Knowledge

Silicon–germanium

Source 📝

158:. The challenge that had delayed its realization for decades was that germanium atoms are roughly 4% larger than silicon atoms. At the usual high temperatures at which silicon transistors were fabricated, the strain induced by adding these larger atoms into crystalline silicon produced vast numbers of defects, precluding the resulting material being of any use. Meyerson and co-workers discovered that the then believed requirement for high temperature processing was flawed, allowing SiGe growth at sufficiently low temperatures such that for all practical purposes no defects were formed. Once having resolved that basic roadblock, it was shown that resultant SiGe materials could be manufactured into high performance electronics using conventional low cost silicon 219: 285: 679:"A 200 mm SiGe HBT BiCMOS Technology for Mixed Signal Applications," K. Schonenberg, M. Gilbert, G.D. Berg, S. Wu, M. Soyuer, K. A. Tallman, K. J. Stein, R. A. Groves, S. Subbanna, D.B. Colavito, D.A. Sunderland and B.S. Meyerson," Proceedings of the 1995 Bipolar/BiCMOS Circuits and Technology Meeting, p. 89-92, 1995. 418:
transfer using light instead of electric current, speeding up data transfer while reducing energy consumption and need for cooling systems. The international team, with lead authors Elham Fadaly, Alain Dijkstra and Erik Bakkers at Eindhoven University of Technology in the Netherlands and Jens Renè Suckert at
162:
toolsets. More relevant, the performance of resulting transistors far exceeded what was then thought to be the limit of traditionally manufactured silicon devices, enabling a new generation of low cost commercial wireless technologies such as WiFi. SiGe processes achieve costs similar to those of
748:
Fadaly, Elham M. T.; Dijkstra, Alain; Suckert, Jens Renè; Ziss, Dorian; van Tilburg, Marvin A. J.; Mao, Chenyang; Ren, Yizhen; van Lange, Victor T.; Korzun, Ksenia; Kölling, Sebastian; Verheijen, Marcel A.; Busse, David; Rödl, Claudia; Furthmüller, Jürgen; Bechstedt, Friedhelm; Stangl, Julian;
417:
By controlling the composition of a hexagonal SiGe alloy, researchers from Eindhoven University of Technology developed a material that can emit light. In combination with its electronic properties, this opens up the possibility of producing a laser integrated into a single chip to enable data
567:"SiGe HBTs Reach the Microwave and Millimeter-Wave Frontier," C. Kermarrec, T. Tewksbury, G. Dave, R. Baines, B. Meyerson, D. Harame and M. Gilbert, Proceedings of the 1994 Bipolar/BiCMOS Circuits & Technology Meeting, Minneapolis, Minn., Oct. 10-11, 1994, Sponsored by IEEE, (1994). 577:
Woelk, Egbert; Shenai-Khatkhate, Deodatta V.; DiCarlo, Ronald L.; Amamchyan, Artashes; Power, Michael B.; Lamare, Bruno; Beaudoin, Grégoire; Sagnes, Isabelle (January 2006). "Designing novel organogermanium OMVPE precursors for high-purity germanium films".
613:
Shenai, Deo V.; DiCarlo, Ronald L.; Power, Michael B.; Amamchyan, Artashes; Goyette, Randall J.; Woelk, Egbert (January 2007). "Safer alternative liquid germanium precursors for relaxed graded SiGe layers and strained silicon by MOVPE".
558:  SiGe Base Heterojunction Bipolar Transistor," G.L. Patton, J.H. Comfort, B.S. Meyerson, E.F. Crabbe, G.J. Scilla, E. DeFresart, J.M.C. Stork, J.Y.-C. Sun, D.L. Harame and J. Burghartz, Electron. Dev. Lett. 11, 171 (1990). 381:
leakage due to the lower bandgap value of SiGe. However, a major issue with SGOI MOSFETs is the inability to form stable oxides with silicon–germanium using standard silicon oxidation processing.
728:
G. L. Bennett; J. J. Lombardo; R. J. Hemler; G. Silverman; C. W. Whitmore; W. R. Amos; E. W. Johnson; A. Schock; R. W. Zocher; T. K. Keenan; J. C. Hagan; R. W. Englehart (26–29 June 2006).
450: 885: 662: 532:"Bistable Conditions for Low Temperature Silicon Epitaxy," Bernard S. Meyerson, Franz Himpsel and Kevin J. Uram, Appl. Phys. Lett. 57, 1034 (1990). 303: 195: 649:
AMD And IBM Unveil New, Higher Performance, More Power Efficient 65nm Process Technologies At Gathering Of Industry's Top R&D Firms
815: 706: 171:, alkylgermanium trichlorides, and dimethylaminogermanium trichloride) have been examined as less hazardous liquid alternatives to 474: 346:. This translates into better low-current and high-frequency performance. Being a heterojunction technology with an adjustable 240: 869: 850: 753:; Haverkort, Jos E. M.; Bakkers, Erik P. A. M. (April 2020). "Direct-bandgap emission from hexagonal Ge and SiGe alloys". 134:
introduced the technology into mainstream manufacturing in 1989. This relatively new technology offers opportunities in
335: 321: 266: 648: 248: 205:
silicon–germanium process, promising a quadrupling in the amount of transistors compared to a contemporary process.
339: 194:
disclosed a joint development with IBM for a SiGe stressed-silicon technology, targeting the 65 nm process.
135: 244: 905: 397:
spacecraft. Silicon–germanium thermoelectric devices were also used in other MHW-RTGs and GPHS-RTGs aboard
541:
B. S. Meyerson, "UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics, and device applications," in
343: 737:. 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). San Diego, California. 342:. Heterojunction bipolar transistors have higher forward gain and lower reverse gain than traditional 920: 123: 351: 159: 299: 229: 915: 233: 163:
silicon CMOS manufacturing and are lower than those of other heterojunction technologies such as
191: 108: 187: 772: 623: 587: 507: 440: 406: 402: 358: 714: 8: 495: 398: 155: 776: 731:
Mission of Daring: The General-Purpose Heat Source Radioisotope Thermoelectric Generator
627: 591: 511: 435: 910: 796: 762: 419: 366: 361:(SOI) technology currently employed in computer chips. SGOI increases the speed of the 201:
In July 2015, IBM announced that it had created working samples of transistors using a
119: 112: 519: 865: 846: 800: 788: 374: 470: 780: 727: 635: 631: 599: 595: 515: 378: 180: 164: 51: 25: 478: 422:
in Germany, were awarded the 2020 Breakthrough of the Year award by the magazine
168: 690: 143: 139: 116: 840: 784: 899: 750: 423: 792: 445: 202: 83: 362: 357:
Silicon–germanium on insulator (SGOI) is a technology analogous to the
729: 576: 451:
Application of silicon-germanium thermoelectrics in space exploration
394: 390: 91: 218: 190:
services are offered by several semiconductor technology companies.
179:
deposition of Ge-containing films such as high purity Ge, SiGe, and
767: 545:, vol. 80, no. 10, pp. 1592-1608, Oct. 1992, doi: 10.1109/5.168668. 389:
A silicon–germanium thermoelectric device MHW-RTG3 was used in the
347: 154:
The use of silicon–germanium as a semiconductor was championed by
172: 87: 862:
Circuits and Applications Using Silicon Heterostructure Devices
377:
and higher drive currents. SiGe MOSFETs can also provide lower
370: 663:"IBM Discloses Working Version of a Much Higher-Capacity Chip" 66: 40: 176: 146:
material for high-temperature applications (>700 K).
79: 841:
Raminderpal Singh; Modest M. Oprysko; David Harame (2004).
612: 127: 60: 820:
announces its Breakthrough of the Year finalists for 2020"
498:(March 1994). "High-Speed Silicon-Germanium Electronics". 63: 886:
Ge Precursors for Strained Si and Compound Semiconductors
747: 131: 37: 34: 57: 31: 692:
Silicon-Germanium Heterojunction Bipolar Transistors
350:, the SiGe offers the opportunity for more flexible 843:
Silicon Germanium: Technology, Modeling, and Design
294:
may be too technical for most readers to understand
54: 28: 142:IC design and manufacture. SiGe is also used as a 471:"Silicon–Germanium Gives Semiconductors the Edge" 897: 859: 813: 94:, i.e. with a molecular formula of the form Si 384: 334:SiGe allows CMOS logic to be integrated with 167:. Recently, organogermanium precursors (e.g. 688: 247:. Unsourced material may be challenged and 766: 322:Learn how and when to remove this message 306:, without removing the technical details. 267:Learn how and when to remove this message 494: 198:also sells SiGe manufacturing capacity. 660: 898: 845:. IEEE Press / John Wiley & Sons. 469:Ouellette, Jennifer (June/July 2002). 304:make it understandable to non-experts 278: 245:adding citations to reliable sources 212: 420:Friedrich-Schiller-Universität Jena 208: 13: 834: 707:"Thermoelectrics History Timeline" 336:heterojunction bipolar transistors 14: 932: 879: 689:Cressler, J. D.; Niu, G. (2003). 520:10.1038/scientificamerican0394-62 412: 344:homojunction bipolar transistors 340:mixed-signal integrated circuits 283: 217: 50: 24: 814:Hamish Johnston (10 Dec 2020). 807: 741: 721: 699: 682: 673: 654: 651:, retrieved at March 16, 2007. 642: 636:10.1016/j.jcrysgro.2006.10.194 606: 600:10.1016/j.jcrysgro.2005.10.094 570: 561: 548: 535: 526: 488: 463: 354:than silicon-only technology. 1: 661:Markoff, John (9 July 2015). 456: 367:straining the crystal lattice 149: 373:gate, resulting in improved 7: 890:Semiconductor International 695:. Artech House. p. 13. 429: 107:. It is commonly used as a 10: 937: 385:Thermoelectric application 860:John D. Cressler (2007). 785:10.1038/s41586-020-2150-y 616:Journal of Crystal Growth 580:Journal of Crystal Growth 338:, making it suitable for 483:The Industrial Physicist 543:Proceedings of the IEEE 109:semiconductor material 749:Finley, Jonathan J.; 365:inside microchips by 496:Meyerson, Bernard S. 441:Silicon on insulator 359:silicon on insulator 241:improve this section 136:mixed-signal circuit 126:-inducing layer for 906:Integrated circuits 777:2020Natur.580..205F 628:2007JCrGr.298..172S 592:2006JCrGr.287..684W 512:1994SciAm.270c..62M 500:Scientific American 120:bipolar transistors 113:integrated circuits 667:The New York Times 477:2008-05-17 at the 921:Thermoelectricity 871:978-1-4200-6695-1 852:978-0-471-66091-0 761:(7802): 205–209. 375:electron mobility 332: 331: 324: 277: 276: 269: 76:silicon–germanium 16:Chemical compound 928: 892:, April 1, 2006. 875: 856: 828: 827: 811: 805: 804: 770: 745: 739: 738: 736: 725: 719: 718: 713:. Archived from 703: 697: 696: 686: 680: 677: 671: 670: 658: 652: 646: 640: 639: 610: 604: 603: 574: 568: 565: 559: 552: 546: 539: 533: 530: 524: 523: 492: 486: 467: 436:Low-κ dielectric 327: 320: 316: 313: 307: 287: 286: 279: 272: 265: 261: 258: 252: 221: 213: 209:SiGe transistors 181:strained silicon 165:gallium arsenide 73: 72: 69: 68: 65: 62: 59: 56: 47: 46: 43: 42: 39: 36: 33: 30: 936: 935: 931: 930: 929: 927: 926: 925: 896: 895: 882: 872: 853: 837: 835:Further reading 832: 831: 812: 808: 746: 742: 734: 726: 722: 711:Alphabet Energy 705: 704: 700: 687: 683: 678: 674: 659: 655: 647: 643: 611: 607: 575: 571: 566: 562: 557: 553: 549: 540: 536: 531: 527: 493: 489: 479:Wayback Machine 468: 464: 459: 432: 415: 387: 328: 317: 311: 308: 300:help improve it 297: 288: 284: 273: 262: 256: 253: 238: 222: 211: 169:isobutylgermane 156:Bernie Meyerson 152: 106: 100: 53: 49: 27: 23: 17: 12: 11: 5: 934: 924: 923: 918: 916:Silicon alloys 913: 908: 894: 893: 881: 880:External links 878: 877: 876: 870: 857: 851: 836: 833: 830: 829: 806: 751:Botti, Silvana 740: 720: 717:on 2019-08-17. 698: 681: 672: 653: 641: 605: 586:(2): 684–687. 569: 560: 555: 547: 534: 525: 487: 461: 460: 458: 455: 454: 453: 448: 443: 438: 431: 428: 414: 413:Light emission 411: 391:Voyager 1 386: 383: 371:MOS transistor 352:bandgap tuning 330: 329: 291: 289: 282: 275: 274: 225: 223: 216: 210: 207: 151: 148: 144:thermoelectric 140:analog circuit 130:transistors. 117:heterojunction 102: 95: 15: 9: 6: 4: 3: 2: 933: 922: 919: 917: 914: 912: 909: 907: 904: 903: 901: 891: 887: 884: 883: 873: 867: 864:. CRC Press. 863: 858: 854: 848: 844: 839: 838: 825: 824:Physics World 821: 819: 818:Physics World 810: 802: 798: 794: 790: 786: 782: 778: 774: 769: 764: 760: 756: 752: 744: 733: 732: 724: 716: 712: 708: 702: 694: 693: 685: 676: 668: 664: 657: 650: 645: 637: 633: 629: 625: 621: 617: 609: 601: 597: 593: 589: 585: 581: 573: 564: 551: 544: 538: 529: 521: 517: 513: 509: 505: 501: 497: 491: 484: 480: 476: 472: 466: 462: 452: 449: 447: 444: 442: 439: 437: 434: 433: 427: 425: 424:Physics World 421: 410: 408: 404: 400: 396: 392: 382: 380: 376: 372: 368: 364: 360: 355: 353: 349: 345: 341: 337: 326: 323: 315: 312:December 2017 305: 301: 295: 292:This section 290: 281: 280: 271: 268: 260: 257:December 2008 250: 246: 242: 236: 235: 231: 226:This section 224: 220: 215: 214: 206: 204: 199: 197: 193: 189: 184: 182: 178: 174: 170: 166: 161: 157: 147: 145: 141: 137: 133: 129: 125: 121: 118: 114: 110: 105: 99: 93: 89: 85: 81: 77: 71: 45: 21: 889: 861: 842: 823: 817: 809: 758: 754: 743: 730: 723: 715:the original 710: 701: 691: 684: 675: 666: 656: 644: 619: 615: 608: 583: 579: 572: 563: 550: 542: 537: 528: 506:(3): 62–67. 503: 499: 490: 482: 465: 416: 388: 356: 333: 318: 309: 293: 263: 254: 239:Please help 227: 200: 185: 153: 103: 97: 75: 19: 18: 622:: 172–175. 446:Silicon-tin 363:transistors 900:Categories 768:1911.00726 554:"75 GHz f 457:References 369:under the 160:processing 150:Production 115:(ICs) for 911:Germanium 801:207870211 228:does not 203:7 nm 92:germanium 86:ratio of 82:with any 793:32269353 475:Archived 430:See also 379:junction 348:band gap 122:or as a 78:, is an 773:Bibcode 624:Bibcode 588:Bibcode 508:Bibcode 407:Ulysses 403:Galileo 399:Cassini 298:Please 249:removed 234:sources 188:foundry 173:germane 88:silicon 868:  849:  799:  791:  755:Nature 124:strain 74:), or 797:S2CID 763:arXiv 735:(PDF) 186:SiGe 177:MOVPE 84:molar 80:alloy 866:ISBN 847:ISBN 789:PMID 393:and 232:any 230:cite 196:TSMC 175:for 138:and 128:CMOS 90:and 20:SiGe 781:doi 759:580 632:doi 620:298 596:doi 584:287 516:doi 504:270 302:to 243:by 192:AMD 132:IBM 111:in 48:or 902:: 888:; 822:. 795:. 787:. 779:. 771:. 757:. 709:. 665:. 630:. 618:. 594:. 582:. 514:. 502:. 481:, 473:. 426:. 409:. 405:, 401:, 183:. 101:Ge 96:1− 67:iː 64:dʒ 61:aɪ 41:iː 874:. 855:. 826:. 816:" 803:. 783:: 775:: 765:: 669:. 638:. 634:: 626:: 602:. 598:: 590:: 556:t 522:. 518:: 510:: 485:. 395:2 325:) 319:( 314:) 310:( 296:. 270:) 264:( 259:) 255:( 251:. 237:. 104:x 98:x 70:/ 58:s 55:ˈ 52:/ 44:/ 38:ɡ 35:ɪ 32:s 29:ˈ 26:/ 22:(

Index

/ˈsɪɡ/
/ˈs/
alloy
molar
silicon
germanium
semiconductor material
integrated circuits
heterojunction
bipolar transistors
strain
CMOS
IBM
mixed-signal circuit
analog circuit
thermoelectric
Bernie Meyerson
processing
gallium arsenide
isobutylgermane
germane
MOVPE
strained silicon
foundry
AMD
TSMC
7 nm

cite
sources

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.