799: 2795: 2791: 2787: 2782: 2777: 2774:(3): 032002. 2773: 2769: 2762: 2754: 2748: 2740: 2736: 2732: 2728: 2724: 2720: 2715: 2710: 2706: 2702: 2695: 2693: 2691: 2689: 2687: 2685: 2683: 2681: 2679: 2677: 2675: 2673: 2671: 2669: 2667: 2665: 2656: 2652: 2648: 2644: 2640: 2636: 2631: 2626: 2622: 2618: 2611: 2603: 2599: 2595: 2591: 2587: 2583: 2576: 2560: 2556: 2552: 2548: 2544: 2540: 2536: 2532: 2528: 2523: 2518: 2514: 2510: 2506: 2499: 2497: 2495: 2486: 2480: 2472: 2468: 2464: 2460: 2455: 2450: 2446: 2442: 2435: 2427: 2421: 2413: 2409: 2405: 2401: 2397: 2393: 2389: 2385: 2380: 2375: 2371: 2367: 2360: 2358: 2349: 2343: 2335: 2331: 2327: 2323: 2319: 2315: 2311: 2307: 2302: 2297: 2294:(4): 041801. 2293: 2289: 2282: 2280: 2264: 2260: 2256: 2249: 2247: 2245: 2243: 2241: 2224: 2220: 2216: 2210: 2194: 2190: 2186: 2180: 2165: 2161: 2155: 2151: 2134: 2130: 2120: 2117: 2116: 2110: 2107: 2103: 2099: 2093: 2083: 2081: 2077: 2073: 2048: 2044: 2041: 2036: 2014: 2012: 2008: 2004: 2000: 1996: 1992: 1991:excited state 1988: 1984: 1902: 1828: 1827: 1826: 1824: 1821:. Because of 1820: 1816: 1736: 1732: 1728: 1724: 1714: 1705: 1702: 1698: 1695: 1685: 1682: 1677: 1673: 1664: 1655: 1653: 1648: 1644: 1641: 1638: 1637:scintillating 1628: 1622:interactions. 1620: 1616: 1613: 1612: 1611: 1608: 1606: 1602: 1598: 1594: 1590: 1586: 1582: 1578: 1574: 1565: 1559:ND280 Upgrade 1556: 1554: 1550: 1545: 1540: 1537: 1533: 1529: 1525: 1519: 1517: 1514: 1510: 1506: 1496: 1476: 1472: 1465: 1461: 1449: 1442: 1438: 1427: 1425: 1421: 1416: 1406: 1403: 1397: 1395: 1391: 1387: 1383: 1377: 1375: 1371: 1367: 1366:disappearance 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1335: 1325: 1323: 1281: 1277: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1204: 1196: 1192: 1188: 1185:Detection of 1183: 1178: 1165: 1160: 1156: 1137: 1136: 1135: 1133: 1128: 1126: 1117: 1112: 1109: 1105: 1102: 1099: 1095: 1091: 1090: 1089: 1079: 1075: 1071: 1070: 1069: 1066: 1064: 1055: 1046: 1044: 1040: 1029: 1020: 1011: 1009: 1005: 1001: 996: 992: 988: 984: 974: 895: 894: 893: 891: 887: 882: 863:The Pi-Zero ( 857: 848: 846: 842: 836: 823: 811: 797: 788: 785: 781: 778: 774: 771: 767: 758: 745: 742: 739: 738: 737: 728: 725: 720: 716: 712: 711:neutrino beam 705:Off-axis beam 702: 700: 696: 616: 612: 608: 604: 600: 596: 593:(Main Ring). 592: 588: 584: 580: 566: 552: 540: 529:Neutrino beam 526: 524: 520: 513: 506: 494: 489: 484: 480: 476: 472: 385: 381: 376: 374: 369: 365: 361: 357: 353: 349: 342: 338: 331: 327: 323: 316: 309: 302: 298: 295: 291: 287: 283: 279: 275: 274:cross-section 271: 268: 264: 258: 254: 213: 212: 211: 205: 201: 198: 194: 190: 184: 172: 168: 162: 158: 117: 116: 115: 107: 105: 101: 97: 93: 88: 86: 82: 75: 71: 68: 67:muon neutrino 64: 59: 57: 53: 49: 45: 41: 37: 33: 29: 25: 21: 6880:NEMO Project 6638:Double Chooz 6545:Construction 6431: 6277:Astronomical 6165:Cowan–Reines 6048:Pascal Mayer 5993:David Julius 5975:Zhijian Chen 5941:Peter Walter 5937:Joanne Chory 5909:Svante Pääbo 5807:Hans Clevers 5733: 5695: 5686:Charles Kane 5675: 5658:Gary Hinshaw 5613: 5576:Rainer Weiss 5563: 5522:(LHC) (2013) 5487: 5466:Andrei Linde 5238: 5234: 5228: 5216:. Retrieved 5202: 5159: 5155: 5135:. Retrieved 5126: 5079: 5075: 5065: 5049:1721.1/75437 5014: 5010: 5000: 4965: 4961: 4951: 4916: 4912: 4902: 4867: 4863: 4853: 4839:cite journal 4827:. Retrieved 4818: 4808: 4729: 4725: 4603: 4599: 4593: 4582:. Retrieved 4570: 4543:. Retrieved 4529: 4515:cite journal 4472: 4468: 4462: 4417: 4411: 4386: 4382: 4376: 4333: 4329: 4323: 4309:cite journal 4266: 4262: 4256: 4242:cite journal 4207: 4203: 4197: 4183:cite journal 4151:(1): 25–46. 4148: 4144: 4138: 4095: 4091: 4085: 4048: 4044: 3998: 3959:cite journal 3916: 3912: 3906: 3885: 3810: 3806: 3800: 3790:30 September 3788:. Retrieved 3772:Neutrino2020 3771: 3761: 3749:. Retrieved 3740: 3730: 3718:. Retrieved 3709: 3699: 3672: 3666: 3636:J. W. Cronin 3630: 3616:cite journal 3581: 3577: 3571: 3557:cite journal 3514: 3510: 3504: 3490:cite journal 3439: 3435: 3429: 3415:cite journal 3372: 3368: 3362: 3348:cite journal 3305: 3301: 3295: 3281:cite journal 3238: 3234: 3228: 3214:cite journal 3171: 3167: 3161: 3147:cite journal 3104: 3100: 3094: 3080:cite journal 3043: 3039: 3029: 3015:cite journal 2972: 2968: 2962: 2948:cite journal 2905: 2901: 2895: 2881:cite journal 2838: 2834: 2828: 2814:cite journal 2771: 2767: 2761: 2747:cite journal 2704: 2700: 2620: 2616: 2610: 2588:(1): 45–47. 2585: 2581: 2575: 2563:. Retrieved 2512: 2508: 2479:cite journal 2444: 2440: 2434: 2420:cite journal 2369: 2365: 2342:cite journal 2291: 2287: 2267:. Retrieved 2258: 2227:. Retrieved 2218: 2209: 2197:. Retrieved 2188: 2179: 2168:. Retrieved 2154: 2133: 2095: 2049:, for which 2015: 1980: 1720: 1711: 1697:scintillator 1691: 1669: 1652:antineutrino 1634: 1625: 1618:information. 1609: 1570: 1541: 1520: 1502: 1499:Beam upgrade 1463: 1447: 1440: 1433: 1412: 1409:Future plans 1398: 1378: 1348:facility in 1331: 1232:produced in 1200: 1129: 1122: 1101:scintillator 1083: 1078:scintillator 1067: 1060: 1035: 1026: 1017: 980: 953: 883: 862: 837: 833: 794: 773:scintillator 763: 734: 708: 697:and charged 587:accelerators 576: 525:experiment. 511: 504: 492: 490: 482: 383: 377: 373:leptogenesis 368:CP violation 340: 336: 329: 325: 321: 314: 313: 300: 265:Limits on a 256: 209: 182: 170: 166:is not zero. 160: 157:oscillations 113: 89: 73: 60: 36:oscillations 19: 18: 6486:KamLAND-Zen 6385:Accelerator 6263:(divided by 6158:Discoveries 6066:John Jumper 6018: [ 6003:David Baker 5949:Kim Nasmyth 5931:Huda Zoghbi 5905:Helen Hobbs 5879:Gary Ruvkun 5819:Eric Lander 5690:Eugene Mele 5648:Cumrun Vafa 5636:team (2016) 5590:Kam-Biu Luk 5586:Yifang Wang 5496:Peter Jenni 5440:Fundamental 5367:Terence Tao 5363:Jacob Lurie 5347:Mathematics 4336:: 135–146. 4076:2433/235156 3640:V. L. Fitch 2975:(10): 114. 2043:octahydrate 1640:polystyrene 1509:accelerator 1439:parameters 1437:oscillation 1396:neutrinos. 1394:accelerator 1386:atmospheric 1322:oscillation 1206:cylindrical 1164:Combination 1162:detectors. 1132:oscillation 1043:cosmic rays 591:synchrotron 191:Search for 6946:Categories 6703:Kamiokande 6658:Gargamelle 6562:Baikal-GVD 6417:NA61/SHINE 6402:MicroBooNE 5901:John Hardy 5772:John Cardy 5572:Kip Thorne 5554:Adam Riess 5518:(CMS) and 5478:Ashoke Sen 5405:Alex Eskin 5248:1502.05199 5169:2109.00360 5162:: 166248. 5137:2021-10-07 4975:2109.03078 4926:2303.04481 4919:: 168534. 4877:1707.01785 4794:cite arXiv 4785:1901.03750 4698:cite arXiv 4689:1908.05141 4663:1805.04163 4613:1502.05199 4584:2021-09-29 4545:2020-03-31 4008:1704.08079 3897:1805.04163 3871:cite arXiv 3862:1609.04111 3820:2108.08219 3591:1904.09611 3449:1604.04406 3382:1605.07964 3315:2002.09323 3181:1602.03652 3053:1503.08815 2982:2002.11986 2915:1902.06529 2522:1910.03887 2454:1502.01550 2447:: 072010. 2269:2021-09-29 2229:20 January 2170:2020-03-31 2146:References 2076:our galaxy 1995:gamma rays 1723:gadolinium 1676:MicroMegas 1507:Main Ring 1475:gadolinium 1415:gadolinium 987:MicroMegas 348:conditions 262:parameter. 87:Universe. 6858:Cancelled 6678:Homestake 6628:Cuoricino 6592:SuperNEMO 6412:MiniBooNE 6261:Operating 6080:Carl June 6011:Dennis Lo 5520:Lyn Evans 5502:(ATLAS), 5454:Alan Guth 5340:laureates 5194:237372721 5106:121098709 5024:1305.7513 4992:1748-0221 4894:1748-0221 4756:1742-6588 4638:2050-3911 4454:117059077 4368:119280423 4343:1206.3553 4276:1308.3445 4217:1204.3666 4158:1012.0865 4130:118606685 4105:1111.5030 4098:: 48–63. 3926:1211.0469 3837:237195004 3524:1403.3140 3340:211252681 3273:118125266 3248:1411.6264 3114:1302.4908 3007:211532582 2940:119331309 2848:1410.8811 2781:1304.0841 2714:1106.1238 2655:119092531 2555:203951445 2441:Phys. Rev 2379:1403.1532 2301:1106.2822 2138:detector. 2072:supernova 1725:into the 1681:resistive 1581:electrons 1477:to allow 1420:Cherenkov 1230:electrons 1187:electrons 605:, mainly 479:Minnesota 475:Ash River 58:in 2027. 6904:See also 6849:WATCHMAN 6799:JEM-EUSO 6782:Proposed 6768:Soudan 2 6758:SciBooNE 6491:MAJORANA 6441:Collider 6361:Daya Bay 6305:Borexino 6267:neutrino 5632:and the 5620:and the 5608:and the 5600:and the 5592:and the 5377:Ian Agol 5212:Archived 5131:Archived 5057:54087013 4823:Archived 4575:Archived 4539:Archived 4507:22053653 4301:55993395 4210:: 1–31. 3951:55114627 3784:Archived 3751:18 April 3745:Archived 3720:19 April 3714:Archived 3549:53641707 3482:27564132 3474:27858422 3407:16748058 3206:35063421 3139:54889936 2873:54629105 2806:53322828 2739:55962579 2565:16 April 2559:Archived 2547:32296192 2471:34184232 2412:11484010 2404:24856687 2334:16654679 2326:21866992 2263:Archived 2223:Archived 2221:. CERN. 2193:Archived 2191:. CERN. 2164:Archived 2113:See also 2011:hydrogen 1987:absorbed 1654:energy. 1631:SuperFGD 1597:nucleons 1585:neutrino 1553:graphite 1197:detector 1072:Two new 1063:neutrino 1004:momentum 599:graphite 471:Fermilab 272:Various 30:") is a 6829:Nucifer 6648:EXO-200 6601:Retired 6557:ARIANNA 6453:SND@LHC 6407:MINERνA 6366:KamLAND 6354:Reactor 6320:IceCube 6290:ANTARES 6269:source) 6265:primary 6251:SN 1987 5734:Special 5696:Special 5676:Special 5602:KamLAND 5564:Special 5488:Special 5442:physics 5253:Bibcode 5218:1 April 5174:Bibcode 5084:Bibcode 5029:Bibcode 4931:Bibcode 4734:Bibcode 4618:Bibcode 4487:Bibcode 4391:Bibcode 4348:Bibcode 4281:Bibcode 4222:Bibcode 4163:Bibcode 4110:Bibcode 4053:Bibcode 3931:Bibcode 3677:Bibcode 3596:Bibcode 3529:Bibcode 3454:Bibcode 3387:Bibcode 3320:Bibcode 3253:Bibcode 3186:Bibcode 3119:Bibcode 3058:Bibcode 2987:Bibcode 2920:Bibcode 2853:Bibcode 2786:Bibcode 2719:Bibcode 2635:Bibcode 2590:Bibcode 2527:Bibcode 2384:Bibcode 2306:Bibcode 2199:9 March 2007:thermal 1819:nucleus 1815:nucleon 1694:plastic 1573:leptons 1549:cooling 1368:of the 1350:Tsukuba 1328:History 1276:showers 1193:in the 1116:ferrite 1098:plastic 1039:trigger 933:+ N’ + 770:plastic 747:energy. 715:degrees 699:leptons 695:hadrons 595:Protons 356:produce 38:of the 28:Kamioka 6926:SNOLAB 6870:LAGUNA 6814:LEGEND 6733:MINOS+ 6708:KARMEN 6683:ICARUS 6653:GALLEX 6608:AMANDA 6587:KM3NeT 6527:KATRIN 6501:PandaX 6376:STEREO 6236:τ 6231:ν 6209:μ 6204:ν 6177:ν 6110:(2024) 6076:(2023) 6050:(2022) 6024:(2021) 5999:(2020) 5977:(2019) 5955:(2018) 5933:(2017) 5911:(2016) 5889:(2015) 5863:(2014) 5837:(2013) 5778:(2024) 5768:(2023) 5750:(2022) 5748:Jun Ye 5740:(2021) 5730:(2021) 5716:(2020) 5710:(2019) 5692:(2019) 5682:(2018) 5672:(2018) 5650:(2017) 5624:team, 5616:team, 5604:team, 5560:(2015) 5538:(2014) 5528:(2013) 5484:(2012) 5431:(2024) 5425:(2023) 5419:(2022) 5413:(2021) 5407:(2020) 5401:(2019) 5395:(2018) 5385:(2017) 5379:(2016) 5373:(2015) 5192:  5104:  5055:  4990:  4892:  4754:  4636:  4505:  4452:  4442:  4366:  4299:  4128:  3949:  3835:  3663:meson" 3547:  3480:  3472:  3405:  3338:  3271:  3204:  3137:  3005:  2938:  2871:  2804:  2737:  2653:  2553:  2545:  2509:Nature 2469:  2410:  2402:  2332:  2324:  2059:ν 1912:ν 1837:ν 1808:μ 1802:ν 1783:μ 1774:while 1769:μ 1764:ν 1746:μ 1737:(e.g. 1735:lepton 1731:charge 1513:proton 1505:J-PARC 1486:ν 1430:T2K-II 1364:) the 1310:ν 1296:μ 1291:ν 1280:lepton 1264:ν 1250:μ 1245:ν 1094:INGRID 1000:charge 995:ionise 981:Three 963:π 942:π 928:μ 923:ν 914:+ N → 909:μ 904:ν 872:π 780:fibres 688:μ 682:ν 663:μ 649:μ 644:ν 626:μ 603:mesons 583:J-PARC 519:T2K-II 458:ν 443:μ 437:ν 417:ν 403:μ 398:ν 286:carbon 242:ν 228:μ 223:ν 146:ν 132:μ 127:ν 92:J-PARC 52:T2K-II 6895:BOREX 6834:P-ONE 6804:GRAND 6789:CUPID 6748:OPERA 6728:MINOS 6723:MACRO 6663:GERDA 6633:DONUT 6618:Chooz 6532:WITCH 6520:Other 6511:XMASS 6481:CUORE 6476:COBRA 6471:AMoRE 6448:FASER 6392:ANNIE 6345:SNEWS 6330:NEVOD 6300:BDUNT 6285:ANITA 6219:DONUT 6022:] 5243:arXiv 5190:S2CID 5164:arXiv 5102:S2CID 5053:S2CID 5019:arXiv 4970:arXiv 4921:arXiv 4872:arXiv 4780:arXiv 4684:arXiv 4658:arXiv 4608:arXiv 4578:(PDF) 4567:(PDF) 4503:S2CID 4477:arXiv 4450:S2CID 4422:arXiv 4364:S2CID 4338:arXiv 4297:S2CID 4271:arXiv 4212:arXiv 4153:arXiv 4126:S2CID 4100:arXiv 4003:arXiv 3947:S2CID 3921:arXiv 3892:arXiv 3857:arXiv 3833:S2CID 3815:arXiv 3586:arXiv 3545:S2CID 3519:arXiv 3478:S2CID 3444:arXiv 3403:S2CID 3377:arXiv 3336:S2CID 3310:arXiv 3269:S2CID 3243:arXiv 3202:S2CID 3176:arXiv 3135:S2CID 3109:arXiv 3048:arXiv 3003:S2CID 2977:arXiv 2936:S2CID 2910:arXiv 2869:S2CID 2843:arXiv 2802:S2CID 2776:arXiv 2735:S2CID 2709:arXiv 2651:S2CID 2625:arXiv 2551:S2CID 2517:arXiv 2467:S2CID 2449:arXiv 2408:S2CID 2374:arXiv 2330:S2CID 2296:arXiv 2125:Notes 1717:SK-Gd 1658:HATPC 1643:cubes 1593:kaons 1589:pions 1577:muons 1532:kaons 1528:pions 1524:horns 1446:and Δ 1390:solar 1354:Japan 1340:, an 1226:muons 1210:water 1191:muons 1074:water 991:argon 886:pions 611:kaons 607:pions 290:water 65:in a 44:Japan 24:Tokai 6921:LNGS 6839:SBND 6819:LENA 6794:nEXO 6773:Utah 6753:RICE 6743:NEMO 6738:NARC 6718:LSND 6688:IGEX 6643:ERPM 6623:CNGS 6613:CDHS 6582:JUNO 6572:DUNE 6567:BEST 6506:SNO+ 6496:NEXT 6463:0νββ 6427:NuMI 6422:NOvA 6371:RENO 6335:SAGE 6315:HALO 6310:BUST 6106:and 6046:and 5961:and 5907:and 5885:and 5859:and 5833:and 5774:and 5746:and 5726:and 5688:and 5628:and 5580:LIGO 5534:and 5369:and 5239:2015 5220:2020 5160:1027 4988:ISSN 4917:1056 4890:ISSN 4845:link 4831:2021 4800:link 4752:ISSN 4704:link 4634:ISSN 4604:2015 4521:link 4440:ISBN 4315:link 4248:link 4189:link 3965:link 3877:link 3792:2021 3753:2020 3722:2020 3622:link 3582:2019 3563:link 3496:link 3470:PMID 3421:link 3354:link 3287:link 3220:link 3153:link 3086:link 3021:link 2973:2020 2954:link 2887:link 2820:link 2753:link 2567:2020 2543:PMID 2485:link 2426:link 2400:PMID 2348:link 2322:PMID 2231:2020 2201:2021 1601:bias 1579:and 1516:beam 1392:and 1301:and 1255:and 1228:and 1218:cone 1189:and 1108:iron 1041:for 1002:and 672:and 635:and 609:and 579:beam 503:and 427:and 380:NOvA 378:The 294:iron 292:and 181:and 100:Hida 70:beam 48:CERN 6890:SOX 6844:UNO 6809:INO 6763:SNO 6713:KGF 6698:K2K 6693:IMB 6668:GNO 6552:ARA 6432:T2K 6325:LVD 6295:ASD 5614:T2K 5610:K2K 5261:doi 5182:doi 5092:doi 5080:309 5045:hdl 5037:doi 4980:doi 4939:doi 4882:doi 4742:doi 4730:888 4626:doi 4495:doi 4432:doi 4399:doi 4387:501 4356:doi 4334:698 4289:doi 4230:doi 4208:696 4171:doi 4149:637 4118:doi 4096:686 4071:hdl 4061:doi 4049:675 3939:doi 3825:doi 3811:106 3776:doi 3685:doi 3604:doi 3537:doi 3462:doi 3440:117 3395:doi 3328:doi 3306:101 3261:doi 3194:doi 3127:doi 3066:doi 2995:doi 2928:doi 2861:doi 2794:doi 2727:doi 2705:659 2643:doi 2598:doi 2586:174 2535:doi 2513:580 2459:doi 2445:D91 2392:doi 2370:112 2314:doi 2292:107 2020:(SO 1792:by 1688:TOF 1346:KEK 1334:K2K 1220:of 324:to 26:to 20:T2K 6948:: 6102:, 6098:, 6094:, 6090:, 6086:, 6082:, 6072:, 6068:, 6064:, 6060:, 6056:, 6042:, 6038:, 6034:, 6030:, 6020:de 6013:, 6009:, 6005:, 5995:, 5991:, 5987:, 5983:, 5973:, 5969:, 5965:, 5951:, 5947:, 5943:, 5939:, 5929:, 5925:, 5921:, 5917:, 5903:, 5899:, 5895:, 5881:, 5877:, 5873:, 5869:, 5855:, 5851:, 5847:, 5843:, 5829:, 5825:, 5821:, 5817:, 5813:, 5809:, 5805:, 5801:, 5797:, 5764:, 5760:, 5756:, 5736:: 5722:, 5706:, 5702:, 5698:: 5678:: 5668:, 5664:, 5660:, 5656:, 5646:, 5642:, 5612:/ 5596:, 5588:, 5574:, 5570:, 5566:: 5552:, 5548:; 5514:, 5510:, 5506:, 5498:, 5494:, 5490:: 5480:, 5476:, 5472:, 5468:, 5464:, 5460:, 5456:, 5452:, 5391:, 5365:, 5361:, 5357:, 5259:. 5251:. 5237:. 5188:. 5180:. 5172:. 5158:. 5146:^ 5129:. 5125:. 5114:^ 5100:. 5090:. 5078:. 5074:. 5051:. 5043:. 5035:. 5027:. 5015:84 5013:. 4986:. 4978:. 4966:17 4964:. 4960:. 4937:. 4929:. 4915:. 4911:. 4888:. 4880:. 4868:13 4866:. 4862:. 4841:}} 4837:{{ 4817:. 4796:}} 4792:{{ 4764:^ 4750:. 4740:. 4728:. 4724:. 4712:^ 4700:}} 4696:{{ 4672:^ 4646:^ 4632:. 4624:. 4616:. 4602:. 4569:. 4554:^ 4537:. 4517:}} 4513:{{ 4501:. 4493:. 4485:. 4473:74 4471:. 4448:. 4438:. 4430:. 4397:. 4385:. 4362:. 4354:. 4346:. 4332:. 4311:}} 4307:{{ 4295:. 4287:. 4279:. 4265:. 4244:}} 4240:{{ 4228:. 4220:. 4206:. 4185:}} 4181:{{ 4169:. 4161:. 4147:. 4124:. 4116:. 4108:. 4094:. 4069:. 4059:. 4047:. 4043:. 4017:^ 3973:^ 3961:}} 3957:{{ 3945:. 3937:. 3929:. 3917:87 3915:. 3873:}} 3869:{{ 3845:^ 3831:. 3823:. 3809:. 3782:. 3774:. 3770:. 3743:. 3739:. 3712:. 3708:. 3683:. 3673:13 3671:. 3665:. 3638:; 3618:}} 3614:{{ 3602:. 3594:. 3580:. 3559:}} 3555:{{ 3543:. 3535:. 3527:. 3515:90 3513:. 3492:}} 3488:{{ 3476:. 3468:. 3460:. 3452:. 3438:. 3417:}} 3413:{{ 3401:. 3393:. 3385:. 3373:95 3371:. 3350:}} 3346:{{ 3334:. 3326:. 3318:. 3304:. 3283:}} 3279:{{ 3267:. 3259:. 3251:. 3239:92 3237:. 3216:}} 3212:{{ 3200:. 3192:. 3184:. 3172:93 3170:. 3149:}} 3145:{{ 3133:. 3125:. 3117:. 3105:87 3103:. 3082:}} 3078:{{ 3064:. 3056:. 3044:91 3042:. 3038:. 3017:}} 3013:{{ 3001:. 2993:. 2985:. 2971:. 2950:}} 2946:{{ 2934:. 2926:. 2918:. 2906:99 2904:. 2883:}} 2879:{{ 2867:. 2859:. 2851:. 2839:91 2837:. 2816:}} 2812:{{ 2800:. 2792:. 2784:. 2772:88 2770:. 2749:}} 2745:{{ 2733:. 2725:. 2717:. 2703:. 2663:^ 2649:. 2641:. 2633:. 2621:70 2619:. 2596:. 2584:. 2557:. 2549:. 2541:. 2533:. 2525:. 2511:. 2507:. 2493:^ 2481:}} 2477:{{ 2465:. 2457:. 2443:. 2422:}} 2418:{{ 2406:. 2398:. 2390:. 2382:. 2368:. 2356:^ 2344:}} 2340:{{ 2328:. 2320:. 2312:. 2304:. 2290:. 2278:^ 2261:. 2257:. 2239:^ 2217:. 2187:. 2162:. 2028:·8 1959:+ 1941:→ 1923:+ 1883:+ 1865:→ 1847:+ 1607:. 1595:, 1591:, 1530:, 1471:CP 1467:CP 1454:23 1444:23 1388:, 1376:. 1127:. 1010:. 515:CP 508:23 499:23 486:CP 477:, 387:CP 366:. 344:CP 333:CP 318:CP 304:CP 288:, 260:23 186:23 177:23 164:13 137:→ 102:, 77:23 22:(" 6242:) 6221:( 6215:) 6194:( 6188:) 6182:e 6167:( 6143:e 6136:t 6129:v 5330:e 5323:t 5316:v 5267:. 5263:: 5255:: 5245:: 5222:. 5196:. 5184:: 5176:: 5166:: 5140:. 5108:. 5094:: 5086:: 5059:. 5047:: 5039:: 5031:: 5021:: 4994:. 4982:: 4972:: 4945:. 4941:: 4933:: 4923:: 4896:. 4884:: 4874:: 4847:) 4833:. 4802:) 4788:. 4782:: 4758:. 4744:: 4736:: 4706:) 4692:. 4686:: 4666:. 4660:: 4640:. 4628:: 4620:: 4610:: 4587:. 4548:. 4523:) 4509:. 4497:: 4489:: 4479:: 4456:. 4434:: 4424:: 4405:. 4401:: 4393:: 4370:. 4358:: 4350:: 4340:: 4317:) 4303:. 4291:: 4283:: 4273:: 4267:8 4250:) 4236:. 4232:: 4224:: 4214:: 4191:) 4177:. 4173:: 4165:: 4155:: 4132:. 4120:: 4112:: 4102:: 4079:. 4073:: 4063:: 4055:: 4011:. 4005:: 3967:) 3953:. 3941:: 3933:: 3923:: 3900:. 3894:: 3879:) 3865:. 3859:: 3839:. 3827:: 3817:: 3794:. 3778:: 3755:. 3724:. 3693:. 3687:: 3679:: 3658:2 3653:K 3624:) 3610:. 3606:: 3598:: 3588:: 3565:) 3551:. 3539:: 3531:: 3521:: 3498:) 3484:. 3464:: 3456:: 3446:: 3423:) 3409:. 3397:: 3389:: 3379:: 3356:) 3342:. 3330:: 3322:: 3312:: 3289:) 3275:. 3263:: 3255:: 3245:: 3222:) 3208:. 3196:: 3188:: 3178:: 3155:) 3141:. 3129:: 3121:: 3111:: 3088:) 3074:. 3068:: 3060:: 3050:: 3023:) 3009:. 2997:: 2989:: 2979:: 2956:) 2942:. 2930:: 2922:: 2912:: 2889:) 2875:. 2863:: 2855:: 2845:: 2822:) 2808:. 2796:: 2788:: 2778:: 2755:) 2741:. 2729:: 2721:: 2711:: 2657:. 2645:: 2637:: 2627:: 2604:. 2600:: 2592:: 2569:. 2537:: 2529:: 2519:: 2487:) 2473:. 2461:: 2451:: 2428:) 2414:. 2394:: 2386:: 2376:: 2350:) 2336:. 2316:: 2308:: 2298:: 2272:. 2233:. 2203:. 2173:. 2065:e 2038:( 2035:O 2033:2 2031:H 2026:3 2024:) 2022:4 2018:2 1977:. 1968:n 1950:ℓ 1932:p 1918:l 1892:p 1874:ℓ 1856:n 1842:l 1575:( 1464:δ 1460:σ 1448:m 1441:θ 1362:σ 1352:( 1315:e 1269:e 1152:2 1148:2 1144:2 1140:2 1086:2 1076:- 512:δ 505:θ 493:m 483:δ 464:e 448:→ 422:e 408:→ 384:δ 341:δ 337:π 330:δ 326:π 322:π 315:δ 301:δ 296:. 257:θ 247:e 233:→ 183:θ 171:m 161:θ 151:e 74:θ

Index

Tokai
Kamioka
particle physics
oscillations
accelerator neutrinos
Japan
CERN
T2K-II
the Hyper-Kamiokande experiment
electron neutrinos
muon neutrino
beam
matter-antimatter asymmetry
matter-dominated
J-PARC
Super-Kamiokande
Hida
Gifu prefecture
oscillations
sterile neutrino
neutral current
cross-sections
sterile neutrino
cross-section
charged current
neutral current
carbon
water
iron
matter-antimatter asymmetry

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.