Knowledge

Solenoid (DNA)

Source πŸ“

17: 241: 252:
is no linear relationship between the length of the linker DNA and the dimensions (instead there are two distinct classes). There is also data from experiments which cross-linked nucleosomes that shows a two-start structure. There is evidence that suggests both the solenoid and zig-zag (two-start) structures are present in 30 nm fibres. It is possible that chromatin structure may not be as ordered as previously thought, or that the 30 nm fibre may not even be present
122:. In the solenoid structure, the nucleosomes fold up and are stacked, forming a helix. They are connected by bent linker DNA which positions sequential nucleosomes adjacent to one another in the helix. The nucleosomes are positioned with the histone H1 proteins facing toward the centre where they form a 251:
Even the more recent research produces conflicting information. There is data from electron microscopy measurements of the 30 nm fibre dimensions that has physical constraints which mean it can only be modelled with a one-start helical structure like the solenoid structure. It also shows there
206:
The histone H4 tail is essential for formation of 30 nm fibres. However, acetylation of core histone tails affects the folding of chromatin by destabilising interactions between the DNA and the nucleosomes, making histone modulation a key factor in solenoid structure. Acetylation of H4K16 (the
202:
There is an acidic patch on the surface of histone H2A and histone H2B proteins which interacts with the tails of histone H4 proteins in adjacent nucleosomes. These interactions are important for solenoid formation. Histone variants can affect solenoid formation, for example H2A.Z is a histone
134:
Finch and Klug's electron microscopy images had a lack of visible detail so they were unable to determine helical parameters other than the pitch. More recent electron microscopy images have been able to define the dimensions of solenoid structures and identified it as a left-handed helix. The
279:. This structure, like the two-start twisted-ribbon model, involves alternating nucleosomes stacking to form two parallel helices, but the nucleosomes are on opposite sides of the helices with the linker DNA crossing across the centre of the helical axis. 130:
angles of 11 nm, which is about the same diameter as a nucleosome. There are approximately 6 nucleosomes in each turn of the helix. Finch and Klug actually observed a wide range of nucleosomes per turn but they put this down to flattening.
266:
The two-start twisted-ribbon model was proposed in 1981 by Worcel, Strogatz and Riley. This structure involves alternating nucleosomes stacking to form two parallel helices, with the linker DNA zig-zagging up and down the helical axis.
231:
attaching to a central scaffolding matrix in the nucleus creating loops of solenoid chromatin between 4.5 and 112 kilobase pairs long. The central scaffolding matrix itself forms a spiral shape for an additional layer of compaction.
151:, whilst the DNA in one human cell would stretch to just over 2 metres long if it were unwound. The "beads on a string" structure can compact DNA to 7 times smaller. The solenoid structure can increase this to be 40 times smaller. 226:
Chromatin can form a tertiary chromatin structure and be compacted even further than the solenoid structure by forming supercoils which have a diameter of around 700 nm. This supercoil is formed by regions of DNA called
114:
proteins. The primary chromatin structure, the least-packed form, is the 11 nm, or β€œbeads on a string” form, where DNA is wrapped around nucleosomes at relatively regular intervals, as Roger Kornberg proposed.
1113: 391: 180:
There are many factors that affect whether the solenoid structure will form or not. Some factors alter the structure of the 30 nm fibre, and some prevent it from forming in that region altogether.
601:
Walter, Peter; Roberts, Keith; Raff, Martin; Lewis, Julian; Johnson, Alexander; Alberts, Bruce (2002). Bruce Alberts; Alexander Johnson; Julian Lewis; Martin Raff; Keith Roberts; Peter Walter (eds.).
287:
The superbead model was proposed by Renz in 1977. This structure is not helical like the other models, it instead consists of discrete globular structures along the chromatin which vary in size.
631:
Zhou, Jiansheng; Fan, Jun Y; Rangasamy, Danny; Tremethick, David J (28 October 2007). "The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression".
203:
variant of H2A, and it has a more acidic patch than the one on H2A, so H2A.Z would have a stronger interaction with histone H4 tails and probably contribute to solenoid formation.
118:
Histone H1 protein binds to the site where DNA enters and exits the nucleosome, wrapping 147 base pairs around the histone core and stabilising the nucleosome, this structure is a
143:
The solenoid structure's most obvious function is to help package the DNA so that it is small enough to fit into the nucleus. This is a big task as the nucleus of a
1309:"Differences of supranucleosomal organization in different kinds of chromatin: cell type-specific globular subunits containing different numbers of nucleosomes" 218:
To decompact the 30 nm fibre, for instance to transcriptionally activate it, both H4K16 acetylation and removal of the histone H1 proteins are required.
678:"Chromatin structure. Nuclease digestion profiles reflect intermediate stages in the folding of the 30-nm fiber rather than the existence of subunit beads" 1244: 964: 826:
Robinson, Philip J.J.; An, Woojin; Routh, Andrew; Martino, Fabrizio; Chapman, Lynda; Roeder, Robert G.; Rhodes, Daniela (September 2008).
195:
affects the structure of the 30 nm fibre, which is why Finch and Klug were not able to form solenoid structures in the presence of
86:
patterns to determine their model of the structure. This was the first model to be proposed for the structure of the 30 nm fibre.
633: 1025: 891: 612: 248:
Several other models have been proposed and there is still a lot of uncertainty about the structure of the 30 nm fibre.
775:
Shogren-Knaak, M. (10 February 2006). "Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions".
158:
active in certain areas. It is the secondary chromatin structure that is important for this transcriptional repression as
883:
An introduction to genetic analysis, Chapter 3: Chromosomal Basis of Heredity, Three-dimensional structure of chromosomes
544:"EM measurements define the dimensions of the "30-nm" chromatin fiber: Evidence for a compact, interdigitated structure" 451:"Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin" 1180:"Chromatin fibers are left-handed double helices with diameter and mass per unit length that depend on linker length" 521: 228: 126:. Finch and Klug determined that the helical structure had only one-start point because they mostly observed small 604:
Molecular Biology of the Cell, Chapter 4: DNA and Chromosomes, Chromosomal DNA and Its Packaging in the Chromosome
1072: 907:
Dorigo, B. (26 November 2004). "Nucleosome Arrays Reveal the Two-Start Organization of the Chromatin Fiber".
1178:
Williams, S. P.; Athey, B. D.; Muglia, L. J.; Schappe, R. S.; Gough, A. H.; Langmore, J. P. (January 1986).
299:
is the most condensed form of eukaryotic DNA, it is packaged by protamines rather than nucleosomes, whilst
511: 1417: 1313: 455: 16: 1070:
Fussner, E.; Ching, R. W.; Bazett-Jones, D. P. (January 2011). "Living without 30nm chromatin fibers".
469: 244:
Solenoid model (left) and two-start twisted- ribbon model (right) of 30 nm fibre, showing DNA only.
155: 828:"30 nm Chromatin Fibre Decompaction Requires both H4-K16 Acetylation and Linker Histone Eviction" 1021:"New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?" 464: 1359: 1402: 327:
Kornberg, R. D. (24 May 1974). "Chromatin Structure: A Repeating Unit of Histones and DNA".
1253: 1193: 1132: 973: 916: 880:
Griffiths, A. J. F.; Miller, J. H.; Suzuki, D. T.; Lewontin, R. C.; Gelbart, W. M. (2000).
784: 555: 400: 338: 8: 1184: 79: 1257: 1197: 1136: 977: 920: 788: 559: 404: 342: 1335: 1308: 1214: 1179: 1122: 1047: 1020: 996: 959: 940: 852: 827: 808: 658: 578: 543: 487: 450: 1284: 1239: 1205: 1155: 1108: 960:"Evidence for heteromorphic chromatin fibers from analysis of nucleosome interactions" 958:
Grigoryev, S. A.; Arya, G.; Correll, S.; Woodcock, C. L.; Schlick, T. (27 July 2009).
694: 423: 386: 1381: 1340: 1289: 1271: 1219: 1160: 1089: 1052: 1001: 932: 887: 857: 800: 757: 707: 699: 650: 608: 583: 517: 492: 428: 354: 329: 83: 944: 812: 662: 1373: 1330: 1322: 1279: 1261: 1209: 1201: 1150: 1140: 1081: 1042: 1034: 991: 981: 924: 847: 839: 792: 747: 689: 642: 573: 563: 482: 474: 418: 408: 346: 196: 135:
structure of solenoids are insensitive to changes in the length of the linker DNA.
56: 752: 735: 677: 1364: 350: 64: 1114:
Proceedings of the National Academy of Sciences of the United States of America
1085: 881: 602: 392:
Proceedings of the National Academy of Sciences of the United States of America
60: 843: 542:
Robinson, P. J. J.; Fairall, L.; Huynh, V. A. T.; Rhodes, D. (14 April 2006).
1411: 1275: 703: 127: 986: 928: 796: 568: 240: 1422: 1385: 1266: 1145: 1093: 1056: 1005: 936: 861: 804: 761: 654: 587: 413: 304: 119: 44: 1344: 1223: 1164: 711: 432: 358: 98:, which are histone octamers formed of core histone proteins; two histone 1403:
Aaron Klug tells his life story at the Web of Stories: The Solenoid Model
1326: 1293: 1127: 496: 478: 300: 103: 99: 95: 215:
from the N-terminal of histone H4) inhibits 30 nm fibre formation.
1240:"Involvement of histone H1 in the organization of the chromosome fiber" 212: 148: 111: 107: 75: 68: 37: 646: 144: 59:
by using aniline dyes to stain it. In 1974, it was first proposed by
33: 29: 1038: 36:
fibre. It is a secondary chromatin structure which helps to package
189: 1377: 275:
The two-start cross-linker model was proposed in 1986 by Williams
516:(4 ed.). Jones & Bartlett Publishers. pp. 210–252. 254: 192: 160: 123: 154:
When DNA is compacted into the solenoid structure can still be
208: 1019:
Luger, K.; Dechassa, M. L.; Tremethick, D. J. (22 June 2012).
736:"Structure and organization of chromatin fiber in the nucleus" 879: 676:
Walker, P. R.; Sikorska, M.; Whitfield, J. F. (25 May 1986).
296: 276: 165: 957: 185: 1177: 630: 541: 290: 40: 1069: 74:
The solenoid model was first proposed by John Finch and
1018: 886:(7. ed., 1. print. ed.). New York: W. H. Freeman. 675: 1109:"Structure of chromatin and the linking number of DNA" 825: 600: 1106: 449:Thoma, F.; Koller, T.; Klug, A. (1 November 1979). 513:Molecular Biology, Chapter 6: Chromosome Structure 387:"Solenoidal model for superstructure in chromatin" 63:that chromatin was based on a repeating unit of a 768: 261: 1409: 1360:"Packaging paternal chromosomes with protamine" 1245:Proceedings of the National Academy of Sciences 1237: 965:Proceedings of the National Academy of Sciences 548:Proceedings of the National Academy of Sciences 448: 270: 1238:Renz, M.; Nehls, P.; Hozier, J. (1 May 1977). 537: 535: 533: 322: 320: 951: 774: 1300: 1171: 1107:Worcel, A.; Strogatz, S.; Riley, D. (2001). 1063: 530: 444: 442: 380: 378: 376: 374: 372: 370: 368: 317: 20:30 nm chromatin fibre in solenoid structure 1100: 900: 626: 624: 229:scaffold/matrix attachment regions (SMARs) 1351: 1334: 1283: 1265: 1213: 1154: 1144: 1126: 1046: 1012: 995: 985: 851: 751: 734:Li, Guohong; Zhu, Ping (7 October 2015). 693: 669: 634:Nature Structural & Molecular Biology 577: 567: 486: 468: 422: 412: 384: 1306: 1231: 729: 727: 725: 723: 721: 439: 365: 326: 239: 15: 875: 873: 871: 621: 291:Some alternative forms of DNA packaging 147:cell has a diameter of approximately 6 32:is a model for the structure of the 30 1410: 906: 169: 1357: 1026:Nature Reviews Molecular Cell Biology 733: 718: 509: 235: 94:DNA in the nucleus is wrapped around 868: 385:Finch, J. T.; Klug, A. (June 1976). 221: 594: 13: 282: 55:Chromatin was first discovered by 14: 1434: 1396: 607:(4th ed.). Garland Science. 503: 1358:Braun, Robert E. (1 May 2001). 819: 682:Journal of Biological Chemistry 1073:Trends in Biochemical Sciences 262:Two-start twisted-ribbon model 1: 1206:10.1016/S0006-3495(86)83637-2 753:10.1016/j.febslet.2015.04.023 695:10.1016/S0021-9258(19)62719-5 310: 170:tertiary chromatin structures 50: 832:Journal of Molecular Biology 351:10.1126/science.184.4139.868 271:Two-start cross-linker model 175: 89: 7: 1314:The Journal of Cell Biology 1307:Zentgraf, H (1 July 1984). 456:The Journal of Cell Biology 295:The chromatin in mammalian 138: 10: 1439: 1086:10.1016/j.tibs.2010.09.002 303:package their DNA through 844:10.1016/j.jmb.2008.04.050 510:Tropp, Burton E. (2012). 987:10.1073/pnas.0903280106 929:10.1126/science.1103124 797:10.1126/science.1124000 569:10.1073/pnas.0601212103 168:are assembled in large 1267:10.1073/pnas.74.5.1879 1146:10.1073/pnas.78.3.1461 746:(20PartA): 2893–2904. 414:10.1073/pnas.73.6.1897 245: 21: 243: 184:The concentration of 19: 1327:10.1083/jcb.99.1.272 479:10.1083/jcb.83.2.403 1258:1977PNAS...74.1879R 1198:1986BpJ....49..233W 1185:Biophysical Journal 1137:1981PNAS...78.1461W 978:2009PNAS..10613317G 972:(32): 13317–13322. 921:2004Sci...306.1571D 915:(5701): 1571–1573. 789:2006Sci...311..844S 560:2006PNAS..103.6506R 405:1976PNAS...73.1897F 343:1974Sci...184..868K 80:electron microscopy 78:in 1976. They used 1418:Molecular genetics 246: 236:Alternative models 211:which is the 16th 110:proteins, and two 22: 893:978-0-7167-3520-5 783:(5762): 844–847. 688:(15): 7044–7051. 641:(11): 1070–1076. 614:978-0-8153-3218-3 554:(17): 6506–6511. 337:(4139): 868–871. 222:Further packaging 156:transcriptionally 84:X-ray diffraction 1430: 1390: 1389: 1355: 1349: 1348: 1338: 1304: 1298: 1297: 1287: 1269: 1252:(5): 1879–1883. 1235: 1229: 1227: 1217: 1175: 1169: 1168: 1158: 1148: 1130: 1128:cond-mat/0007235 1104: 1098: 1097: 1067: 1061: 1060: 1050: 1016: 1010: 1009: 999: 989: 955: 949: 948: 904: 898: 897: 877: 866: 865: 855: 823: 817: 816: 772: 766: 765: 755: 731: 716: 715: 697: 673: 667: 666: 647:10.1038/nsmb1323 628: 619: 618: 598: 592: 591: 581: 571: 539: 528: 527: 507: 501: 500: 490: 472: 446: 437: 436: 426: 416: 382: 363: 362: 324: 197:chelating agents 57:Walther Flemming 1438: 1437: 1433: 1432: 1431: 1429: 1428: 1427: 1408: 1407: 1399: 1394: 1393: 1365:Nature Genetics 1356: 1352: 1305: 1301: 1236: 1232: 1176: 1172: 1105: 1101: 1068: 1064: 1039:10.1038/nrm3382 1017: 1013: 956: 952: 905: 901: 894: 878: 869: 824: 820: 773: 769: 732: 719: 674: 670: 629: 622: 615: 599: 595: 540: 531: 524: 508: 504: 470:10.1.1.280.4231 447: 440: 399:(6): 1897–901. 383: 366: 325: 318: 313: 293: 285: 283:Superbead model 273: 264: 238: 224: 188:, particularly 178: 141: 92: 67:and around 200 65:histone octamer 53: 12: 11: 5: 1436: 1426: 1425: 1420: 1406: 1405: 1398: 1397:External links 1395: 1392: 1391: 1350: 1321:(1): 272–286. 1299: 1230: 1170: 1099: 1062: 1033:(7): 436–447. 1011: 950: 899: 892: 867: 838:(4): 816–825. 818: 767: 717: 668: 620: 613: 593: 529: 522: 502: 463:(2): 403–427. 438: 364: 315: 314: 312: 309: 292: 289: 284: 281: 272: 269: 263: 260: 237: 234: 223: 220: 177: 174: 140: 137: 91: 88: 61:Roger Kornberg 52: 49: 9: 6: 4: 3: 2: 1435: 1424: 1421: 1419: 1416: 1415: 1413: 1404: 1401: 1400: 1387: 1383: 1379: 1378:10.1038/88194 1375: 1371: 1367: 1366: 1361: 1354: 1346: 1342: 1337: 1332: 1328: 1324: 1320: 1316: 1315: 1310: 1303: 1295: 1291: 1286: 1281: 1277: 1273: 1268: 1263: 1259: 1255: 1251: 1247: 1246: 1241: 1234: 1225: 1221: 1216: 1211: 1207: 1203: 1199: 1195: 1192:(1): 233–48. 1191: 1187: 1186: 1181: 1174: 1166: 1162: 1157: 1152: 1147: 1142: 1138: 1134: 1129: 1124: 1121:(3): 1461–5. 1120: 1116: 1115: 1110: 1103: 1095: 1091: 1087: 1083: 1079: 1075: 1074: 1066: 1058: 1054: 1049: 1044: 1040: 1036: 1032: 1028: 1027: 1022: 1015: 1007: 1003: 998: 993: 988: 983: 979: 975: 971: 967: 966: 961: 954: 946: 942: 938: 934: 930: 926: 922: 918: 914: 910: 903: 895: 889: 885: 884: 876: 874: 872: 863: 859: 854: 849: 845: 841: 837: 833: 829: 822: 814: 810: 806: 802: 798: 794: 790: 786: 782: 778: 771: 763: 759: 754: 749: 745: 741: 737: 730: 728: 726: 724: 722: 713: 709: 705: 701: 696: 691: 687: 683: 679: 672: 664: 660: 656: 652: 648: 644: 640: 636: 635: 627: 625: 616: 610: 606: 605: 597: 589: 585: 580: 575: 570: 565: 561: 557: 553: 549: 545: 538: 536: 534: 525: 523:9780763786632 519: 515: 514: 506: 498: 494: 489: 484: 480: 476: 471: 466: 462: 458: 457: 452: 445: 443: 434: 430: 425: 420: 415: 410: 406: 402: 398: 394: 393: 388: 381: 379: 377: 375: 373: 371: 369: 360: 356: 352: 348: 344: 340: 336: 332: 331: 323: 321: 316: 308: 306: 302: 298: 288: 280: 278: 268: 259: 257: 256: 249: 242: 233: 230: 219: 216: 214: 210: 204: 200: 198: 194: 191: 187: 182: 173: 171: 167: 163: 162: 157: 152: 150: 146: 136: 132: 129: 125: 121: 116: 113: 109: 105: 101: 97: 87: 85: 81: 77: 72: 70: 66: 62: 58: 48: 46: 42: 39: 35: 31: 28:structure of 27: 18: 1372:(1): 10–12. 1369: 1363: 1353: 1318: 1312: 1302: 1249: 1243: 1233: 1189: 1183: 1173: 1118: 1112: 1102: 1077: 1071: 1065: 1030: 1024: 1014: 969: 963: 953: 912: 908: 902: 882: 835: 831: 821: 780: 776: 770: 743: 740:FEBS Letters 739: 685: 681: 671: 638: 632: 603: 596: 551: 547: 512: 505: 460: 454: 396: 390: 334: 328: 305:supercoiling 294: 286: 274: 265: 253: 250: 247: 225: 217: 205: 201: 183: 179: 159: 153: 142: 133: 120:chromatosome 117: 106:dimers, two 93: 73: 54: 25: 23: 301:prokaryotes 96:nucleosomes 82:images and 1412:Categories 1080:(1): 1–6. 311:References 213:amino acid 112:histone H4 108:histone H3 76:Aaron Klug 69:base pairs 51:Background 38:eukaryotic 1276:0027-8424 704:0021-9258 465:CiteSeerX 176:Formation 145:mammalian 90:Structure 43:into the 30:chromatin 1386:11326265 1094:20926298 1057:22722606 1006:19651606 945:20869252 937:15567867 862:18653199 813:11079405 805:16469925 762:25913782 663:40546856 655:17965724 588:16617109 190:divalent 139:Function 71:of DNA. 26:solenoid 1345:6736129 1336:2275636 1254:Bibcode 1224:3955173 1215:1329627 1194:Bibcode 1165:6940168 1133:Bibcode 1048:3408961 997:2726360 974:Bibcode 917:Bibcode 909:Science 853:3870898 785:Bibcode 777:Science 712:3700426 579:1436021 556:Bibcode 488:2111545 433:1064861 401:Bibcode 359:4825889 339:Bibcode 330:Science 255:in situ 193:cations 164:active 161:in vivo 124:polymer 45:nucleus 1384:  1343:  1333:  1294:266711 1292:  1285:431035 1282:  1274:  1222:  1212:  1163:  1156:319150 1153:  1092:  1055:  1045:  1004:  994:  943:  935:  890:  860:  850:  811:  803:  760:  710:  702:  661:  653:  611:  586:  576:  520:  497:387806 495:  485:  467:  431:  424:430414 421:  357:  209:lysine 1123:arXiv 941:S2CID 809:S2CID 659:S2CID 297:sperm 277:et al 166:genes 128:pitch 1382:PMID 1341:PMID 1290:PMID 1272:ISSN 1220:PMID 1161:PMID 1090:PMID 1053:PMID 1002:PMID 933:PMID 888:ISBN 858:PMID 801:PMID 758:PMID 708:PMID 700:ISSN 651:PMID 609:ISBN 584:PMID 518:ISBN 493:PMID 429:PMID 355:PMID 186:ions 24:The 1423:DNA 1374:doi 1331:PMC 1323:doi 1280:PMC 1262:doi 1210:PMC 1202:doi 1151:PMC 1141:doi 1082:doi 1043:PMC 1035:doi 992:PMC 982:doi 970:106 925:doi 913:306 848:PMC 840:doi 836:381 793:doi 781:311 748:doi 744:589 690:doi 686:261 643:doi 574:PMC 564:doi 552:103 483:PMC 475:doi 419:PMC 409:doi 347:doi 335:184 104:H2B 100:H2A 41:DNA 1414:: 1380:. 1370:28 1368:. 1362:. 1339:. 1329:. 1319:99 1317:. 1311:. 1288:. 1278:. 1270:. 1260:. 1250:74 1248:. 1242:. 1218:. 1208:. 1200:. 1190:49 1188:. 1182:. 1159:. 1149:. 1139:. 1131:. 1119:78 1117:. 1111:. 1088:. 1078:36 1076:. 1051:. 1041:. 1031:13 1029:. 1023:. 1000:. 990:. 980:. 968:. 962:. 939:. 931:. 923:. 911:. 870:^ 856:. 846:. 834:. 830:. 807:. 799:. 791:. 779:. 756:. 742:. 738:. 720:^ 706:. 698:. 684:. 680:. 657:. 649:. 639:14 637:. 623:^ 582:. 572:. 562:. 550:. 546:. 532:^ 491:. 481:. 473:. 461:83 459:. 453:. 441:^ 427:. 417:. 407:. 397:73 395:. 389:. 367:^ 353:. 345:. 333:. 319:^ 307:. 258:. 199:. 172:. 149:ΞΌm 47:. 34:nm 1388:. 1376:: 1347:. 1325:: 1296:. 1264:: 1256:: 1228:. 1226:. 1204:: 1196:: 1167:. 1143:: 1135:: 1125:: 1096:. 1084:: 1059:. 1037:: 1008:. 984:: 976:: 947:. 927:: 919:: 896:. 864:. 842:: 815:. 795:: 787:: 764:. 750:: 714:. 692:: 665:. 645:: 617:. 590:. 566:: 558:: 526:. 499:. 477:: 435:. 411:: 403:: 361:. 349:: 341:: 102:-

Index


chromatin
nm
eukaryotic
DNA
nucleus
Walther Flemming
Roger Kornberg
histone octamer
base pairs
Aaron Klug
electron microscopy
X-ray diffraction
nucleosomes
H2A
H2B
histone H3
histone H4
chromatosome
polymer
pitch
mammalian
ΞΌm
transcriptionally
in vivo
genes
tertiary chromatin structures
ions
divalent
cations

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑