Knowledge

Shape resonance

Source đź“ť

117:
the potential scattering for the particle of energy E is controlled by the shape of the nucleus. In fact the shape resonance occurs where the integral number of wavelengths of the particle sit within the potential of the nucleus of radius R. Therefore, the measure of the energies of the shape resonances in the neutron-nucleus scattering have been used in the years from 1947 to 1954 to measure the radii R of the nuclei with the precision of ±1Ă—10 cm as it can be seen in the chapter "Elastic Cross Sections" of
20:
is a metastable state in which an electron is trapped due to the shape of a potential barrier. Altunata describes a state as being a shape resonance if, "the internal state of the system remains unchanged upon disintegration of the quasi-bound level." A more general discussion of resonances and their
151:
The shape resonances are related with the existence of nearly stable bound states (that is, resonances) of two objects that dramatically influences how those two objects interact when their total energy is near that of the bound state. When the total energy of the objects is close to the energy of
116:
The shape resonances were observed around the years 1949–54 in nuclear scattering experiments. They indicate broad asymmetric peaks in the scattering cross section of neutrons or protons scattered by nuclei. The name "shape resonance" has been introduced to describe the fact that the resonance in
71:
Of course in one-dimensional systems, resonances are shape resonances. In a system with more than one degree of freedom, this definition makes sense only if the separable model, which supposes the two groups of degrees of freedom uncoupled, is a meaningful approximation. When the coupling becomes
159:
due to quantum interference of a first pairing channel in a first wide band and a second pairing channel in a second band where the chemical potential is tuned near a Lifshitz transition at the band edge or at the topological electronic transitions of the Fermi surface type "neck-collapsing" or
113:"It is well known that the scattering from a potential shows characteristics peaks, as a function of energy, for such values of E that make the integral number of wave lengths sit within the potential. The resulting shape resonances are rather broad, their width being of the order of ...." 98:
Today, there is some debate about the definition and even existence of the shape resonance in some systems observed with molecular spectroscopy. It has been experimentally observed in the anionic yields from photofragmentation of small molecules to provide details of internal structure.
127:
The shape resonances arise from the quantum interference between closed and an open scattering channels. At the resonance energy a quasi bound state is degenerate with a continuum. This quantum interference in many body system has been described using quantum mechanics by
785:
Innocenti, Davide; Poccia, Nicola; Ricci, Alessandro; Valletta, Antonio; Caprara, Sergio; et al. (2010-11-19). "Resonant and crossover phenomena in a multiband superconductor: Tuning the chemical potential near a band edge".
61:) are set to zero. More simply, the shape resonance total energy is more than the separated fragment energy. Practical implications of this difference for lifetimes and spectral widths are mentioned in works such as Zobel. 714: 394:
Vittorini-Orgeas, Alessandra; Bianconi, Antonio (2009-01-07). "From Majorana Theory of Atomic Autoionization to Feshbach Resonances in High Temperature Superconductors".
219: 576:
Stock, René; Deutsch, Ivan H.; Bolda, Eric L. (2003-10-31). "Quantum State Control via Trap-Induced Shape Resonance in Ultracold Atomic Collisions".
124:
The "shape resonances" are discussed in general introductory academic courses of quantum mechanics in the frame of potential scattering phenomena.
54: 661: 155:
A particular type of "shape resonance" occurs in multiband or two-band superconducting heterostructures at atomic limit called
201: 293: 236: 520:"Absolute differential cross sections for electron-impact excitation of CO near threshold: II. The Rydberg states of CO" 758: 174: 216: 196:
Physics Survey Committee, Board on Physics and Astronomy, National Research Council, National Academic Press
169: 65: 644: 657: 141: 21:
taxonomies in molecular system can be found in the review article by Schulz,; for the discovery of the
29:
pioneering work in this field by Antonio Bianconi; and for a mathematical review by Combes et al.
749: 506:
Resonances in Electron-Molecule Scattering Van Der Waals Complexes, and Reactive Chemical Dynamics
858: 152:
the resonance they interact strongly, and their scattering cross-section becomes very large.
75:
In the case of atomic and molecular electronic structure problems, it is well known that the
518:
Zobel, J; Mayer, U; Jung, K; Ehrhardt, H; Pritchard, H; Winstead, C; McKoy, V (1996-02-28).
193: 79:(SCF) approximation is relevant at least as a starting point of more elaborate methods. The 805: 673: 595: 534: 519: 460: 308: 251: 8: 853: 140:
for the atomic auto-ionization states in the continuum of helium atomic spectrum and by
58: 809: 677: 599: 538: 464: 312: 255: 829: 795: 627: 585: 558: 484: 429: 403: 358: 80: 42: 212: 194:
Atomic, Molecular, and Optical Physics Panel on Atomic, Molecular, and Optical Physics
833: 821: 754: 697: 689: 619: 611: 562: 550: 546: 508:
Donald G. Truhlar, Ed, American Chemical Society Symposium Series, ACS No. 263 (1984)
488: 476: 433: 421: 376: 324: 267: 197: 88: 38: 631: 813: 681: 603: 542: 468: 413: 368: 316: 259: 76: 607: 448: 721: 332: 275: 223: 145: 133: 107: 91:) are shape resonances if only one electronic transition is required to emit one 26: 685: 353:. X-ray and Inner Shell Processes (19th Int. Conference Roma June 24–28, 2002). 817: 129: 103: 84: 22: 662:"Anionic Photofragmentation of CO: A Selective Probe of Core-Level Resonances" 417: 320: 263: 847: 825: 693: 615: 554: 480: 425: 380: 328: 271: 701: 623: 501: 156: 590: 363: 50: 761: 655: 472: 372: 46: 102:
In nuclear physics the concept of "Shape Resonance" is described by
137: 92: 800: 408: 64:
Related terms include a special kind of shape resonance, the
784: 660:; Dominguez Lopez, I.; Rizvi, A.; et al. (2001-05-14). 57:
and the degrees of freedom associated to the fragmentation (
527:
Journal of Physics B: Atomic, Molecular and Optical Physics
136:
for the dissociation processes and quasi bound states, by
447:
Combes, J. M.; Duclos, P.; Klein, M.; Seiler, R. (1987).
393: 459:(2). Springer Science and Business Media LLC: 215–236. 446: 517: 213:
cite A Generalized Quantum Defect Methods in Chemistry
294:"Resonances in Electron Impact on Diatomic Molecules" 738:
McGraw-Hill Books, p. 448-450 and p. 455-456 (1955)
724:
John Wiley & Sons Inc, New York, page 87 (1974)
672:(20). American Physical Society (APS): 4504–4507. 575: 132:, for the interpretation of the Auger effect, by 845: 502:"Roles Played by Metastable States in Chemistry" 396:Journal of Superconductivity and Novel Magnetism 794:(18). American Physical Society (APS): 184528. 307:(3). American Physical Society (APS): 423–486. 250:(3). American Physical Society (APS): 378–422. 775:John Wiley & Sons, Inc., New York (1952) 753:Addison-Wesley Longman (2005) pag. 418-421 355:Unsolved Problems of Noise and Fluctuations 799: 589: 407: 362: 72:large, the situation is much less clear. 348: 237:"Resonances in Electron Impact on Atoms" 846: 453:Communications in Mathematical Physics 291: 234: 41:, a shape resonance, in contrast to a 148:for nuclear scattering experiments. 68:, and trap-induced shape resonance. 32: 13: 715:Nuclear Physics: Nuclear structure 357:. Vol. 652. AIP. p. 13. 14: 870: 771:J. M. Blatt and V. F. Weisskopf 292:Schulz, George J. (1973-07-01). 235:Schulz, George J. (1973-07-01). 778: 765: 741: 728: 708: 649: 638: 569: 215:Altunata, PhD Thesis, MIT 2006 656:Stolte, W. C.; Hansen, D. L.; 533:(4). IOP Publishing: 839–856. 511: 495: 440: 387: 342: 285: 228: 206: 187: 1: 608:10.1103/physrevlett.91.183201 351:Ugo Fano and shape resonances 180: 119:A Textbook in Nuclear Physics 53:if the coupling between some 170:Resonance (particle physics) 66:core-excited shape resonance 7: 773:Theoretical Nuclear Physics 686:10.1103/physrevlett.86.4504 163: 49:which is not turned into a 10: 875: 818:10.1103/physrevb.82.184528 547:10.1088/0953-4075/29/4/022 349:Bianconi, Antonio (2003). 175:Feshbach–Fano partitioning 142:Victor Frederick Weisskopf 418:10.1007/s10948-008-0433-x 321:10.1103/revmodphys.45.423 301:Reviews of Modern Physics 264:10.1103/revmodphys.45.378 244:Reviews of Modern Physics 83:built from SCF orbitals ( 750:Modern Quantum Mechanics 666:Physical Review Letters 645:LBL Mol Spec Discussion 578:Physical Review Letters 25:line-shape and for the 449:"The shape resonance" 77:self-consistent field 59:reaction coordinates 810:2010PhRvB..82r4528I 720:Amos de Shalit and 678:2001PhRvL..86.4504S 658:Piancastelli, M. N. 600:2003PhRvL..91r3201S 539:1996JPhB...29..839Z 465:1987CMaPh.110..215C 313:1973RvMP...45..423S 256:1973RvMP...45..378S 81:Slater determinants 736:The Atomic Nucleus 473:10.1007/bf01207364 222:2011-06-05 at the 160:"neck-disrupting" 144:. J. M. Blatt and 89:molecular orbitals 55:degrees of freedom 43:Feshbach resonance 788:Physical Review B 373:10.1063/1.1536357 202:978-0-309-07371-4 39:quantum mechanics 33:Quantum mechanics 866: 838: 837: 803: 782: 776: 769: 763: 745: 739: 734:Robley D. Evans 732: 726: 712: 706: 705: 653: 647: 642: 636: 635: 593: 591:quant-ph/0304093 573: 567: 566: 524: 515: 509: 499: 493: 492: 444: 438: 437: 411: 391: 385: 384: 366: 364:cond-mat/0211452 346: 340: 339: 337: 331:. Archived from 298: 289: 283: 282: 280: 274:. Archived from 241: 232: 226: 210: 204: 191: 121:by R. D. Evans. 874: 873: 869: 868: 867: 865: 864: 863: 844: 843: 842: 841: 783: 779: 770: 766: 747:J. J. Sakurai, 746: 742: 733: 729: 722:Herman Feshbach 713: 709: 654: 650: 643: 639: 574: 570: 522: 516: 512: 504:Jack Simons in 500: 496: 445: 441: 392: 388: 347: 343: 335: 296: 290: 286: 278: 239: 233: 229: 224:Wayback Machine 211: 207: 192: 188: 183: 166: 146:Herman Feshbach 134:Ettore Majorana 110:in their book. 108:Herman Feshbach 35: 18:shape resonance 12: 11: 5: 872: 862: 861: 856: 840: 839: 777: 764: 740: 727: 707: 648: 637: 584:(18): 183201. 568: 510: 494: 439: 402:(3): 215–221. 386: 341: 338:on 2008-09-24. 284: 281:on 2008-09-24. 227: 205: 185: 184: 182: 179: 178: 177: 172: 165: 162: 130:Gregor Wentzel 104:Amos de-Shalit 34: 31: 23:Fano resonance 9: 6: 4: 3: 2: 871: 860: 857: 855: 852: 851: 849: 835: 831: 827: 823: 819: 815: 811: 807: 802: 797: 793: 789: 781: 774: 768: 762: 760: 759:7-5062-7314-4 756: 752: 751: 744: 737: 731: 725: 723: 718: 717: 711: 703: 699: 695: 691: 687: 683: 679: 675: 671: 667: 663: 659: 652: 646: 641: 633: 629: 625: 621: 617: 613: 609: 605: 601: 597: 592: 587: 583: 579: 572: 564: 560: 556: 552: 548: 544: 540: 536: 532: 528: 521: 514: 507: 503: 498: 490: 486: 482: 478: 474: 470: 466: 462: 458: 454: 450: 443: 435: 431: 427: 423: 419: 415: 410: 405: 401: 397: 390: 382: 378: 374: 370: 365: 360: 356: 352: 345: 334: 330: 326: 322: 318: 314: 310: 306: 302: 295: 288: 277: 273: 269: 265: 261: 257: 253: 249: 245: 238: 231: 225: 221: 218: 214: 209: 203: 199: 195: 190: 186: 176: 173: 171: 168: 167: 161: 158: 153: 149: 147: 143: 139: 135: 131: 125: 122: 120: 114: 111: 109: 105: 100: 96: 94: 90: 86: 82: 78: 73: 69: 67: 62: 60: 56: 52: 48: 44: 40: 30: 28: 24: 19: 859:Spectroscopy 791: 787: 780: 772: 767: 748: 743: 735: 730: 719: 716: 710: 669: 665: 651: 640: 581: 577: 571: 530: 526: 513: 505: 497: 456: 452: 442: 399: 395: 389: 354: 350: 344: 333:the original 304: 300: 287: 276:the original 247: 243: 230: 208: 189: 157:superstripes 154: 150: 126: 123: 118: 115: 112: 101: 97: 74: 70: 63: 36: 17: 15: 51:bound state 854:Scattering 848:Categories 181:References 834:119232655 826:1098-0121 801:1007.0510 694:0031-9007 616:0031-9007 563:250751335 555:0953-4075 489:119536657 481:0010-3616 434:118439516 426:1557-1939 409:0812.1551 381:0094-243X 329:0034-6861 272:0034-6861 217:full text 47:resonance 702:11384269 632:33876413 624:14611281 220:Archived 164:See also 138:Ugo Fano 93:electron 27:Majorana 806:Bibcode 674:Bibcode 596:Bibcode 535:Bibcode 461:Bibcode 309:Bibcode 252:Bibcode 45:, is a 832:  824:  757:  700:  692:  630:  622:  614:  561:  553:  487:  479:  432:  424:  379:  327:  270:  200:  85:atomic 830:S2CID 796:arXiv 628:S2CID 586:arXiv 559:S2CID 523:(PDF) 485:S2CID 430:S2CID 404:arXiv 359:arXiv 336:(PDF) 297:(PDF) 279:(PDF) 240:(PDF) 822:ISSN 755:ISBN 698:PMID 690:ISSN 620:PMID 612:ISSN 551:ISSN 477:ISSN 422:ISSN 377:ISSN 325:ISSN 268:ISSN 198:ISBN 106:and 814:doi 682:doi 604:doi 543:doi 469:doi 457:110 414:doi 369:doi 317:doi 260:doi 87:or 37:In 850:: 828:. 820:. 812:. 804:. 792:82 790:. 696:. 688:. 680:. 670:86 668:. 664:. 626:. 618:. 610:. 602:. 594:. 582:91 580:. 557:. 549:. 541:. 531:29 529:. 525:. 483:. 475:. 467:. 455:. 451:. 428:. 420:. 412:. 400:22 398:. 375:. 367:. 323:. 315:. 305:45 303:. 299:. 266:. 258:. 248:45 246:. 242:. 95:. 16:A 836:. 816:: 808:: 798:: 704:. 684:: 676:: 634:. 606:: 598:: 588:: 565:. 545:: 537:: 491:. 471:: 463:: 436:. 416:: 406:: 383:. 371:: 361:: 319:: 311:: 262:: 254::

Index

Fano resonance
Majorana
quantum mechanics
Feshbach resonance
resonance
bound state
degrees of freedom
reaction coordinates
core-excited shape resonance
self-consistent field
Slater determinants
atomic
molecular orbitals
electron
Amos de-Shalit
Herman Feshbach
Gregor Wentzel
Ettore Majorana
Ugo Fano
Victor Frederick Weisskopf
Herman Feshbach
superstripes
Resonance (particle physics)
Feshbach–Fano partitioning
Atomic, Molecular, and Optical Physics Panel on Atomic, Molecular, and Optical Physics
ISBN
978-0-309-07371-4
cite A Generalized Quantum Defect Methods in Chemistry
full text
Archived

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑