Knowledge

Six-dimensional space

Source 📝

491: 278: 712: 610: 420: 349: 2827: 1250: 1435: 2005: 2487: 1461:
with a single mathematical model. Although it is an attempt to model our universe it takes place in a space with more dimensions than the four of spacetime that we are familiar with. In particular a number of string theories take place in a ten-dimensional space, adding an extra six dimensions. These
29:
is any space that has six dimensions, six degrees of freedom, and that needs six pieces of data, or coordinates, to specify a location in this space. There are an infinite number of these, but those of most interest are simpler ones that model some aspect of the environment. Of particular interest is
1309:
Although the space we live in is considered three-dimensional, there are practical applications for four-dimensional space. Quaternions, one of the ways to describe rotations in three dimensions, consist of a four-dimensional space. Rotations between quaternions, for interpolation, for example, take
2595:. It consisted of two three-dimensional vectors in a single object, which he used to describe ellipses in three dimensions. It has fallen out of use as other techniques have been developed, and the name bivector is now more closely associated with geometric algebra. 2288: 1838: 2303: 2038:, can be added subtracted and scaled like in other dimensions. Rather than use letters of the alphabet, higher dimensions usually use suffixes to designate dimensions, so a general six-dimensional vector can be written 1082: 908: 1230:
in six dimensions. These can be treated as six-dimensional vectors that transform linearly when changing frame of reference. Translations and rotations cannot be done this way, but are related to a twist by
1286:
the matrix is determined, up to a change in sign, by e.g. the six elements above the main diagonal. But this group is not linear, and it has a more complex structure than other applications seen so far.
2574: 1268:
to highlight the relationship between the quantities. A general particle moving in three dimensions has a phase space with six dimensions, too many to plot but they can be analysed mathematically.
1192:. Often these transformations are handled separately as they have very different geometrical structures, but there are ways of dealing with them that treat them as a single six-dimensional object. 1397: 1150: 973: 1576: 1298:, one before and one after the vector. These quaternion are unique, up to a change in sign for both of them, and generate all rotations when used this way, so the product of their groups, 1747: 1531: 2122: 1704: 1640: 746: 1805: 1776: 1669: 1605: 502: 150:
that are a fixed distance from the origin. This constraint reduces the number of coordinates needed to describe a point on the 6-sphere by one, so it has six dimensions. Such
148: 72: 702: 2000:{\displaystyle \mathbf {B} =B_{12}\mathbf {e} _{12}+B_{13}\mathbf {e} _{13}+B_{14}\mathbf {e} _{14}+B_{23}\mathbf {e} _{23}+B_{24}\mathbf {e} _{24}+B_{34}\mathbf {e} _{34}} 624: 789: 774: 687: 644: 550: 507: 431: 360: 289: 2482:{\displaystyle \left|\mathbf {a} \right\vert ={\sqrt {\mathbf {a} \cdot \mathbf {a} }}={\sqrt {{a_{1}}^{2}+{a_{2}}^{2}+{a_{3}}^{2}+{a_{4}}^{2}+{a_{5}}^{2}+{a_{6}}^{2}}}.} 804: 794: 766: 756: 736: 726: 692: 664: 654: 634: 784: 682: 672: 600: 590: 580: 570: 560: 542: 532: 522: 512: 481: 471: 461: 451: 441: 410: 400: 390: 380: 370: 339: 329: 319: 309: 299: 799: 697: 761: 751: 741: 731: 659: 649: 639: 629: 1362:-valued representation of the electromagnetic field. Using this Maxwell's equations can be condensed from four equations into a particularly compact single equation: 779: 677: 595: 585: 575: 565: 555: 537: 527: 517: 476: 466: 456: 446: 436: 405: 395: 385: 375: 365: 334: 324: 314: 304: 294: 1282:
The rotation group in four dimensions, SO(4), has six degrees of freedom. This can be seen by considering the 4 × 4 matrix that represents a rotation: as it is an
1778:). They can also be related to general transformations in three dimensions through homogeneous coordinates, which can be thought of as modified rotations in 1008: 834: 2758: 1277: 1477:
are non-gravitational string theories in five and six dimensions that arise when considering limits of ten-dimensional string theory.
2506: 2686: 1707: 20: 1368: 1093: 1314:, which has three space dimensions and one time dimension is also four-dimensional, though with a different structure to 994:
The 6-sphere, or hypersphere in seven dimensions, is the six-dimensional surface equidistant from a point. It has symbol
820:
The 5-sphere, or hypersphere in six dimensions, is the five-dimensional surface equidistant from a point. It has symbol
1490:
A number of the above applications can be related to each other algebraically by considering the real, six-dimensional
1462:
extra dimensions are required by the theory, but as they cannot be observed are thought to be quite different, perhaps
919: 2861: 2811: 1536: 1713: 1497: 2283:{\displaystyle \mathbf {a} \cdot \mathbf {b} =a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}+a_{4}b_{4}+a_{5}b_{5}+a_{6}b_{6}.} 2751: 2010:
They are the first bivectors that cannot all be generated by products of pairs of vectors. Those that can are
182: 2496:; with one corner at the origin, edges aligned to the axes and side length 1 the opposite corner could be at 2846: 154:
spaces are far more common than Euclidean spaces, and in six dimensions they have far more applications.
1674: 1610: 2678: 1463: 206: 2034:
6-vectors are simply the vectors of six-dimensional Euclidean space. Like other such vectors they are
1781: 1752: 1645: 1581: 124: 48: 2744: 2781: 2026:
rotations and correspond to non-simple bivectors that cannot be generated by single wedge product.
113:, not necessarily Euclidean ones, is six-dimensional. One example is the surface of the 6-sphere, 2989: 2984: 2964: 1467: 1438: 1303: 118: 2974: 2969: 2949: 1351: 1347: 1254: 1185: 1181: 151: 2959: 2954: 1423: 1331: 86:
in this space. As such it has the properties of all Euclidean spaces, so it is linear, has a
2717: 1474: 1189: 1177: 95: 87: 8: 3055: 2856: 2851: 2721: 201:, constructed from fundamental symmetry domains of reflection, each domain defined by a 94:
between two 6-vectors is readily defined and can be used to calculate the metric. 6 × 6
3050: 3030: 2871: 2826: 2707: 2294: 1454: 198: 1294:
multiplication. Every rotation in four dimensions can be achieved by multiplying by a
277: 2866: 2729: 2682: 1458: 1295: 1283: 419: 2011: 1607:
while the electromagnetic tensor discussed in the previous section is a bivector in
2796: 2725: 1327: 1207: 178: 83: 39: 35: 2841: 2786: 2591:
published a work on vectors that included a six-dimensional quantity he called a
2023: 1473:
Since 1997 another string theory has come to light that works in six dimensions.
1315: 31: 1578:
for the set of bivectors in spacetime. The PlĂźcker coordinates are bivectors in
348: 2923: 2908: 2656:
Vector analysis: a text-book for the use of students of mathematics and physics
1350:. A second approach is to combine them in a single object, the six-dimensional 1339: 1335: 1232: 2019: 2015: 3044: 2913: 2105: 2101: 1811: 1450: 1442: 1265: 716: 614: 242: 225: 218: 202: 2933: 2898: 2791: 2070: 1415: 1343: 1201: 2653: 3018: 2801: 2113: 1815: 1244: 424: 194: 110: 91: 75: 34:, in which 6-polytopes and the 5-sphere are constructed. Six-dimensional 2579:
which is the length of the vector and so of the diagonal of the 6-cube.
3013: 2893: 2712: 2588: 1291: 495: 210: 168: 2994: 2903: 2816: 2767: 1311: 282: 186: 2698:
Aharony, Ofer (2000). "A brief review of "little string theories"".
2918: 2881: 2806: 2109: 1491: 1359: 1299: 1261: 1211: 1077:{\displaystyle S^{6}=\left\{x\in \mathbb {R} ^{7}:\|x\|=r\right\}.} 903:{\displaystyle S^{5}=\left\{x\in \mathbb {R} ^{6}:\|x\|=r\right\}.} 490: 177:
in six dimensions is called a 6-polytope. The most studied are the
174: 106: 99: 2928: 913:
The volume of six-dimensional space bounded by this 5-sphere is
42:
are also studied, with constant positive and negative curvature.
1214:
velocity are combined into one six-dimensional object, called a
711: 609: 2493: 2035: 1355: 1227: 1160: 983: 353: 190: 2885: 2293:
It can be used to find the angle between two vectors and the
1434: 1249: 1223: 79: 2736: 2492:
This can be used for example to calculate the diagonal of a
2569:{\displaystyle {\sqrt {1+1+1+1+1+1}}={\sqrt {6}}=2.4495,} 1334:
is generally thought of as being made of two things, the
1642:. Bivectors can be used to generate rotations in either 1710:(e.g. applying the exponential map of all bivectors in 90:
and a full set of vector operations. In particular the
1171: 19:"Sixth dimension" redirects here. For other uses, see 2509: 2306: 2125: 1841: 1832:= 6 components, and can be written most generally as 1784: 1755: 1716: 1677: 1648: 1613: 1584: 1539: 1500: 1371: 1096: 1011: 922: 837: 127: 51: 1408:
is the bivector form of the electromagnetic tensor,
1392:{\displaystyle \partial \mathbf {F} =\mathbf {J} \,} 1145:{\displaystyle V_{7}={\frac {16\pi ^{3}r^{7}}{105}}} 1087:
The volume of the space bounded by this 6-sphere is
2654:Josiah Willard Gibbs, Edwin Bidwell Wilson (1901). 1260:Phase space is a space made up of the position and 1188:along the three coordinate axes and three from the 2568: 2481: 2282: 1999: 1799: 1770: 1741: 1698: 1663: 1634: 1599: 1570: 1525: 1391: 1264:of a particle, which can be plotted together in a 1144: 1076: 967: 902: 142: 66: 3042: 1814:between pairs of 4-vectors. They therefore have 968:{\displaystyle V_{6}={\frac {\pi ^{3}r^{6}}{6}}} 98:can be used to describe transformations such as 2104:cannot be used in six dimensions; instead, the 1533:for the set of bivectors in Euclidean space or 1485: 1271: 205:. Each uniform polytope is defined by a ringed 1810:The bivectors arise from sums of all possible 1571:{\displaystyle \Lambda ^{2}\mathbb {R} ^{3,1}} 2752: 2611: 1290:Another way of looking at this group is with 241:(Displayed as orthogonal projections in each 1742:{\displaystyle \Lambda ^{2}\mathbb {R} ^{4}} 1526:{\displaystyle \Lambda ^{2}\mathbb {R} ^{4}} 1057: 1051: 998:, and the equation for the 6-sphere, radius 883: 877: 824:, and the equation for the 5-sphere, radius 45:Formally, six-dimensional Euclidean space, 2759: 2745: 1306:of SO(4), which must have six dimensions. 1278:Rotations in 4-dimensional Euclidean space 2711: 2018:. Other rotations in four dimensions are 1787: 1758: 1729: 1680: 1651: 1616: 1587: 1552: 1513: 1494:in four dimensions. These can be written 1480: 1388: 1038: 864: 130: 54: 2672: 1433: 1248: 2697: 2658:. Yale University Press. p. 481ff. 1466:to form a six-dimensional space with a 3043: 105:More generally, any space that can be 2740: 2014:and the rotations they generate are 1321: 1172:Transformations in three dimensions 239:Uniform polytopes in six dimensions 117:. This is the set of all points in 16:Geometric space with six dimensions 13: 2582: 1718: 1699:{\displaystyle \mathbb {R} ^{3,1}} 1635:{\displaystyle \mathbb {R} ^{3,1}} 1541: 1502: 1372: 1342:. They are both three-dimensional 74:, is generated by considering all 14: 3067: 2825: 2334: 2326: 2312: 2135: 2127: 1987: 1962: 1937: 1912: 1887: 1862: 1843: 1800:{\displaystyle \mathbb {R} ^{4}} 1771:{\displaystyle \mathbb {R} ^{4}} 1664:{\displaystyle \mathbb {R} ^{4}} 1600:{\displaystyle \mathbb {R} ^{4}} 1429: 1384: 1376: 802: 797: 792: 787: 782: 777: 772: 764: 759: 754: 749: 744: 739: 734: 729: 724: 710: 700: 695: 690: 685: 680: 675: 670: 662: 657: 652: 647: 642: 637: 632: 627: 622: 608: 598: 593: 588: 583: 578: 573: 568: 563: 558: 553: 548: 540: 535: 530: 525: 520: 515: 510: 505: 500: 489: 479: 474: 469: 464: 459: 454: 449: 444: 439: 434: 429: 418: 408: 403: 398: 393: 388: 383: 378: 373: 368: 363: 358: 347: 337: 332: 327: 322: 317: 312: 307: 302: 297: 292: 287: 276: 143:{\displaystyle \mathbb {R} ^{7}} 67:{\displaystyle \mathbb {R} ^{6}} 1195: 1166: 213:is a unique polytope from the D 2647: 2638: 2629: 2620: 2614:Perspectives of Modern Physics 2605: 2108:of two 6-vectors results in a 1238: 1: 2766: 2700:Classical and Quantum Gravity 2675:Clifford algebras and spinors 2666: 1176:In three dimensional space a 162: 2626:Lounesto (2001), pp. 109–110 2598: 2100:Of the vector operators the 2069:. Written like this the six 2029: 1486:Bivectors in four dimensions 1470:too small to be observable. 1272:Rotations in four dimensions 1218:. A similar object called a 1163:that contains the 6-sphere. 1159:, or 0.0369 of the smallest 986:that contains the 5-sphere. 982:, or 0.0807 of the smallest 274: 102:that keep the origin fixed. 7: 1749:generates all rotations in 1346:, related to each other by 989: 815: 157: 10: 3072: 2730:10.1088/0264-9381/17/5/302 2679:Cambridge University Press 2644:Lounesto (2001), pp. 86–89 1453:is an attempt to describe 1310:place in four dimensions. 1275: 1242: 1199: 181:, of which there are only 166: 18: 3027: 3006: 2942: 2880: 2834: 2823: 2774: 2673:Lounesto, Pertti (2001). 267: 255: 197:. A wider family are the 2112:with 15 dimensions. The 1296:pair of unit quaternions 2500:, the norm of which is 1002:, centre the origin is 828:, centre the origin is 183:three in six dimensions 119:seven-dimensional space 2612:Arthur Besier (1969). 2570: 2483: 2284: 2001: 1801: 1772: 1743: 1700: 1665: 1636: 1601: 1572: 1527: 1481:Theoretical background 1475:Little string theories 1446: 1393: 1352:electromagnetic tensor 1257: 1255:Van der Pol oscillator 1253:Phase portrait of the 1182:six degrees of freedom 1146: 1078: 969: 904: 207:Coxeter–Dynkin diagram 144: 68: 2571: 2484: 2285: 2002: 1802: 1773: 1744: 1701: 1666: 1637: 1602: 1573: 1528: 1437: 1424:differential operator 1394: 1332:electromagnetic field 1252: 1147: 1079: 970: 905: 605:{3,3} = h{4,3,3,3,3} 145: 69: 27:Six-dimensional space 2943:Dimensions by number 2507: 2304: 2123: 1839: 1782: 1753: 1714: 1675: 1646: 1611: 1582: 1537: 1498: 1369: 1190:rotation group SO(3) 1178:rigid transformation 1094: 1009: 920: 835: 231:polytopes from the E 125: 49: 2722:2000CQGra..17..929A 1468:particular geometry 1439:Calabi–Yau manifold 1348:Maxwell's equations 1155:which is 4.72477 × 978:which is 5.16771 × 246: 199:uniform 6-polytopes 21:The Sixth Dimension 2872:Degrees of freedom 2775:Dimensional spaces 2566: 2498:(1, 1, 1, 1, 1, 1) 2479: 2280: 2116:of two vectors is 2095:(0, 0, 0, 0, 0, 1) 2091:(0, 0, 0, 0, 1, 0) 2087:(0, 0, 0, 1, 0, 0) 2083:(0, 0, 1, 0, 0, 0) 2079:(0, 1, 0, 0, 0, 0) 2075:(1, 0, 0, 0, 0, 0) 1997: 1797: 1768: 1739: 1696: 1661: 1632: 1597: 1568: 1523: 1455:general relativity 1447: 1389: 1258: 1142: 1074: 965: 900: 238: 140: 64: 3038: 3037: 2847:Lebesgue covering 2812:Algebraic variety 2688:978-0-521-00551-7 2555: 2545: 2474: 2338: 1459:quantum mechanics 1284:orthogonal matrix 1140: 963: 813: 812: 179:regular polytopes 107:described locally 40:hyperbolic spaces 3063: 2835:Other dimensions 2829: 2797:Projective space 2761: 2754: 2747: 2738: 2737: 2733: 2715: 2692: 2660: 2659: 2651: 2645: 2642: 2636: 2633: 2627: 2624: 2618: 2617: 2609: 2575: 2573: 2572: 2567: 2556: 2551: 2546: 2511: 2499: 2488: 2486: 2485: 2480: 2475: 2473: 2472: 2467: 2466: 2465: 2451: 2450: 2445: 2444: 2443: 2429: 2428: 2423: 2422: 2421: 2407: 2406: 2401: 2400: 2399: 2385: 2384: 2379: 2378: 2377: 2363: 2362: 2357: 2356: 2355: 2344: 2339: 2337: 2329: 2324: 2319: 2315: 2289: 2287: 2286: 2281: 2276: 2275: 2266: 2265: 2253: 2252: 2243: 2242: 2230: 2229: 2220: 2219: 2207: 2206: 2197: 2196: 2184: 2183: 2174: 2173: 2161: 2160: 2151: 2150: 2138: 2130: 2096: 2092: 2088: 2084: 2080: 2076: 2068: 2016:simple rotations 2012:simple bivectors 2006: 2004: 2003: 1998: 1996: 1995: 1990: 1984: 1983: 1971: 1970: 1965: 1959: 1958: 1946: 1945: 1940: 1934: 1933: 1921: 1920: 1915: 1909: 1908: 1896: 1895: 1890: 1884: 1883: 1871: 1870: 1865: 1859: 1858: 1846: 1830: 1829: 1828: 1825: 1806: 1804: 1803: 1798: 1796: 1795: 1790: 1777: 1775: 1774: 1769: 1767: 1766: 1761: 1748: 1746: 1745: 1740: 1738: 1737: 1732: 1726: 1725: 1705: 1703: 1702: 1697: 1695: 1694: 1683: 1670: 1668: 1667: 1662: 1660: 1659: 1654: 1641: 1639: 1638: 1633: 1631: 1630: 1619: 1606: 1604: 1603: 1598: 1596: 1595: 1590: 1577: 1575: 1574: 1569: 1567: 1566: 1555: 1549: 1548: 1532: 1530: 1529: 1524: 1522: 1521: 1516: 1510: 1509: 1421: 1413: 1407: 1398: 1396: 1395: 1390: 1387: 1379: 1328:electromagnetism 1322:Electromagnetism 1206:In screw theory 1151: 1149: 1148: 1143: 1141: 1136: 1135: 1134: 1125: 1124: 1111: 1106: 1105: 1083: 1081: 1080: 1075: 1070: 1066: 1047: 1046: 1041: 1021: 1020: 974: 972: 971: 966: 964: 959: 958: 957: 948: 947: 937: 932: 931: 909: 907: 906: 901: 896: 892: 873: 872: 867: 847: 846: 807: 806: 805: 801: 800: 796: 795: 791: 790: 786: 785: 781: 780: 776: 775: 769: 768: 767: 763: 762: 758: 757: 753: 752: 748: 747: 743: 742: 738: 737: 733: 732: 728: 727: 714: 705: 704: 703: 699: 698: 694: 693: 689: 688: 684: 683: 679: 678: 674: 673: 667: 666: 665: 661: 660: 656: 655: 651: 650: 646: 645: 641: 640: 636: 635: 631: 630: 626: 625: 612: 603: 602: 601: 597: 596: 592: 591: 587: 586: 582: 581: 577: 576: 572: 571: 567: 566: 562: 561: 557: 556: 552: 551: 545: 544: 543: 539: 538: 534: 533: 529: 528: 524: 523: 519: 518: 514: 513: 509: 508: 504: 503: 493: 484: 483: 482: 478: 477: 473: 472: 468: 467: 463: 462: 458: 457: 453: 452: 448: 447: 443: 442: 438: 437: 433: 432: 422: 413: 412: 411: 407: 406: 402: 401: 397: 396: 392: 391: 387: 386: 382: 381: 377: 376: 372: 371: 367: 366: 362: 361: 351: 342: 341: 340: 336: 335: 331: 330: 326: 325: 321: 320: 316: 315: 311: 310: 306: 305: 301: 300: 296: 295: 291: 290: 280: 247: 237: 149: 147: 146: 141: 139: 138: 133: 73: 71: 70: 65: 63: 62: 57: 36:elliptical space 30:six-dimensional 3071: 3070: 3066: 3065: 3064: 3062: 3061: 3060: 3041: 3040: 3039: 3034: 3023: 3002: 2938: 2876: 2830: 2821: 2787:Euclidean space 2770: 2765: 2689: 2669: 2664: 2663: 2652: 2648: 2643: 2639: 2634: 2630: 2625: 2621: 2610: 2606: 2601: 2585: 2583:Gibbs bivectors 2550: 2510: 2508: 2505: 2504: 2497: 2468: 2461: 2457: 2456: 2455: 2446: 2439: 2435: 2434: 2433: 2424: 2417: 2413: 2412: 2411: 2402: 2395: 2391: 2390: 2389: 2380: 2373: 2369: 2368: 2367: 2358: 2351: 2347: 2346: 2345: 2343: 2333: 2325: 2323: 2311: 2307: 2305: 2302: 2301: 2271: 2267: 2261: 2257: 2248: 2244: 2238: 2234: 2225: 2221: 2215: 2211: 2202: 2198: 2192: 2188: 2179: 2175: 2169: 2165: 2156: 2152: 2146: 2142: 2134: 2126: 2124: 2121: 2120: 2094: 2090: 2086: 2082: 2078: 2074: 2066: 2062: 2058: 2054: 2050: 2046: 2039: 2032: 1991: 1986: 1985: 1979: 1975: 1966: 1961: 1960: 1954: 1950: 1941: 1936: 1935: 1929: 1925: 1916: 1911: 1910: 1904: 1900: 1891: 1886: 1885: 1879: 1875: 1866: 1861: 1860: 1854: 1850: 1842: 1840: 1837: 1836: 1826: 1823: 1821: 1820: 1819: 1791: 1786: 1785: 1783: 1780: 1779: 1762: 1757: 1756: 1754: 1751: 1750: 1733: 1728: 1727: 1721: 1717: 1715: 1712: 1711: 1708:exponential map 1684: 1679: 1678: 1676: 1673: 1672: 1655: 1650: 1649: 1647: 1644: 1643: 1620: 1615: 1614: 1612: 1609: 1608: 1591: 1586: 1585: 1583: 1580: 1579: 1556: 1551: 1550: 1544: 1540: 1538: 1535: 1534: 1517: 1512: 1511: 1505: 1501: 1499: 1496: 1495: 1488: 1483: 1432: 1419: 1409: 1403: 1383: 1375: 1370: 1367: 1366: 1324: 1316:Euclidean space 1280: 1274: 1247: 1241: 1204: 1198: 1174: 1169: 1130: 1126: 1120: 1116: 1112: 1110: 1101: 1097: 1095: 1092: 1091: 1042: 1037: 1036: 1029: 1025: 1016: 1012: 1010: 1007: 1006: 992: 953: 949: 943: 939: 938: 936: 927: 923: 921: 918: 917: 868: 863: 862: 855: 851: 842: 838: 836: 833: 832: 818: 808: 803: 798: 793: 788: 783: 778: 773: 771: 765: 760: 755: 750: 745: 740: 735: 730: 725: 723: 722: 720: 715: 706: 701: 696: 691: 686: 681: 676: 671: 669: 663: 658: 653: 648: 643: 638: 633: 628: 623: 621: 620: 618: 613: 604: 599: 594: 589: 584: 579: 574: 569: 564: 559: 554: 549: 547: 541: 536: 531: 526: 521: 516: 511: 506: 501: 499: 498: 494: 485: 480: 475: 470: 465: 460: 455: 450: 445: 440: 435: 430: 428: 427: 423: 414: 409: 404: 399: 394: 389: 384: 379: 374: 369: 364: 359: 357: 356: 352: 343: 338: 333: 328: 323: 318: 313: 308: 303: 298: 293: 288: 286: 285: 281: 271: 265: 259: 253: 240: 234: 229: 222: 216: 171: 165: 160: 134: 129: 128: 126: 123: 122: 58: 53: 52: 50: 47: 46: 32:Euclidean space 24: 17: 12: 11: 5: 3069: 3059: 3058: 3053: 3036: 3035: 3028: 3025: 3024: 3022: 3021: 3016: 3010: 3008: 3004: 3003: 3001: 3000: 2992: 2987: 2982: 2977: 2972: 2967: 2962: 2957: 2952: 2946: 2944: 2940: 2939: 2937: 2936: 2931: 2926: 2924:Cross-polytope 2921: 2916: 2911: 2909:Hyperrectangle 2906: 2901: 2896: 2890: 2888: 2878: 2877: 2875: 2874: 2869: 2864: 2859: 2854: 2849: 2844: 2838: 2836: 2832: 2831: 2824: 2822: 2820: 2819: 2814: 2809: 2804: 2799: 2794: 2789: 2784: 2778: 2776: 2772: 2771: 2764: 2763: 2756: 2749: 2741: 2735: 2734: 2713:hep-th/9911147 2694: 2693: 2687: 2668: 2665: 2662: 2661: 2646: 2637: 2635:Aharony (2000) 2628: 2619: 2616:. McGraw-Hill. 2603: 2602: 2600: 2597: 2584: 2581: 2577: 2576: 2565: 2562: 2559: 2554: 2549: 2544: 2541: 2538: 2535: 2532: 2529: 2526: 2523: 2520: 2517: 2514: 2490: 2489: 2478: 2471: 2464: 2460: 2454: 2449: 2442: 2438: 2432: 2427: 2420: 2416: 2410: 2405: 2398: 2394: 2388: 2383: 2376: 2372: 2366: 2361: 2354: 2350: 2342: 2336: 2332: 2328: 2322: 2318: 2314: 2310: 2291: 2290: 2279: 2274: 2270: 2264: 2260: 2256: 2251: 2247: 2241: 2237: 2233: 2228: 2224: 2218: 2214: 2210: 2205: 2201: 2195: 2191: 2187: 2182: 2178: 2172: 2168: 2164: 2159: 2155: 2149: 2145: 2141: 2137: 2133: 2129: 2064: 2060: 2056: 2052: 2048: 2044: 2031: 2028: 2008: 2007: 1994: 1989: 1982: 1978: 1974: 1969: 1964: 1957: 1953: 1949: 1944: 1939: 1932: 1928: 1924: 1919: 1914: 1907: 1903: 1899: 1894: 1889: 1882: 1878: 1874: 1869: 1864: 1857: 1853: 1849: 1845: 1812:wedge products 1794: 1789: 1765: 1760: 1736: 1731: 1724: 1720: 1693: 1690: 1687: 1682: 1658: 1653: 1629: 1626: 1623: 1618: 1594: 1589: 1565: 1562: 1559: 1554: 1547: 1543: 1520: 1515: 1508: 1504: 1487: 1484: 1482: 1479: 1431: 1428: 1422:is a suitable 1400: 1399: 1386: 1382: 1378: 1374: 1340:magnetic field 1336:electric field 1323: 1320: 1276:Main article: 1273: 1270: 1243:Main article: 1240: 1237: 1233:exponentiation 1200:Main article: 1197: 1194: 1173: 1170: 1168: 1165: 1153: 1152: 1139: 1133: 1129: 1123: 1119: 1115: 1109: 1104: 1100: 1085: 1084: 1073: 1069: 1065: 1062: 1059: 1056: 1053: 1050: 1045: 1040: 1035: 1032: 1028: 1024: 1019: 1015: 991: 988: 976: 975: 962: 956: 952: 946: 942: 935: 930: 926: 911: 910: 899: 895: 891: 888: 885: 882: 879: 876: 871: 866: 861: 858: 854: 850: 845: 841: 817: 814: 811: 810: 718: 708: 616: 606: 487: 416: 345: 273: 272: 269: 266: 263: 260: 257: 254: 251: 232: 227: 220: 214: 167:Main article: 164: 161: 159: 156: 137: 132: 61: 56: 15: 9: 6: 4: 3: 2: 3068: 3057: 3054: 3052: 3049: 3048: 3046: 3033: 3032: 3026: 3020: 3017: 3015: 3012: 3011: 3009: 3005: 2999: 2997: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2947: 2945: 2941: 2935: 2932: 2930: 2927: 2925: 2922: 2920: 2917: 2915: 2914:Demihypercube 2912: 2910: 2907: 2905: 2902: 2900: 2897: 2895: 2892: 2891: 2889: 2887: 2883: 2879: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2839: 2837: 2833: 2828: 2818: 2815: 2813: 2810: 2808: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2779: 2777: 2773: 2769: 2762: 2757: 2755: 2750: 2748: 2743: 2742: 2739: 2731: 2727: 2723: 2719: 2714: 2709: 2705: 2701: 2696: 2695: 2690: 2684: 2680: 2677:. Cambridge: 2676: 2671: 2670: 2657: 2650: 2641: 2632: 2623: 2615: 2608: 2604: 2596: 2594: 2590: 2580: 2563: 2560: 2557: 2552: 2547: 2542: 2539: 2536: 2533: 2530: 2527: 2524: 2521: 2518: 2515: 2512: 2503: 2502: 2501: 2495: 2476: 2469: 2462: 2458: 2452: 2447: 2440: 2436: 2430: 2425: 2418: 2414: 2408: 2403: 2396: 2392: 2386: 2381: 2374: 2370: 2364: 2359: 2352: 2348: 2340: 2330: 2320: 2316: 2308: 2300: 2299: 2298: 2296: 2277: 2272: 2268: 2262: 2258: 2254: 2249: 2245: 2239: 2235: 2231: 2226: 2222: 2216: 2212: 2208: 2203: 2199: 2193: 2189: 2185: 2180: 2176: 2170: 2166: 2162: 2157: 2153: 2147: 2143: 2139: 2131: 2119: 2118: 2117: 2115: 2111: 2107: 2106:wedge product 2103: 2102:cross product 2098: 2072: 2071:basis vectors 2042: 2037: 2027: 2025: 2021: 2017: 2013: 1992: 1980: 1976: 1972: 1967: 1955: 1951: 1947: 1942: 1930: 1926: 1922: 1917: 1905: 1901: 1897: 1892: 1880: 1876: 1872: 1867: 1855: 1851: 1847: 1835: 1834: 1833: 1831: 1818: 1813: 1808: 1792: 1763: 1734: 1722: 1709: 1691: 1688: 1685: 1656: 1627: 1624: 1621: 1592: 1563: 1560: 1557: 1545: 1518: 1506: 1493: 1478: 1476: 1471: 1469: 1465: 1460: 1456: 1452: 1451:string theory 1444: 1443:3D projection 1440: 1436: 1430:String theory 1427: 1425: 1417: 1412: 1406: 1380: 1365: 1364: 1363: 1361: 1357: 1353: 1349: 1345: 1344:vector fields 1341: 1337: 1333: 1329: 1319: 1317: 1313: 1307: 1305: 1301: 1297: 1293: 1288: 1285: 1279: 1269: 1267: 1266:phase diagram 1263: 1256: 1251: 1246: 1236: 1234: 1229: 1225: 1221: 1217: 1213: 1209: 1203: 1193: 1191: 1187: 1183: 1179: 1164: 1162: 1158: 1137: 1131: 1127: 1121: 1117: 1113: 1107: 1102: 1098: 1090: 1089: 1088: 1071: 1067: 1063: 1060: 1054: 1048: 1043: 1033: 1030: 1026: 1022: 1017: 1013: 1005: 1004: 1003: 1001: 997: 987: 985: 981: 960: 954: 950: 944: 940: 933: 928: 924: 916: 915: 914: 897: 893: 889: 886: 880: 874: 869: 859: 856: 852: 848: 843: 839: 831: 830: 829: 827: 823: 721: 713: 709: 619: 611: 607: 497: 492: 488: 426: 421: 417: 355: 350: 346: 284: 279: 275: 261: 249: 248: 245:of symmetry) 244: 243:Coxeter plane 236: 230: 223: 212: 208: 204: 203:Coxeter group 200: 196: 192: 188: 184: 180: 176: 170: 155: 153: 152:non-Euclidean 135: 120: 116: 112: 108: 103: 101: 97: 93: 89: 85: 81: 77: 59: 43: 41: 37: 33: 28: 22: 3029: 2995: 2979: 2934:Hyperpyramid 2899:Hypersurface 2792:Affine space 2782:Vector space 2703: 2699: 2674: 2655: 2649: 2640: 2631: 2622: 2613: 2607: 2592: 2586: 2578: 2491: 2292: 2099: 2040: 2033: 2009: 1816: 1809: 1706:through the 1489: 1472: 1464:compactified 1448: 1416:four-current 1410: 1404: 1401: 1325: 1308: 1304:double cover 1289: 1281: 1259: 1219: 1215: 1205: 1202:Screw theory 1196:Screw theory 1186:translations 1175: 1167:Applications 1156: 1154: 1086: 999: 995: 993: 979: 977: 912: 825: 821: 819: 486:{3,3,3,3,4} 415:{4,3,3,3,3} 344:{3,3,3,3,3} 217:family, and 172: 121:(Euclidean) 114: 104: 44: 26: 25: 3019:Codimension 2998:-dimensions 2919:Hypersphere 2802:Free module 2114:dot product 1449:In physics 1245:Phase space 1239:Phase space 425:6-orthoplex 195:6-orthoplex 111:coordinates 92:dot product 3056:6 (number) 3045:Categories 3014:Hyperspace 2894:Hyperplane 2667:References 2589:J.W. Gibbs 1302:× S, is a 1292:quaternion 496:6-demicube 211:6-demicube 169:6-polytope 163:6-polytope 3051:Dimension 2904:Hypercube 2882:Polytopes 2862:Minkowski 2857:Hausdorff 2852:Inductive 2817:Spacetime 2768:Dimension 2599:Footnotes 2331:⋅ 2132:⋅ 2030:6-vectors 2024:isoclinic 1719:Λ 1542:Λ 1503:Λ 1492:bivectors 1373:∂ 1312:Spacetime 1222:combines 1118:π 1058:‖ 1052:‖ 1034:∈ 941:π 884:‖ 878:‖ 860:∈ 283:6-simplex 187:6-simplex 109:with six 100:rotations 3031:Category 3007:See also 2807:Manifold 2593:bivector 2587:In 1901 2110:bivector 1360:bivector 1262:momentum 1184:, three 990:6-sphere 816:5-sphere 707:{3,3,3} 235:family. 175:polytope 158:Geometry 96:matrices 2929:Simplex 2867:Fractal 2718:Bibcode 1414:is the 1228:torques 1208:angular 84:vectors 2886:shapes 2685:  2561:2.4495 2494:6-cube 2036:linear 2020:double 1827:  1402:where 1356:tensor 1330:, the 1224:forces 1220:wrench 1212:linear 1161:7-cube 984:6-cube 809:{3,3} 354:6-cube 209:. The 193:, and 191:6-cube 185:: the 88:metric 80:tuples 2990:Eight 2985:Seven 2965:Three 2842:Krull 2708:arXiv 2706:(5). 1358:- or 1216:twist 82:as 6- 2975:Five 2970:Four 2950:Zero 2884:and 2683:ISBN 2295:norm 2093:and 2073:are 2043:= (a 2022:and 1457:and 1418:and 1354:, a 1338:and 1226:and 1210:and 1180:has 224:and 76:real 38:and 2980:Six 2960:Two 2955:One 2726:doi 2063:, a 2059:, a 2055:, a 2051:, a 2047:, a 1807:. 1671:or 1326:In 1138:105 3047:: 2724:. 2716:. 2704:17 2702:. 2681:. 2297:, 2097:. 2089:, 2085:, 2081:, 2077:, 1993:34 1981:34 1968:24 1956:24 1943:23 1931:23 1918:14 1906:14 1893:13 1881:13 1868:12 1856:12 1426:. 1318:. 1235:. 1114:16 770:= 719:22 668:= 617:21 546:= 228:22 221:21 189:, 173:A 78:6- 2996:n 2760:e 2753:t 2746:v 2732:. 2728:: 2720:: 2710:: 2691:. 2564:, 2558:= 2553:6 2548:= 2543:1 2540:+ 2537:1 2534:+ 2531:1 2528:+ 2525:1 2522:+ 2519:1 2516:+ 2513:1 2477:. 2470:2 2463:6 2459:a 2453:+ 2448:2 2441:5 2437:a 2431:+ 2426:2 2419:4 2415:a 2409:+ 2404:2 2397:3 2393:a 2387:+ 2382:2 2375:2 2371:a 2365:+ 2360:2 2353:1 2349:a 2341:= 2335:a 2327:a 2321:= 2317:| 2313:a 2309:| 2278:. 2273:6 2269:b 2263:6 2259:a 2255:+ 2250:5 2246:b 2240:5 2236:a 2232:+ 2227:4 2223:b 2217:4 2213:a 2209:+ 2204:3 2200:b 2194:3 2190:a 2186:+ 2181:2 2177:b 2171:2 2167:a 2163:+ 2158:1 2154:b 2148:1 2144:a 2140:= 2136:b 2128:a 2067:) 2065:6 2061:5 2057:4 2053:3 2049:2 2045:1 2041:a 1988:e 1977:B 1973:+ 1963:e 1952:B 1948:+ 1938:e 1927:B 1923:+ 1913:e 1902:B 1898:+ 1888:e 1877:B 1873:+ 1863:e 1852:B 1848:= 1844:B 1824:2 1822:4 1817:C 1793:4 1788:R 1764:4 1759:R 1735:4 1730:R 1723:2 1692:1 1689:, 1686:3 1681:R 1657:4 1652:R 1628:1 1625:, 1622:3 1617:R 1593:4 1588:R 1564:1 1561:, 1558:3 1553:R 1546:2 1519:4 1514:R 1507:2 1445:) 1441:( 1420:∂ 1411:J 1405:F 1385:J 1381:= 1377:F 1300:S 1157:r 1132:7 1128:r 1122:3 1108:= 1103:7 1099:V 1072:. 1068:} 1064:r 1061:= 1055:x 1049:: 1044:7 1039:R 1031:x 1027:{ 1023:= 1018:6 1014:S 1000:r 996:S 980:r 961:6 955:6 951:r 945:3 934:= 929:6 925:V 898:. 894:} 890:r 887:= 881:x 875:: 870:6 865:R 857:x 853:{ 849:= 844:5 840:S 826:r 822:S 717:1 615:2 270:6 268:E 264:6 262:D 258:6 256:B 252:6 250:A 233:6 226:1 219:2 215:6 136:7 131:R 115:S 60:6 55:R 23:.

Index

The Sixth Dimension
Euclidean space
elliptical space
hyperbolic spaces
real
tuples
vectors
metric
dot product
matrices
rotations
described locally
coordinates
seven-dimensional space
non-Euclidean
6-polytope
polytope
regular polytopes
three in six dimensions
6-simplex
6-cube
6-orthoplex
uniform 6-polytopes
Coxeter group
Coxeter–Dynkin diagram
6-demicube
221
122
Coxeter plane
altN=6-simplex

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑