Knowledge

Spindle apparatus

Source πŸ“

544: 383: 151: 2385: 559:. The axis of cell division is determined by the orientation of the spindle apparatus. Cells divide along the line connecting two centrosomes of the spindle apparatus. After formation, the spindle apparatus undergoes rotation inside the cell. The astral microtubules originating from centrosomes reach the cell membrane where they are pulled towards specific cortical clues. 38: 410:
near the pole to which it is attached until a microtubule from the opposite pole binds the sister kinetochore. This second attachment further stabilizes kinetochore attachment to the mitotic spindle. Gradually, the bi-oriented chromosome is pulled towards the center of the cell until microtubule tension is balanced on both sides of the
396:, the spindle is predominantly organized by the poleward separation of centrosomal microtubule organizing centers (MTOCs). Spindle microtubules emanate from centrosomes and 'seek' out kinetochores; when they bind a kinetochore they become stabilized and exert tension on the chromosomes. In an alternative 494:
are bound together in an amorphous mass of tangled DNA and protein. Mitotic entry triggers a dramatic reorganization of the duplicated genome, resulting in sister chromatids that are disentangled and separated from one another. Chromosomes also shorten in length, up to 10,000-fold in animal cells, in
386:
In the centrosome-mediated "search and capture" model (left), microtubules nucleated from centrosomes contact chromosomes by chance and become stabilized at kinetochores to form the spindle. In the chromatin-mediated "self-organization" model (right), microtubules are nucleated around the vicinity of
465:
Spindle assembly is largely regulated by phosphorylation events catalyzed by mitotic kinases. Cyclin dependent kinase complexes (CDKs) are activated by mitotic cyclins, whose translation increases during mitosis. CDK1 (also called CDC2) is considered the main mitotic kinase in mammalian cells and is
435:
egg extracts and that bipolar arrays of microtubules are formed in the absence of centrosomes and kinetochores. Indeed, it has also been shown that laser ablation of centrosomes in vertebrate cells inhibits neither spindle assembly nor chromosome segregation. Under this scheme, the shape and size of
510:
While these dynamic rearrangements are vitally important to ensure accurate and high-fidelity segregation of the genome, our understanding of mitotic chromosome structure remains largely incomplete. A few specific molecular players have been identified, however: Topoisomerase II uses ATP hydrolysis
430:
In contrast to the search-and-capture mechanism in which centrosomes largely dictate the organization of the mitotic spindle, this model proposes that microtubules are nucleated acentrosomally near chromosomes and spontaneously assemble into anti-parallel bundles and adopt a spindle-like structure.
456:
egg extracts, revealing that the Ran GTP gradient alone is sufficient for spindle assembly. The gradient triggers release of spindle assembly factors (SAFs) from inhibitory interactions via the transport proteins importin Ξ²/Ξ±. The unbound SAFs then promote microtubule nucleation and stabilization
409:
In this model, microtubules are nucleated at microtubule organizing centers and undergo rapid growth and catastrophe to 'search' the cytoplasm for kinetochores. Once they bind a kinetochore, they are stabilized and their dynamics are reduced. The newly mono-oriented chromosome oscillates in space
391:
In a properly formed mitotic spindle, bi-oriented chromosomes are aligned along the equator of the cell with spindle microtubules oriented roughly perpendicular to the chromosomes, their plus-ends embedded in kinetochores and their minus-ends anchored at the cell poles. The precise orientation of
421:
In this model, microtubule organizing centers are localized to the cell poles, their separation driven by microtubule polymerization and 'sliding' of antiparallel spindle microtubules with respect to one another at the spindle midzone mediated by bipolar, plus-end-directed kinesins. Such sliding
333:
are required for proper spindle assembly; in mammals, CLASP1 and CLASP2 both contribute to proper spindle assembly and microtubule dynamics in anaphase. Plus-end polymerization may be further moderated by the EB1 protein, which directly binds the growing ends of microtubules and coordinates the
313:. Although how CLIP170 recognizes plus-ends remains unclear, it has been shown that its homologues protect against catastrophe and promote rescue, suggesting a role for CLIP170 in stabilizing plus-ends and possibly mediating their direct attachment to kinetochores. CLIP-associated proteins like 193:
onset. Microtubule polymerization and depolymerization dynamic drive chromosome congression. Depolymerization of microtubules generates tension at kinetochores; bipolar attachment of sister kinetochores to microtubules emanating from opposite cell poles couples opposing tension forces, aligning
400:
model, microtubules undergo acentrosomal nucleation among the condensed chromosomes. Constrained by cellular dimensions, lateral associations with antiparallel microtubules via motor proteins, and end-on attachments to kinetochores, microtubules naturally adopt a spindle-like structure with
547:
Cartoon of the dividing epithelium cell surrounded by epithelium tissue. Spindle apparatus rotates inside the cell. The rotation is a result of astral microtubules pulling towards tri-cellular-junctions (TCJ), signaling centers localized at the regions where three cells
495:
a process called condensation. Condensation begins in prophase and chromosomes are maximally compacted into rod-shaped structures by the time they are aligned in the middle of the spindle at metaphase. This gives mitotic chromosomes the classic "X" shape seen in
392:
this complex is required to ensure accurate chromosome segregation and to specify the cell division plane. However, it remains unclear how the spindle becomes organized. Two models predominate the field, which are synergistic and not mutually exclusive. In the
354:
to induce destabilizing conformational changes in protofilament structure that cause kinesin release and microtubule depolymerization. Loss of their activity results in numerous mitotic defects. Additional microtubule destabilizing proteins include
253:
spindles lack centrosomes or asters at the spindle poles, respectively, and occur for example during female meiosis in most animals. In this instance, a Ran GTP gradient is the main regulator of spindle microtubule organization and assembly. In
452:) is attached to nucleosomes via core histones H2A and H2B. Thus, a gradient of GTP-bound Ran is generated around the vicinity of mitotic chromatin. Glass beads coated with RCC1 induce microtubule nucleation and bipolar spindle formation in 337:
Opposing the action of these microtubule-stabilizing proteins are a number of microtubule-depolymerizing factors which permit the dynamic remodeling of the mitotic spindle to promote chromosome congression and attainment of
511:
to catalyze decatenation of DNA entanglements, promoting sister chromatid resolution. Condensins are 5-subunit complexes that also use ATP-hydrolysis to promote chromosome condensation. Experiments in
350:
XKCM1. MCAK localizes to the growing tips of microtubules at kinetochores where it can trigger catastrophe in direct competition with stabilizing +TIP activity. These proteins harness the energy of
571:
localized at cell vertices. The spatial distribution of cortical clues leads to the force field that determine final spindle apparatus orientation and the subsequent orientation of cell division.
531:. If chromosomes are not properly attached to the mitotic spindle by the time of this checkpoint, the onset of anaphase will be delayed. Failure of this spindle assembly checkpoint can result in 305:
The growing ends of microtubules are protected against catastrophe by the action of plus-end microtubule tracking proteins (+TIPs) to promote their association with kinetochores at the midzone.
317:
in humans have also been shown to localize to plus-ends and the outer kinetochore as well as to modulate the dynamics of kinetochore microtubules (Maiato 2003). CLASP homologues in
346:-13 superfamily of MAPs contains a class of plus-end-directed motor proteins with associated microtubule depolymerization activity including the well-studied mammalian MCAK and 474:
is a member of the chromosomal passenger complex and mediates chromosome-microtubule attachment and sister chromatid cohesion. Polo-like kinase, also known as PLK, especially
568: 1629:
R. Heald; R. Tournebize; et al. (1996). "Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts".
366:
The activities of these MAPs are carefully regulated to maintain proper microtubule dynamics during spindle assembly, with many of these proteins serving as
2323:
Bosveld F, Markova O, Guirao B, Martin C, Wang Z, Pierre A, Balakireva M, Gaugue I, Ainslie A, Christophorou N, Lubensky DK, Minc N, BellaΓ―che Y (2016).
2062:
Marko, JF. The mitotic chromosome: structure and Mechanics. 2012. Genome Organization and Function in the Cell Nucleus. Wiley-VCH, Ch. 18, 449-485.
555:
is of major importance for tissue architecture, cell fates and morphogenesis. Cells tend to divide along their long axis according to the so-called
1981: 194:
chromosomes at the cell equator and poising them for segregation to daughter cells. Once every chromosome is bi-oriented, anaphase commences and
161:
via a multiprotein complex called the kinetochore. Polar microtubules interdigitate at the spindle midzone and push the spindle poles apart via
1231:"EB1-microtubule interactions in Xenopus egg extracts: Role of EB1 in microtubule stabilization and mechanisms of targeting to microtubules" 2272:
Thery M, Jimenez-Dalmaroni A, Racine V, Bornens M, Julicher F (2007). "Experimental and theoretical study of mitotic spindle orientation".
1938:
Peters, U., J. Cherian; et al. (2006). "Probing cell-division phenotype space and Polo-like kinase function using small molecules".
302:. The microtubule-associated protein Augmin acts in conjunction with Ξ³-TURC to nucleate new microtubules off of existing microtubules. 278:
determines to a large extent the shape of the mitotic spindle and promotes the proper alignment of chromosomes at the spindle midzone.
1525:"The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles" 431:
Classic experiments by Heald and Karsenti show that functional mitotic spindles and nuclei form around DNA-coated beads incubated in
298:
into microtubules. Recruitment of Ξ³-TuRC to the pericentrosomal region stabilizes microtubule minus-ends and anchors them near the
1186:
A. Akhmanova; M.O. Steinmetz (April 2008). "Tracking the ends: a dynamic protein network controls the fate of microtubule tips".
282:(MAPs) associate with microtubules at the midzone and the spindle poles to regulate their dynamics. Ξ³-tubulin is a specialized 2002: 422:
forces may account not only for spindle pole separation early in mitosis, but also spindle elongation during late anaphase.
2389: 1372:
H. Maiato; P Sampaio; C.E. Sunkel (2004). "Microtubule-associated proteins and their essential roles during mitosis".
154:
This diagram depicts the organization of a typical mitotic spindle found in animal cells. Chromosomes are attached to
2221: 1403: 768: 678: 626: 2237:
Baker DJ, Chen J, van Deursen JM (2005). "The mitotic checkpoint in cancer and aging: what have mice taught us?".
1139:"Mammalian CLASP1 and CLASP2 Cooperate to Ensure Mitotic Fidelity by Regulating Spindle and Kinetochore Function" 363:
which have roles in remodeling the mitotic spindle as well as promoting chromosome segregation during anaphase.
279: 17: 1997:
Morgan DO: The Cell Cycle: Principles of Control (Primers inBiology) London: New Science Press Ltd; 2007:297.
339: 1429:"Control of microtubule dynamics by the antagonistic activities of XMAP215 and XKCM1 in Xenopus egg extracts" 299: 174: 2165:"Histone H1 is essential for mitotic chromosome architecture and segregation in Xenopus laevis egg extracts" 528: 234: 186: 309:
was shown to localize near microtubule plus-ends in HeLa cells and to accumulate in kinetochores during
651: 436:
the mitotic spindle are a function of the biophysical properties of the cross-linking motor proteins.
229:
that may be present at the spindle poles depending on the cell type. The spindle apparatus is vaguely
552: 543: 233:
in cross section and tapers at the ends. In the wide middle portion, known as the spindle midzone,
31: 466:
activated by Cyclin B1. Aurora kinases are required for proper spindle assembly and separation.
319: 527:
The completion of spindle formation is a crucial transition point in the cell cycle called the
291: 2405: 1975: 1080:"Tip1/CLIP-170 Protein Is Required for Correct Chromosome Poleward Movement in Fission Yeast" 457:
around mitotic chromatin, and spindle bipolarity is organized by microtubule motor proteins.
275: 287: 2336: 2281: 1783: 1638: 1585: 1091: 274:
The dynamic lengthening and shortening of spindle microtubules, through a process known as
226: 884:"Identification of a novel nucleotide-sensitive microtubule-binding protein in HeLa cells" 8: 2325:"Epithelial tricellular junctions act as interphase cell shape sensors to orient mitosis" 166: 2340: 2285: 2016:"Large-scale chromatin organization: The good, the surprising, and the still perplexing" 1787: 1642: 1589: 1095: 933:"Evidence for a role of CLIP-170 in the establishment of metaphase chromosome alignment" 2357: 2324: 2305: 2189: 2164: 2140: 2115: 2040: 2015: 1963: 1855: 1828: 1804: 1771: 1711: 1662: 1606: 1573: 1549: 1524: 1500: 1475: 1456: 1307: 1282: 1276: 1274: 1211: 1163: 1138: 1114: 1079: 1055: 1030: 1011: 957: 932: 908: 883: 859: 834: 815: 736: 711: 692: 670: 605:
C. E. Walczak; R. Heald (2008). "Mechanisms of Mitotic Spindle Assembly and Function".
1698: 1681: 1385: 1255: 1230: 998: 981: 835:"Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2" 618: 2362: 2297: 2254: 2217: 2194: 2145: 2096: 2092: 2045: 1998: 1955: 1920: 1860: 1809: 1752: 1703: 1654: 1611: 1554: 1505: 1448: 1409: 1399: 1351: 1312: 1260: 1203: 1168: 1119: 1060: 1003: 962: 913: 864: 807: 764: 741: 684: 674: 632: 622: 491: 259: 1967: 1460: 1428: 1271: 1215: 1015: 931:
D. Dujardin; U.I. Wacker; A. Moreau; T.A. Schroer; J.E. Rickard; J.R. DeMey (1998).
819: 439: 2410: 2352: 2344: 2309: 2289: 2246: 2184: 2176: 2135: 2127: 2088: 2063: 2035: 2027: 1947: 1910: 1850: 1840: 1799: 1791: 1742: 1715: 1693: 1666: 1646: 1601: 1593: 1544: 1536: 1495: 1487: 1440: 1389: 1381: 1343: 1302: 1294: 1250: 1242: 1195: 1158: 1150: 1109: 1099: 1050: 1042: 993: 952: 944: 903: 895: 854: 846: 797: 731: 723: 696: 666: 614: 478:
has important roles in the spindle maintenance by regulating microtubule dynamics.
371: 263: 203: 199: 100: 1878:
Fu J, Jiang Q, Zhang C (2010). "Coordination of Cell Cycle Events by Ran GTPase".
802: 785: 1845: 1476:"The distribution of spindle microtubules during mitosis in cultured human cells" 1104: 580: 487: 415: 241:. At the pointed ends, known as spindle poles, microtubules are nucleated by the 92: 1367: 1365: 1329: 982:"CLIP-170-like tip1p spatially organizes microtubular dynamics in fission yeast" 2067: 1078:
S. Goldstone; C. Reyes; G. Gay; T. CourthΓ©oux; M. Dubarry; et al. (2010).
850: 585: 351: 325: 104: 2250: 2079:
Champoux JJ (2001). "DNA TOPOISOMERASES: Structure, Function, and Mechanism".
2031: 1772:"Structure of the RCC1 chromatin factor bound to the nucleosome core particle" 1747: 1730: 1597: 1283:"Regulation of localization and activity of the microtubule depolymerase MCAK" 1228: 425: 2399: 1426: 1362: 1332:"XKCM1 acts on a single protofilament and requires the C terminus of tubulin" 445: 367: 170: 162: 96: 1154: 2366: 2301: 2258: 2198: 2149: 2131: 2100: 2049: 1959: 1924: 1864: 1829:"Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts" 1813: 1756: 1707: 1679: 1615: 1509: 1452: 1413: 1355: 1347: 1330:
H. Niederstrasser; H. Salehi-Had; E.C. Gan; C. Walczak; E. Nogales (2002).
1316: 1298: 1264: 1246: 1207: 1172: 1123: 1064: 1007: 930: 899: 868: 811: 745: 688: 636: 556: 404: 310: 139: 88: 80: 2180: 1658: 1558: 1540: 1046: 966: 948: 917: 382: 1491: 1427:
R. Tournebize; A. Popov; K. Kinoshita; A.J. Ashford; et al. (2000).
295: 210: 182: 158: 155: 128: 61: 53: 2348: 2293: 2116:"Condensins: universal organizers of chromosomes with diverse functions" 1951: 1795: 563:, the distribution of cortical clues is set up by the adhesive pattern. 1915: 1898: 1394: 1229:
J.S. Tirnauer; S. Grego; E.D. Salmon; T.J. Mitchison (1 October 2002).
1137:
A.L. Pereira; A.J. Pereira; A.R.R. Maia; et al. (1 October 2006).
1077: 727: 532: 516: 504: 496: 470:
associates with centrosomes and is believed to regulate mitotic entry.
411: 387:
mitotic chromatin and organized into a bipolar array by motor proteins.
269: 242: 222: 115:, a process that produces genetically identical daughter cells, or the 45: 41: 134:
Besides chromosomes, the spindle apparatus is composed of hundreds of
1728: 1650: 1280: 712:"Structure-function insights into the yeast Dam1 kinetochore complex" 499:, with each condensed sister chromatid linked along their lengths by 230: 69: 1331: 1199: 150: 2271: 1136: 471: 467: 356: 190: 2211: 1444: 30:
This article is about the cellular structure. For other uses, see
1682:"Centrosome-independent mitotic spindle formation in vertebrates" 1522: 500: 440:
Chromatin-mediated microtubule nucleation by the Ran GTP gradient
418:
until anaphase onset releases cohesion of the sister chromatids.
360: 343: 283: 238: 214: 195: 135: 124: 120: 112: 73: 1031:"Cytoplasmic linker proteins promote microtubule rescue in vivo" 786:"Centrosome reduction during gametogenesis and its significance" 783: 2384: 314: 255: 218: 37: 2216:. New York: W.H. Freeman and Company Publishers. p. 59. 1371: 330: 306: 65: 519:
as an important regulator of mitotic chromosome compaction.
444:
The guanine nucleotide exchange factor for the small GTPase
1523:
D.J. Sharp; K.L. McDonald; H.M. Brown; et al. (1999).
475: 449: 426:
Chromatin-mediated self-organization of the mitotic spindle
57: 49: 2322: 1680:
A. Khodjakov; R.W. Cole; B.R. Oakley; C.L. Rieder (2000).
1185: 535:
and may be involved in aging and the formation of cancer.
2212:
Raven, Peter H.; Ray F. Evert; Susan E. Eichhorn (2005).
181:
Attachment of microtubules to chromosomes is mediated by
1028: 142:
comprise the most abundant components of the machinery.
1769: 1937: 1473: 881: 763:. San Francisco: Benjamin Cummings. pp. 221–224. 661:. International Review of Cell and Molecular Biology. 522: 1628: 1571: 758: 709: 652:"Interplay between spindle architecture and function" 604: 2236: 2162: 270:
Microtubule-associated proteins and spindle dynamics
209:
The cellular spindle apparatus includes the spindle
1896: 1827:Halpin D, Kalab P, Wang J, Weis K, Heald R (2011). 1826: 503:proteins and joined, often near the center, at the 414:; the congressed chromosome then oscillates at the 377: 1899:"Aurora A: The maker and breaker of spindle poles" 1729:K.S. Burbank; T.J. Mitchison; D.S. Fisher (2007). 1281:M.E. Tanenbaum; R.H. Medema; A. Akhmanova (2011). 979: 286:variant that assembles into a ring complex called 1574:"Anastral spindle assembly: a mathematical model" 649: 460: 221:molecular motors, condensed chromosomes, and any 173:. Microtubule polymerization is nucleated at the 2397: 2316: 2265: 1029:Y.A. Komarova; A.S. Kojima; et al. (2002). 567:polarity cues are determined by localization of 538: 1731:"Slide-and-cluster models for spindle assembly" 481: 1770:Makde R, England J, Yennawar H, Tan S (2010). 405:Centrosome-mediated "search-and-capture" model 1993: 1991: 784:Manandhar Gf; Schatten H; Sutovsky P (2005). 2230: 1980:: CS1 maint: multiple names: authors list ( 1877: 401:chromosomes aligned along the cell equator. 266:, which does not break down during mitosis. 202:, is severed, permitting the transit of the 777: 710:E. Nogales; V. H. Ramey (1 November 2009). 448:(Regulator of chromosome condensation 1 or 1988: 2356: 2188: 2163:Maresca TJ, Freedman BS, Heald R (2005). 2139: 2039: 1914: 1854: 1844: 1803: 1746: 1697: 1605: 1548: 1499: 1393: 1306: 1254: 1162: 1113: 1103: 1054: 997: 956: 907: 858: 801: 759:Campbell, Neil A.; Jane B. Reece (2005). 735: 515:egg extracts have also implicated linker 2078: 542: 381: 149: 36: 2013: 752: 14: 2398: 2113: 650:Helmke KJ, Heald R, Wilbur JD (2013). 2205: 832: 213:, associated proteins, which include 1376:. International Review of Cytology. 145: 27:Feature of biological cell structure 523:Mitotic spindle assembly checkpoint 24: 671:10.1016/B978-0-12-407694-5.00003-1 25: 2422: 2377: 1474:J. McIntosh; S.C. Landis (1971). 882:J.E. Rickard; T.E. Kreis (1990). 2383: 2093:10.1146/annurev.biochem.70.1.369 1572:M.A. Hallen; S.A. Endow (2009). 607:International Review of Cytology 378:Organizing the spindle apparatus 169:anchor the spindle poles to the 2156: 2107: 2072: 2056: 2007: 1931: 1890: 1871: 1820: 1763: 1722: 1673: 1622: 1565: 1516: 1467: 1420: 1323: 1222: 1179: 1130: 1071: 1022: 280:Microtubule-associated proteins 2214:Biology of Plants, 7th Edition 1897:A.R. Barr; F. Gergely (2007). 973: 924: 875: 826: 703: 643: 598: 461:Regulation of spindle assembly 294:polymerization of Ξ±/Ξ² tubulin 13: 1: 1699:10.1016/S0960-9822(99)00276-6 1386:10.1016/S0074-7696(04)41002-X 999:10.1016/S0092-8674(00)00091-X 980:D. Brunner; P. Nurse (2000). 833:Petry S, et al. (2013). 803:10.1095/biolreprod.104.031245 619:10.1016/s0074-7696(07)65003-7 591: 539:Spindle apparatus orientation 300:microtubule-organizing center 175:microtubule organizing center 1846:10.1371/journal.pbio.1001225 1105:10.1371/journal.pone.0010634 482:Mitotic chromosome structure 237:microtubules are bundled by 7: 574: 529:spindle assembly checkpoint 107:. It is referred to as the 10: 2427: 2068:10.1002/9783527639991.ch18 851:10.1016/j.cell.2012.12.044 123:, a process that produces 29: 2251:10.1016/j.ceb.2005.09.011 2032:10.1016/j.ceb.2013.10.002 1748:10.1016/j.cub.2007.07.058 1598:10.1016/j.bpj.2009.08.008 553:Cell division orientation 185:, which actively monitor 659:Int. Rev. Cell Mol. Biol 394:search-and-capture model 334:binding of other +TIPs. 258:, spindles form between 127:with half the number of 32:Spindle (disambiguation) 1155:10.1091/mbc.E06-07-0579 2132:10.1101/gad.194746.112 1348:10.1006/jmbi.2001.5360 1299:10.4161/bioa.1.2.15807 1247:10.1091/mbc.02-04-0210 900:10.1083/jcb.110.5.1623 549: 388: 245:in most animal cells. 189:and prevent premature 178: 76: 2239:Curr. Opin. Cell Biol 2181:10.1083/jcb.200503031 1541:10.1083/jcb.144.1.125 1188:Nat Rev Mol Cell Biol 1047:10.1083/jcb.200208058 949:10.1083/jcb.141.4.849 569:Tricellular junctions 546: 385: 153: 40: 2392:at Wikimedia Commons 1492:10.1083/jcb.49.2.468 761:Biology, 7th Edition 131:of the parent cell. 2349:10.1038/nature16970 2341:2016Natur.530..495B 2294:10.1038/nature05786 2286:2007Natur.447..493T 2020:Curr Opin Cell Biol 2014:Belmont AS (2010). 1952:10.1038/nchembio826 1796:10.1038/nature09321 1788:2010Natur.467..562M 1643:1996Natur.382..420H 1590:2009BpJ....97.2191H 1096:2010PLoSO...510634G 276:dynamic instability 260:spindle pole bodies 206:to opposite poles. 167:Astral microtubules 1916:10.1242/jcs.013136 728:10.1242/jcs.004689 550: 389: 179: 95:that forms during 77: 44:showing condensed 2390:Spindle apparatus 2388:Media related to 2126:(15): 1659–1678. 2114:Hirano T (2012). 2003:978-0-9539181-2-6 1909:(17): 2987–2996. 1782:(7315): 562–566. 1741:(16): 1373–1383. 1637:(6590): 420–425. 1241:(10): 3614–3626. 1149:(10): 4526–4542. 722:(21): 3831–3836. 492:sister chromatids 204:sister chromatids 200:sister chromatids 187:spindle formation 146:Spindle structure 103:between daughter 101:sister chromatids 85:spindle apparatus 16:(Redirected from 2418: 2387: 2371: 2370: 2360: 2320: 2314: 2313: 2269: 2263: 2262: 2234: 2228: 2227: 2209: 2203: 2202: 2192: 2160: 2154: 2153: 2143: 2111: 2105: 2104: 2081:Annu Rev Biochem 2076: 2070: 2060: 2054: 2053: 2043: 2011: 2005: 1995: 1986: 1985: 1979: 1971: 1935: 1929: 1928: 1918: 1894: 1888: 1887: 1880:Nature Education 1875: 1869: 1868: 1858: 1848: 1839:(12): e1001225. 1824: 1818: 1817: 1807: 1767: 1761: 1760: 1750: 1726: 1720: 1719: 1701: 1677: 1671: 1670: 1651:10.1038/382420a0 1626: 1620: 1619: 1609: 1584:(8): 2191–2201. 1569: 1563: 1562: 1552: 1520: 1514: 1513: 1503: 1471: 1465: 1464: 1424: 1418: 1417: 1397: 1369: 1360: 1359: 1327: 1321: 1320: 1310: 1278: 1269: 1268: 1258: 1226: 1220: 1219: 1183: 1177: 1176: 1166: 1134: 1128: 1127: 1117: 1107: 1075: 1069: 1068: 1058: 1026: 1020: 1019: 1001: 977: 971: 970: 960: 928: 922: 921: 911: 894:(5): 1623–1633. 879: 873: 872: 862: 830: 824: 823: 805: 781: 775: 774: 756: 750: 749: 739: 707: 701: 700: 656: 647: 641: 640: 602: 372:Polo-like kinase 264:nuclear envelope 262:embedded in the 198:, which couples 93:eukaryotic cells 21: 2426: 2425: 2421: 2420: 2419: 2417: 2416: 2415: 2396: 2395: 2380: 2375: 2374: 2335:(7591): 496–8. 2321: 2317: 2280:(7143): 493–6. 2270: 2266: 2235: 2231: 2224: 2210: 2206: 2161: 2157: 2112: 2108: 2077: 2073: 2061: 2057: 2012: 2008: 1996: 1989: 1973: 1972: 1936: 1932: 1895: 1891: 1876: 1872: 1825: 1821: 1768: 1764: 1727: 1723: 1678: 1674: 1627: 1623: 1570: 1566: 1521: 1517: 1472: 1468: 1425: 1421: 1406: 1370: 1363: 1328: 1324: 1287:Bioarchitecture 1279: 1272: 1227: 1223: 1200:10.1038/nrm2369 1184: 1180: 1135: 1131: 1076: 1072: 1027: 1023: 978: 974: 929: 925: 880: 876: 831: 827: 782: 778: 771: 757: 753: 708: 704: 681: 654: 648: 644: 629: 603: 599: 594: 581:Centralspindlin 577: 541: 525: 488:DNA replication 484: 463: 442: 428: 416:metaphase plate 407: 380: 272: 148: 117:meiotic spindle 109:mitotic spindle 35: 28: 23: 22: 15: 12: 11: 5: 2424: 2414: 2413: 2408: 2394: 2393: 2379: 2378:External links 2376: 2373: 2372: 2315: 2264: 2229: 2222: 2204: 2155: 2106: 2087:(1): 369–413. 2071: 2055: 2006: 1987: 1946:(11): 618–26. 1930: 1889: 1870: 1819: 1762: 1721: 1672: 1621: 1564: 1535:(1): 125–138. 1515: 1486:(2): 468–497. 1466: 1419: 1404: 1361: 1342:(3): 817–828. 1322: 1270: 1221: 1194:(4): 309–322. 1178: 1129: 1070: 1041:(4): 589–599. 1021: 992:(5): 695–704. 972: 943:(4): 849–862. 923: 874: 845:(4): 768–777. 825: 776: 769: 751: 702: 679: 642: 627: 596: 595: 593: 590: 589: 588: 586:Spindle poison 583: 576: 573: 540: 537: 524: 521: 486:By the end of 483: 480: 462: 459: 441: 438: 427: 424: 406: 403: 379: 376: 352:ATP hydrolysis 271: 268: 163:motor proteins 147: 144: 26: 18:Spindle fibers 9: 6: 4: 3: 2: 2423: 2412: 2409: 2407: 2404: 2403: 2401: 2391: 2386: 2382: 2381: 2368: 2364: 2359: 2354: 2350: 2346: 2342: 2338: 2334: 2330: 2326: 2319: 2311: 2307: 2303: 2299: 2295: 2291: 2287: 2283: 2279: 2275: 2268: 2260: 2256: 2252: 2248: 2244: 2240: 2233: 2225: 2223:0-7167-1007-2 2219: 2215: 2208: 2200: 2196: 2191: 2186: 2182: 2178: 2175:(6): 859–69. 2174: 2170: 2166: 2159: 2151: 2147: 2142: 2137: 2133: 2129: 2125: 2121: 2117: 2110: 2102: 2098: 2094: 2090: 2086: 2082: 2075: 2069: 2065: 2059: 2051: 2047: 2042: 2037: 2033: 2029: 2025: 2021: 2017: 2010: 2004: 2000: 1994: 1992: 1983: 1977: 1969: 1965: 1961: 1957: 1953: 1949: 1945: 1941: 1940:Nat Chem Biol 1934: 1926: 1922: 1917: 1912: 1908: 1904: 1900: 1893: 1885: 1881: 1874: 1866: 1862: 1857: 1852: 1847: 1842: 1838: 1834: 1830: 1823: 1815: 1811: 1806: 1801: 1797: 1793: 1789: 1785: 1781: 1777: 1773: 1766: 1758: 1754: 1749: 1744: 1740: 1736: 1732: 1725: 1717: 1713: 1709: 1705: 1700: 1695: 1691: 1687: 1683: 1676: 1668: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1625: 1617: 1613: 1608: 1603: 1599: 1595: 1591: 1587: 1583: 1579: 1575: 1568: 1560: 1556: 1551: 1546: 1542: 1538: 1534: 1530: 1526: 1519: 1511: 1507: 1502: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1462: 1458: 1454: 1450: 1446: 1445:10.1038/71330 1442: 1438: 1434: 1433:Nat Cell Biol 1430: 1423: 1415: 1411: 1407: 1405:9780123646453 1401: 1396: 1391: 1387: 1383: 1379: 1375: 1374:Int Rev Cytol 1368: 1366: 1357: 1353: 1349: 1345: 1341: 1337: 1333: 1326: 1318: 1314: 1309: 1304: 1300: 1296: 1292: 1288: 1284: 1277: 1275: 1266: 1262: 1257: 1252: 1248: 1244: 1240: 1236: 1235:Mol Biol Cell 1232: 1225: 1217: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1182: 1174: 1170: 1165: 1160: 1156: 1152: 1148: 1144: 1143:Mol Biol Cell 1140: 1133: 1125: 1121: 1116: 1111: 1106: 1101: 1097: 1093: 1090:(5): e10634. 1089: 1085: 1081: 1074: 1066: 1062: 1057: 1052: 1048: 1044: 1040: 1036: 1032: 1025: 1017: 1013: 1009: 1005: 1000: 995: 991: 987: 983: 976: 968: 964: 959: 954: 950: 946: 942: 938: 934: 927: 919: 915: 910: 905: 901: 897: 893: 889: 885: 878: 870: 866: 861: 856: 852: 848: 844: 840: 836: 829: 821: 817: 813: 809: 804: 799: 795: 791: 787: 780: 772: 770:0-8053-7171-0 766: 762: 755: 747: 743: 738: 733: 729: 725: 721: 717: 713: 706: 698: 694: 690: 686: 682: 680:9780124076945 676: 672: 668: 664: 660: 653: 646: 638: 634: 630: 628:9780123743329 624: 620: 616: 612: 608: 601: 597: 587: 584: 582: 579: 578: 572: 570: 566: 562: 558: 554: 545: 536: 534: 530: 520: 518: 514: 508: 506: 502: 498: 493: 489: 479: 477: 473: 469: 458: 455: 451: 447: 437: 434: 423: 419: 417: 413: 402: 399: 398:self assembly 395: 384: 375: 373: 369: 364: 362: 358: 353: 349: 345: 341: 335: 332: 328: 327: 322: 321: 316: 312: 308: 303: 301: 297: 293: 289: 285: 281: 277: 267: 265: 261: 257: 252: 248: 244: 240: 236: 232: 228: 224: 220: 216: 212: 207: 205: 201: 197: 192: 188: 184: 176: 172: 171:cell membrane 168: 164: 160: 157: 152: 143: 141: 137: 132: 130: 126: 122: 118: 114: 110: 106: 102: 98: 97:cell division 94: 91:structure of 90: 86: 82: 75: 71: 67: 63: 59: 55: 51: 47: 43: 39: 33: 19: 2406:Cell anatomy 2332: 2328: 2318: 2277: 2273: 2267: 2245:(6): 583–9. 2242: 2238: 2232: 2213: 2207: 2172: 2169:J. Cell Biol 2168: 2158: 2123: 2119: 2109: 2084: 2080: 2074: 2058: 2023: 2019: 2009: 1976:cite journal 1943: 1939: 1933: 1906: 1902: 1892: 1883: 1879: 1873: 1836: 1832: 1822: 1779: 1775: 1765: 1738: 1734: 1724: 1692:(2): 59–67. 1689: 1685: 1675: 1634: 1630: 1624: 1581: 1577: 1567: 1532: 1528: 1518: 1483: 1479: 1469: 1439:(1): 13–19. 1436: 1432: 1422: 1377: 1373: 1339: 1335: 1325: 1293:(2): 80–87. 1290: 1286: 1238: 1234: 1224: 1191: 1187: 1181: 1146: 1142: 1132: 1087: 1083: 1073: 1038: 1034: 1024: 989: 985: 975: 940: 936: 926: 891: 887: 877: 842: 838: 828: 793: 790:Biol. Reprod 789: 779: 760: 754: 719: 715: 705: 662: 658: 645: 610: 606: 600: 564: 560: 557:Hertwig rule 551: 526: 512: 509: 485: 464: 453: 443: 432: 429: 420: 408: 397: 393: 390: 374:substrates. 365: 347: 336: 324: 318: 311:prometaphase 304: 296:heterodimers 273: 250: 247:Acentrosomal 246: 235:antiparallel 211:microtubules 208: 183:kinetochores 180: 159:microtubules 140:Microtubules 133: 116: 108: 99:to separate 89:cytoskeletal 84: 81:cell biology 78: 62:microtubules 54:kinetochores 1529:J Cell Biol 1480:J Cell Biol 1395:10216/53621 1035:J Cell Biol 937:J Cell Biol 888:J Cell Biol 796:(1): 2–13. 613:: 111–158. 243:centrosomes 223:centrosomes 156:kinetochore 129:chromosomes 46:chromosomes 2400:Categories 1903:J Cell Sci 1380:: 53–153. 1336:J Mol Biol 716:J Cell Sci 665:: 83–125. 592:References 533:aneuploidy 517:Histone H1 505:centromere 497:karyotypes 412:centromere 340:bipolarity 320:Drosophila 42:Micrograph 2120:Genes Dev 2026:: 69–78. 1833:PLOS Biol 1735:Curr Biol 1686:Curr Biol 1578:Biophys J 292:nucleates 231:ellipsoid 70:metaphase 2367:26886796 2302:17495931 2259:16226453 2199:15967810 2150:22855829 2101:11395412 2050:24529248 1968:22213611 1960:17028580 1925:17715155 1886:(9): 32. 1865:22215983 1814:20739938 1757:17702580 1708:10662665 1616:19843451 1510:19866774 1461:10732643 1453:10620801 1414:15548419 1356:11866534 1317:21866268 1265:12388761 1216:24977579 1208:18322465 1173:16914514 1124:20498706 1084:PLOS ONE 1065:12446741 1016:11948950 1008:11007487 869:23415226 820:37305534 812:15385423 746:19889968 689:24016524 637:18275887 575:See also 561:In vitro 472:Aurora B 468:Aurora A 357:stathmin 251:anastral 239:kinesins 191:anaphase 136:proteins 2411:Mitosis 2358:5450930 2337:Bibcode 2310:4391685 2282:Bibcode 2190:2171634 2141:3418584 2041:3927141 1856:3246454 1805:3168546 1784:Bibcode 1716:9976687 1667:4238425 1659:8684481 1639:Bibcode 1607:2764103 1586:Bibcode 1559:9885249 1550:2148119 1501:2108320 1308:3158623 1164:1635371 1115:2869355 1092:Bibcode 1056:2173097 967:9585405 958:2132766 918:1970824 909:2200191 860:3680348 737:2773187 697:8145444 565:In vivo 513:Xenopus 501:cohesin 454:Xenopus 433:Xenopus 361:katanin 348:Xenopus 344:kinesin 326:Xenopus 307:CLIP170 284:tubulin 215:kinesin 196:cohesin 125:gametes 121:meiosis 119:during 113:mitosis 111:during 87:is the 74:mitosis 68:during 2365:  2355:  2329:Nature 2308:  2300:  2274:Nature 2257:  2220:  2197:  2187:  2148:  2138:  2099:  2048:  2038:  2001:  1966:  1958:  1923:  1863:  1853:  1812:  1802:  1776:Nature 1755:  1714:  1706:  1665:  1657:  1631:Nature 1614:  1604:  1557:  1547:  1508:  1498:  1459:  1451:  1412:  1402:  1354:  1315:  1305:  1263:  1256:129970 1253:  1214:  1206:  1171:  1161:  1122:  1112:  1063:  1053:  1014:  1006:  965:  955:  916:  906:  867:  857:  818:  810:  767:  744:  734:  695:  687:  677:  635:  625:  368:Aurora 342:. The 329:, and 315:CLASP1 290:which 288:Ξ³-TuRC 227:asters 219:dynein 83:, the 60:, and 2306:S2CID 1964:S2CID 1712:S2CID 1663:S2CID 1457:S2CID 1212:S2CID 1012:S2CID 816:S2CID 693:S2CID 655:(PDF) 548:meet. 355:Op18/ 331:yeast 256:fungi 105:cells 66:green 2363:PMID 2298:PMID 2255:PMID 2218:ISBN 2195:PMID 2146:PMID 2097:PMID 2046:PMID 1999:ISBN 1982:link 1956:PMID 1921:PMID 1861:PMID 1810:PMID 1753:PMID 1704:PMID 1655:PMID 1612:PMID 1555:PMID 1506:PMID 1449:PMID 1410:PMID 1400:ISBN 1352:PMID 1313:PMID 1261:PMID 1204:PMID 1169:PMID 1120:PMID 1061:PMID 1004:PMID 986:Cell 963:PMID 914:PMID 865:PMID 839:Cell 808:PMID 765:ISBN 742:PMID 685:PMID 675:ISBN 633:PMID 623:ISBN 476:PLK1 450:RCC1 370:and 359:and 217:and 58:pink 50:blue 2353:PMC 2345:doi 2333:530 2290:doi 2278:447 2247:doi 2185:PMC 2177:doi 2173:169 2136:PMC 2128:doi 2089:doi 2064:doi 2036:PMC 2028:doi 1948:doi 1911:doi 1907:120 1851:PMC 1841:doi 1800:PMC 1792:doi 1780:467 1743:doi 1694:doi 1647:doi 1635:382 1602:PMC 1594:doi 1545:PMC 1537:doi 1533:144 1496:PMC 1488:doi 1441:doi 1390:hdl 1382:doi 1378:241 1344:doi 1340:316 1303:PMC 1295:doi 1251:PMC 1243:doi 1196:doi 1159:PMC 1151:doi 1110:PMC 1100:doi 1051:PMC 1043:doi 1039:159 994:doi 990:102 953:PMC 945:doi 941:141 904:PMC 896:doi 892:110 855:PMC 847:doi 843:152 798:doi 732:PMC 724:doi 720:122 667:doi 663:306 615:doi 611:265 446:Ran 249:or 225:or 79:In 72:of 64:in 56:in 48:in 2402:: 2361:. 2351:. 2343:. 2331:. 2327:. 2304:. 2296:. 2288:. 2276:. 2253:. 2243:17 2241:. 2193:. 2183:. 2171:. 2167:. 2144:. 2134:. 2124:26 2122:. 2118:. 2095:. 2085:70 2083:. 2044:. 2034:. 2024:26 2022:. 2018:. 1990:^ 1978:}} 1974:{{ 1962:. 1954:. 1942:. 1919:. 1905:. 1901:. 1882:. 1859:. 1849:. 1835:. 1831:. 1808:. 1798:. 1790:. 1778:. 1774:. 1751:. 1739:17 1737:. 1733:. 1710:. 1702:. 1690:10 1688:. 1684:. 1661:. 1653:. 1645:. 1633:. 1610:. 1600:. 1592:. 1582:97 1580:. 1576:. 1553:. 1543:. 1531:. 1527:. 1504:. 1494:. 1484:49 1482:. 1478:. 1455:. 1447:. 1435:. 1431:. 1408:. 1398:. 1388:. 1364:^ 1350:. 1338:. 1334:. 1311:. 1301:. 1289:. 1285:. 1273:^ 1259:. 1249:. 1239:13 1237:. 1233:. 1210:. 1202:. 1190:. 1167:. 1157:. 1147:17 1145:. 1141:. 1118:. 1108:. 1098:. 1086:. 1082:. 1059:. 1049:. 1037:. 1033:. 1010:. 1002:. 988:. 984:. 961:. 951:. 939:. 935:. 912:. 902:. 890:. 886:. 863:. 853:. 841:. 837:. 814:. 806:. 794:72 792:. 788:. 740:. 730:. 718:. 714:. 691:. 683:. 673:. 657:. 631:. 621:. 609:. 507:. 490:, 323:, 165:. 138:. 52:, 2369:. 2347:: 2339:: 2312:. 2292:: 2284:: 2261:. 2249:: 2226:. 2201:. 2179:: 2152:. 2130:: 2103:. 2091:: 2066:: 2052:. 2030:: 1984:) 1970:. 1950:: 1944:2 1927:. 1913:: 1884:3 1867:. 1843:: 1837:9 1816:. 1794:: 1786:: 1759:. 1745:: 1718:. 1696:: 1669:. 1649:: 1641:: 1618:. 1596:: 1588:: 1561:. 1539:: 1512:. 1490:: 1463:. 1443:: 1437:2 1416:. 1392:: 1384:: 1358:. 1346:: 1319:. 1297:: 1291:1 1267:. 1245:: 1218:. 1198:: 1192:9 1175:. 1153:: 1126:. 1102:: 1094:: 1088:5 1067:. 1045:: 1018:. 996:: 969:. 947:: 920:. 898:: 871:. 849:: 822:. 800:: 773:. 748:. 726:: 699:. 669:: 639:. 617:: 177:. 34:. 20:)

Index

Spindle fibers
Spindle (disambiguation)

Micrograph
chromosomes
blue
kinetochores
pink
microtubules
green
metaphase
mitosis
cell biology
cytoskeletal
eukaryotic cells
cell division
sister chromatids
cells
mitosis
meiosis
gametes
chromosomes
proteins
Microtubules

kinetochore
microtubules
motor proteins
Astral microtubules
cell membrane

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑