Knowledge

Feshbach resonance

Source đź“ť

122: 288: 22: 63: 1286:
significant as sharp peaks, or inconspicuous buried in the background. More importantly, it shows a simple quantity proposed by Zhu and Nakamura to classify the coupling strength of nonadiabatic interactions, can be well applied to quantitatively estimate the importance of resonances in the AC region.
1285:
studied this problem in the New J. Phys. 22 (2020). Exemplified in particle scattering, resonances in the AC region are comprehensively investigated. The effects of resonances in the AC region on the scattering cross sections strongly depend on the nonadiabatic couplings of the system, it can be very
1042:
can give rise to significant mixing between the two channels; this manifests itself as a drastic dependence of the outcome of the scattering event on the parameter or parameters that control the energy of the entrance channel. These couplings can arise from spin-exchange interactions or relativistic
1280:
In molecules, the nonadiabatic couplings between two adiabatic potentials build the avoided crossing (AC) region. The rovibronic resonances in the AC region of two-coupled potentials are very special, since they are not in the bound state region of the adiabatic potentials, and they usually do not
1267:
As the magnetic field is swept through the resonance, the states in the open and closed channel can also mix and a large number of atoms, sometimes near 100% efficiency, convert to Feshbach molecules. These molecules have high vibrational states, so they then need to be transitioned to lower, more
1294:
A virtual state, or unstable state is a bound or transient state which can decay into a free state or relax at some finite rate. This state may be the metastable state of a certain class of Feshbach resonance, "A special case of a Feshbach-type resonance occurs when the energy level lies near the
291:
The interatomic potential of the open (red) and closed (blue) channel are shown. When the incoming energy of the free atoms, given by the dotted line, is approximately equivalent to that of the bound state in the closed channel, a temporary molecular state can
1535:
Donald C. Lorents, Walter Ernst Meyerhof, James R. Peterson Electronic and atomic collisions: invited papers of the XIV International Conference on the Physics of Electronic and Atomic Collisions, Palo Alto, California, 24-30 July, 1985 North-Holland,
271:, of elastic collisions. For atomic species that possess these resonances (like K and K), it is possible to vary the interaction strength by applying a uniform magnetic field. Among many uses, this tool has served to explore the transition from a 1534: 1492:
On the Dynamics of Single-Electron Tunneling in Semiconductor Quantum Dots under Microwave Radiation Dissertation Physics Department of Ludwig-Maximilians-Universitat Munchen by Hua Qin from Wujin, China 30 July 2001,
1182: 987: 621: 427:
The combination of the species and quantum states of the two reactant particles before or after the scattering event is referred to as a reaction channel. Specifically, the species and states of
743: 1032: 373: 267:
of a colliding pair of atoms. In experimental settings, the Feshbach resonances provide a way to vary interaction strength between atoms in the cloud by changing scattering length, a
279:
in Fermi clouds. For the BECs, Feshbach resonances have been used to study a spectrum of systems from the non-interacting ideal Bose gases to the unitary regime of interactions.
421: 547: 511: 1098: 816: 1705:
APS Meeting Abstracts: First Joint Meeting of the Nuclear Physicists of the American and Japanese Physical Societies October 17–20, 2001 Maui, Hawaii Meeting ID: HAW01
1648:
Nishimura, Tamio; Gianturco, Franco A. (2003-05-08). "Virtual-State Formation in Positron Scattering from Vibrating Molecules: A Gateway to Annihilation Enhancement".
868: 661: 1262: 787: 1215: 1242: 895: 1562:
Field, D.; Jones, N. C.; Lunt, S. L.; Ziesel, J.-P. (2001-07-09). "Experimental evidence for a virtual state in a cold collision: Electrons and carbon dioxide".
1069: 767: 1071:
is approximately 0. Since the channels differ in internal degrees of freedom such as spin and angular momentum, their difference in energy is dependent on
1303:
depending on the angular momentum. Because of their transient existence, they can require special techniques for analysis and measurement, for example.
1505:"Schulz George Resonances in Electron Impact on Atoms and Diatomic Molecules Reviews of Modern Physics vol 45 no 3 pp378-486 July 1973" 1110: 217: 906: 208:, when they temporarily stick together forming an unstable compound with short lifetime (so-called resonance). It is a feature of 1926:
Per-Olov Löwdin (1962). "Studies in Perturbation Theory. IV. Solution of Eigenvalue Problem by Projection Operator Formalism".
1549: 1272:. Other methods include inducing stimulated emission through an oscillating magnetic field and atom-molecule thermalization. 552: 1504: 769:
denotes the total kinetic energy of the relative motion (center-of-mass motion plays no role in the two-body interaction),
1051:
In ultracold atomic experiments, the resonance is controlled via the magnetic field and we assume that the kinetic energy
1268:
stable states to prevent dissociation. This can be done through stimulated emissions or other optical techniques such as
35: 549:, respectively. The interaction energy of the two particles will usually depend only on the magnitude of the separation 676: 1799: 1542: 1359: 183: 165: 143: 103: 49: 995: 136: 1390:
Chin, Cheng; Grimm, Rudolf; Julienne, Paul; Tiesinga, Eite (2010-04-29). "Feshbach resonances in ultracold gases".
1322: 1264:
is the resonance width. This allows for manipulation of the scattering length to 0 or arbitrarily high values.
1312: 272: 252: 330: 1731:
R.J. Fletcher; A.L. Gaunt; N. Navon; R. Smith; Z. Hadzibabic (2013). "Stability of a Unitary Bose Gas".
259:
processes in many-body systems, the Feshbach resonance occurs when the energy of a bound state of an
516: 480: 624: 225: 130: 81: 1443:
Yang, Yu Kun; Cheng, Yongjun; Wu, Yong; Qu, Yi Zhi; Wang, Jian Guo; Zhang, Song Bin (2020-12-01).
1993: 1700: 85: 41: 1074: 792: 378: 147: 1841:(1935). "Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco". 837: 630: 1247: 772: 260: 1190: 1964: 1935: 1898: 1850: 1818: 1750: 1708: 1657: 1614: 1571: 1456: 1409: 1220: 873: 8: 456: 221: 73: 1968: 1939: 1902: 1854: 1822: 1754: 1712: 1661: 1618: 1575: 1460: 1413: 1874: 1788: 1774: 1740: 1425: 1399: 1365: 1054: 752: 1889:(1961-12-15). "Effects of Configuration Interaction on Intensities and Phase Shifts". 1605:
Girard, B. A.; Fuda, M. G. (1979-03-01). "Virtual state of the three nucleon system".
1976: 1914: 1878: 1866: 1830: 1795: 1766: 1681: 1673: 1630: 1587: 1545: 1538: 1474: 1429: 1369: 1355: 1972: 1943: 1906: 1858: 1826: 1778: 1762: 1758: 1665: 1622: 1579: 1491: 1464: 1417: 1347: 321: 1669: 1511: 1300: 233: 229: 1583: 1469: 1444: 1421: 1317: 823: 819: 264: 244: 1987: 1918: 1910: 1870: 1677: 1634: 1591: 1478: 1101: 1626: 1281:
play important roles on the scatterings and are less discussed. Yu Kun Yang
1770: 1685: 664: 1351: 789:
is the contribution to the energy from couplings to external fields, and
228:, vanish. The opposite situation, when a bound state is not formed, is a 213: 1955:
Claude Bloch (1958). "Sur la théorie des perturbations des états liés".
300:
scattering event between two particles. In this reaction, there are two
1862: 1730: 276: 256: 1947: 663:. Often, this potential will have a pronounced minimum and thus admit 1699:
Kurokawa, Chie; Masui, Hiroshi; Myo, Takayuki; Kato, Kiyoshi (2001).
287: 248: 209: 1701:"Study of the virtual state in νc10Li with the Jost function method" 451:. An energetically accessible reaction channel is referred to as an 1886: 1838: 301: 1745: 1404: 1177:{\displaystyle a=a_{bg}\left(1-{\frac {\Delta }{B-B_{0}}}\right)} 670:
The total energy of the two particles in the entrance channel is
297: 197: 1034:. When this condition is met, then any coupling between channel 275:
of fermionic molecules to weakly interacting fermion-pairs the
1809:
Herman Feshbach (1958). "Unified theory of nuclear reactions".
1445:"Particle scattering and resonances involving avoided crossing" 1295:
very top of the potential well. Such a state is called 'virtual
1269: 982:{\displaystyle E_{D}\approx T+V_{c}(R)+\Delta ({\vec {P}}_{0})} 216:
is achieved if the coupling(s) between at least one internal
1275: 1244:
is the magnetic field strength where resonance occurs, and
205: 243:
Feshbach resonances have become important in the study of
1389: 237: 826:. We consider now a second reaction channel, denoted by 1849:(3). Springer Science and Business Media LLC: 154–161. 616:{\displaystyle R\equiv |{\vec {r}}_{A}-{\vec {r}}_{B}|} 1344:
Dictionary of Material Science and High Energy Physics
818:
represents a vector of one or more parameters such as
1250: 1223: 1193: 1113: 1077: 1057: 998: 909: 876: 840: 795: 775: 755: 679: 633: 555: 519: 483: 381: 333: 1698: 1561: 477:. The positions of these two particles are given by 1787: 1647: 1256: 1236: 1209: 1176: 1092: 1063: 1026: 981: 889: 862: 810: 781: 761: 737: 655: 615: 541: 505: 415: 367: 1897:(6). American Physical Society (APS): 1866–1878. 1985: 1790:Bose–Einstein Condensation in Dilute Gases 738:{\displaystyle E=T+V_{c}(R)+\Delta ({\vec {P}})} 623:, and this function, sometimes referred to as a 1925: 1808: 1656:(18). American Physical Society (APS): 183201. 1613:(3). American Physical Society (APS): 579–582. 1385: 1383: 1381: 1379: 1570:(2). American Physical Society (APS): 022708. 1046: 1027:{\displaystyle \lbrace {\vec {P}}_{0}\rbrace } 1442: 1954: 1785: 1376: 1021: 999: 84:. There might be a discussion about this on 50:Learn how and when to remove these messages 1604: 465:Consider the interaction of two particles 455:, whereas a reaction channel forbidden by 324:), we may denote this scattering event by 1744: 1468: 1403: 184:Learn how and when to remove this message 166:Learn how and when to remove this message 104:Learn how and when to remove this message 1276:Feshbach resonances in avoided crossings 1104:. The scattering length is modified as 320:. For the case of a reaction (such as a 286: 129:This article includes a list of general 312:, and two product particles denoted by 1986: 1707:. American Physical Society: #DE.004. 830:, which is closed for large values of 1299:" and may be further contrasted to a 1217:is the background scattering length, 204:can occur upon collision of two slow 1885: 1837: 1341: 992:for some range of parameter vectors 368:{\displaystyle A+B\rightarrow A'+B'} 115: 56: 15: 13: 1342:Basu, Dipak K., ed. (2018-10-08). 1251: 1146: 951: 776: 714: 135:it lacks sufficient corresponding 14: 2005: 1289: 900:A Feshbach resonance occurs when 31:This article has multiple issues. 870:admit a bound state with energy 439:, while the types and states of 120: 61: 20: 1692: 282: 253:Bose–Einstein condensates 39:or discuss these issues on the 1763:10.1103/PhysRevLett.111.125303 1641: 1598: 1555: 1528: 1497: 1485: 1455:(12). IOP Publishing: 123022. 1436: 1335: 1084: 1009: 976: 964: 954: 945: 939: 857: 851: 802: 732: 726: 717: 708: 702: 650: 644: 609: 596: 574: 563: 542:{\displaystyle {\vec {r}}_{B}} 527: 506:{\displaystyle {\vec {r}}_{A}} 491: 402: 385: 343: 1: 1670:10.1103/physrevlett.90.183201 1328: 1043:spin-dependent interactions. 1977:10.1016/0029-5582(58)90116-0 1831:10.1016/0003-4916(58)90007-1 1313:Resonance (particle physics) 7: 1306: 1047:Magnetic Feshbach resonance 834:. Let this potential curve 10: 2010: 1584:10.1103/physreva.64.022708 1422:10.1103/RevModPhys.82.1225 1323:Feshbach–Fano partitioning 1093:{\displaystyle {\vec {B}}} 811:{\displaystyle {\vec {P}}} 255:(BECs). In the context of 1392:Reviews of Modern Physics 416:{\displaystyle A(B,B')A'} 1911:10.1103/physrev.124.1866 1470:10.1088/1367-2630/abcfed 863:{\displaystyle V_{D}(R)} 656:{\displaystyle V_{c}(R)} 1786:Pethick; Smith (2002). 1650:Physical Review Letters 1627:10.1103/physrevc.19.579 1257:{\displaystyle \Delta } 782:{\displaystyle \Delta } 473:in an entrance channel 150:more precise citations. 1449:New Journal of Physics 1258: 1238: 1211: 1210:{\displaystyle a_{bg}} 1178: 1094: 1065: 1028: 983: 891: 864: 812: 783: 763: 739: 657: 625:potential energy curve 617: 543: 507: 417: 369: 293: 1352:10.1201/9781420049855 1259: 1239: 1237:{\displaystyle B_{0}} 1212: 1179: 1095: 1066: 1029: 984: 892: 890:{\displaystyle E_{D}} 865: 813: 784: 764: 740: 658: 618: 544: 508: 418: 370: 304:particles denoted by 290: 261:interatomic potential 1248: 1221: 1191: 1111: 1075: 1055: 996: 907: 874: 838: 793: 773: 753: 677: 631: 553: 517: 481: 459:is referred to as a 379: 331: 247:systems, including 232:. It is named after 222:reaction coordinates 74:confusing or unclear 1969:1958NucPh...6..329B 1940:1962JMP.....3..969L 1903:1961PhRv..124.1866F 1855:1935NCim...12..154F 1823:1958AnPhy...5..357F 1755:2013PhRvL.111l5303F 1713:2001APS..HAW.DE004K 1662:2003PhRvL..90r3201N 1619:1979PhRvC..19..579G 1576:2001PhRvA..64b2708F 1461:2020NJPh...22l3022Y 1414:2010RvMP...82.1225C 457:energy conservation 296:Consider a general 212:systems in which a 82:clarify the article 1863:10.1007/bf02958288 1254: 1234: 1207: 1174: 1090: 1061: 1024: 979: 887: 860: 808: 779: 759: 735: 653: 613: 539: 503: 413: 365: 294: 202:Feshbach resonance 1948:10.1063/1.1724312 1811:Annals of Physics 1607:Physical Review C 1564:Physical Review A 1550:978-0-444-86998-2 1167: 1087: 1064:{\displaystyle T} 1012: 967: 805: 762:{\displaystyle T} 729: 599: 577: 530: 494: 236:, a physicist at 218:degree of freedom 194: 193: 186: 176: 175: 168: 114: 113: 106: 54: 2001: 1980: 1951: 1922: 1882: 1843:Il Nuovo Cimento 1834: 1805: 1793: 1782: 1748: 1723: 1722: 1720: 1719: 1696: 1690: 1689: 1645: 1639: 1638: 1602: 1596: 1595: 1559: 1553: 1532: 1526: 1525: 1523: 1522: 1516: 1510:. Archived from 1509: 1501: 1495: 1489: 1483: 1482: 1472: 1440: 1434: 1433: 1407: 1398:(2): 1225–1286. 1387: 1374: 1373: 1339: 1298: 1263: 1261: 1260: 1255: 1243: 1241: 1240: 1235: 1233: 1232: 1216: 1214: 1213: 1208: 1206: 1205: 1183: 1181: 1180: 1175: 1173: 1169: 1168: 1166: 1165: 1164: 1145: 1132: 1131: 1099: 1097: 1096: 1091: 1089: 1088: 1080: 1070: 1068: 1067: 1062: 1033: 1031: 1030: 1025: 1020: 1019: 1014: 1013: 1005: 988: 986: 985: 980: 975: 974: 969: 968: 960: 938: 937: 919: 918: 896: 894: 893: 888: 886: 885: 869: 867: 866: 861: 850: 849: 817: 815: 814: 809: 807: 806: 798: 788: 786: 785: 780: 768: 766: 765: 760: 744: 742: 741: 736: 731: 730: 722: 701: 700: 662: 660: 659: 654: 643: 642: 627:, is denoted by 622: 620: 619: 614: 612: 607: 606: 601: 600: 592: 585: 584: 579: 578: 570: 566: 548: 546: 545: 540: 538: 537: 532: 531: 523: 512: 510: 509: 504: 502: 501: 496: 495: 487: 437:entrance channel 422: 420: 419: 414: 412: 401: 374: 372: 371: 366: 364: 353: 322:nuclear reaction 263:is equal to the 224:, which lead to 189: 182: 171: 164: 160: 157: 151: 146:this article by 137:inline citations 124: 123: 116: 109: 102: 98: 95: 89: 65: 64: 57: 46: 24: 23: 16: 2009: 2008: 2004: 2003: 2002: 2000: 1999: 1998: 1984: 1983: 1891:Physical Review 1802: 1733:Phys. Rev. Lett 1727: 1726: 1717: 1715: 1697: 1693: 1646: 1642: 1603: 1599: 1560: 1556: 1533: 1529: 1520: 1518: 1514: 1507: 1503: 1502: 1498: 1490: 1486: 1441: 1437: 1388: 1377: 1362: 1340: 1336: 1331: 1309: 1301:shape resonance 1296: 1292: 1278: 1249: 1246: 1245: 1228: 1224: 1222: 1219: 1218: 1198: 1194: 1192: 1189: 1188: 1160: 1156: 1149: 1144: 1137: 1133: 1124: 1120: 1112: 1109: 1108: 1079: 1078: 1076: 1073: 1072: 1056: 1053: 1052: 1049: 1015: 1004: 1003: 1002: 997: 994: 993: 970: 959: 958: 957: 933: 929: 914: 910: 908: 905: 904: 881: 877: 875: 872: 871: 845: 841: 839: 836: 835: 797: 796: 794: 791: 790: 774: 771: 770: 754: 751: 750: 721: 720: 696: 692: 678: 675: 674: 638: 634: 632: 629: 628: 608: 602: 591: 590: 589: 580: 569: 568: 567: 562: 554: 551: 550: 533: 522: 521: 520: 518: 515: 514: 497: 486: 485: 484: 482: 479: 478: 461:closed channel. 447:constitute the 435:constitute the 405: 394: 380: 377: 376: 357: 346: 332: 329: 328: 285: 270: 234:Herman Feshbach 230:shape resonance 190: 179: 178: 177: 172: 161: 155: 152: 142:Please help to 141: 125: 121: 110: 99: 93: 90: 79: 66: 62: 25: 21: 12: 11: 5: 2007: 1997: 1996: 1994:Atomic physics 1982: 1981: 1952: 1934:(5): 969–982. 1923: 1883: 1845:(in Italian). 1835: 1806: 1800: 1783: 1739:(12): 125303. 1725: 1724: 1691: 1640: 1597: 1554: 1527: 1496: 1484: 1435: 1375: 1360: 1333: 1332: 1330: 1327: 1326: 1325: 1320: 1318:Fano resonance 1315: 1308: 1305: 1291: 1290:Unstable state 1288: 1277: 1274: 1253: 1231: 1227: 1204: 1201: 1197: 1185: 1184: 1172: 1163: 1159: 1155: 1152: 1148: 1143: 1140: 1136: 1130: 1127: 1123: 1119: 1116: 1086: 1083: 1060: 1048: 1045: 1023: 1018: 1011: 1008: 1001: 990: 989: 978: 973: 966: 963: 956: 953: 950: 947: 944: 941: 936: 932: 928: 925: 922: 917: 913: 884: 880: 859: 856: 853: 848: 844: 824:electric field 820:magnetic field 804: 801: 778: 758: 747: 746: 734: 728: 725: 719: 716: 713: 710: 707: 704: 699: 695: 691: 688: 685: 682: 652: 649: 646: 641: 637: 611: 605: 598: 595: 588: 583: 576: 573: 565: 561: 558: 536: 529: 526: 500: 493: 490: 425: 424: 411: 408: 404: 400: 397: 393: 390: 387: 384: 363: 360: 356: 352: 349: 345: 342: 339: 336: 284: 281: 268: 265:kinetic energy 192: 191: 174: 173: 128: 126: 119: 112: 111: 69: 67: 60: 55: 29: 28: 26: 19: 9: 6: 4: 3: 2: 2006: 1995: 1992: 1991: 1989: 1978: 1974: 1970: 1966: 1962: 1958: 1953: 1949: 1945: 1941: 1937: 1933: 1929: 1928:J. Math. Phys 1924: 1920: 1916: 1912: 1908: 1904: 1900: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1852: 1848: 1844: 1840: 1836: 1832: 1828: 1824: 1820: 1816: 1812: 1807: 1803: 1801:0-521-66580-9 1797: 1794:. Cambridge. 1792: 1791: 1784: 1780: 1776: 1772: 1768: 1764: 1760: 1756: 1752: 1747: 1742: 1738: 1734: 1729: 1728: 1714: 1710: 1706: 1702: 1695: 1687: 1683: 1679: 1675: 1671: 1667: 1663: 1659: 1655: 1651: 1644: 1636: 1632: 1628: 1624: 1620: 1616: 1612: 1608: 1601: 1593: 1589: 1585: 1581: 1577: 1573: 1569: 1565: 1558: 1551: 1547: 1544: 1543:0-444-86998-0 1540: 1537: 1531: 1517:on 2016-08-04 1513: 1506: 1500: 1494: 1488: 1480: 1476: 1471: 1466: 1462: 1458: 1454: 1450: 1446: 1439: 1431: 1427: 1423: 1419: 1415: 1411: 1406: 1401: 1397: 1393: 1386: 1384: 1382: 1380: 1371: 1367: 1363: 1361:9781315219646 1357: 1353: 1349: 1346:. CRC Press. 1345: 1338: 1334: 1324: 1321: 1319: 1316: 1314: 1311: 1310: 1304: 1302: 1287: 1284: 1273: 1271: 1265: 1229: 1225: 1202: 1199: 1195: 1170: 1161: 1157: 1153: 1150: 1141: 1138: 1134: 1128: 1125: 1121: 1117: 1114: 1107: 1106: 1105: 1103: 1102:Zeeman effect 1081: 1058: 1044: 1041: 1037: 1016: 1006: 971: 961: 948: 942: 934: 930: 926: 923: 920: 915: 911: 903: 902: 901: 898: 882: 878: 854: 846: 842: 833: 829: 825: 821: 799: 756: 723: 711: 705: 697: 693: 689: 686: 683: 680: 673: 672: 671: 668: 666: 647: 639: 635: 626: 603: 593: 586: 581: 571: 559: 556: 534: 524: 498: 488: 476: 472: 468: 463: 462: 458: 454: 450: 446: 442: 438: 434: 430: 409: 406: 398: 395: 391: 388: 382: 361: 358: 354: 350: 347: 340: 337: 334: 327: 326: 325: 323: 319: 315: 311: 307: 303: 299: 289: 280: 278: 274: 266: 262: 258: 254: 250: 246: 241: 239: 235: 231: 227: 223: 219: 215: 211: 207: 203: 199: 188: 185: 170: 167: 159: 156:February 2016 149: 145: 139: 138: 132: 127: 118: 117: 108: 105: 97: 94:February 2016 87: 86:the talk page 83: 77: 75: 70:This article 68: 59: 58: 53: 51: 44: 43: 38: 37: 32: 27: 18: 17: 1960: 1956: 1931: 1927: 1894: 1890: 1846: 1842: 1814: 1810: 1789: 1736: 1732: 1716:. Retrieved 1704: 1694: 1653: 1649: 1643: 1610: 1606: 1600: 1567: 1563: 1557: 1530: 1519:. Retrieved 1512:the original 1499: 1487: 1452: 1448: 1438: 1395: 1391: 1343: 1337: 1293: 1282: 1279: 1266: 1186: 1050: 1039: 1038:and channel 1035: 991: 899: 831: 827: 748: 669: 665:bound states 474: 470: 466: 464: 460: 453:open channel 452: 449:exit channel 448: 444: 440: 436: 432: 428: 426: 317: 313: 309: 305: 295: 283:Introduction 242: 226:dissociation 201: 195: 180: 162: 153: 134: 100: 91: 80:Please help 71: 47: 40: 34: 33:Please help 30: 249:Fermi gases 214:bound state 148:introducing 1957:Nucl. Phys 1817:(4): 357. 1718:2022-07-04 1521:2017-07-13 1329:References 257:scattering 245:cold atoms 131:references 76:to readers 36:improve it 1919:0031-899X 1879:119640917 1871:0029-6341 1839:Fano, Ugo 1746:1307.3193 1678:0031-9007 1635:0556-2813 1592:1050-2947 1479:1367-2630 1430:118340314 1405:0812.1496 1370:136730029 1252:Δ 1154:− 1147:Δ 1142:− 1085:→ 1010:→ 965:→ 952:Δ 921:≈ 803:→ 777:Δ 727:→ 715:Δ 597:→ 587:− 575:→ 560:≡ 528:→ 492:→ 344:→ 210:many-body 42:talk page 1988:Category 1887:Fano, U. 1771:24093273 1686:12786004 1552:page 800 1307:See also 410:′ 399:′ 362:′ 351:′ 302:reactant 220:and the 1965:Bibcode 1963:: 329. 1936:Bibcode 1899:Bibcode 1851:Bibcode 1819:Bibcode 1779:7983994 1751:Bibcode 1709:Bibcode 1658:Bibcode 1615:Bibcode 1572:Bibcode 1493:Munchen 1457:Bibcode 1410:Bibcode 1100:by the 298:quantum 198:physics 144:improve 72:may be 1917:  1877:  1869:  1798:  1777:  1769:  1684:  1676:  1633:  1590:  1548:  1541:  1477:  1428:  1368:  1358:  1270:STIRAP 1187:where 749:where 133:, but 1875:S2CID 1775:S2CID 1741:arXiv 1515:(PDF) 1508:(PDF) 1426:S2CID 1400:arXiv 1366:S2CID 1283:et al 292:form. 206:atoms 1915:ISSN 1867:ISSN 1796:ISBN 1767:PMID 1682:PMID 1674:ISSN 1631:ISSN 1588:ISSN 1546:ISBN 1539:ISBN 1536:1986 1475:ISSN 1356:ISBN 513:and 469:and 443:and 431:and 316:and 308:and 251:and 200:, a 1973:doi 1944:doi 1907:doi 1895:124 1859:doi 1827:doi 1759:doi 1737:111 1666:doi 1623:doi 1580:doi 1465:doi 1418:doi 1348:doi 822:or 445:B' 441:A' 375:or 318:B' 314:A' 277:BCS 273:BEC 238:MIT 196:In 1990:: 1971:. 1959:. 1942:. 1930:. 1913:. 1905:. 1893:. 1873:. 1865:. 1857:. 1847:12 1825:. 1813:. 1773:. 1765:. 1757:. 1749:. 1735:. 1703:. 1680:. 1672:. 1664:. 1654:90 1652:. 1629:. 1621:. 1611:19 1609:. 1586:. 1578:. 1568:64 1566:. 1473:. 1463:. 1453:22 1451:. 1447:. 1424:. 1416:. 1408:. 1396:82 1394:. 1378:^ 1364:. 1354:. 897:. 667:. 269:sc 240:. 45:. 1979:. 1975:: 1967:: 1961:6 1950:. 1946:: 1938:: 1932:3 1921:. 1909:: 1901:: 1881:. 1861:: 1853:: 1833:. 1829:: 1821:: 1815:5 1804:. 1781:. 1761:: 1753:: 1743:: 1721:. 1711:: 1688:. 1668:: 1660:: 1637:. 1625:: 1617:: 1594:. 1582:: 1574:: 1524:. 1481:. 1467:: 1459:: 1432:. 1420:: 1412:: 1402:: 1372:. 1350:: 1297:' 1230:0 1226:B 1203:g 1200:b 1196:a 1171:) 1162:0 1158:B 1151:B 1139:1 1135:( 1129:g 1126:b 1122:a 1118:= 1115:a 1082:B 1059:T 1040:D 1036:C 1022:} 1017:0 1007:P 1000:{ 977:) 972:0 962:P 955:( 949:+ 946:) 943:R 940:( 935:c 931:V 927:+ 924:T 916:D 912:E 883:D 879:E 858:) 855:R 852:( 847:D 843:V 832:R 828:D 800:P 757:T 745:, 733:) 724:P 718:( 712:+ 709:) 706:R 703:( 698:c 694:V 690:+ 687:T 684:= 681:E 651:) 648:R 645:( 640:c 636:V 610:| 604:B 594:r 582:A 572:r 564:| 557:R 535:B 525:r 499:A 489:r 475:C 471:B 467:A 433:B 429:A 423:. 407:A 403:) 396:B 392:, 389:B 386:( 383:A 359:B 355:+ 348:A 341:B 338:+ 335:A 310:B 306:A 187:) 181:( 169:) 163:( 158:) 154:( 140:. 107:) 101:( 96:) 92:( 88:. 78:. 52:) 48:(

Index

improve it
talk page
Learn how and when to remove these messages
confusing or unclear
clarify the article
the talk page
Learn how and when to remove this message
references
inline citations
improve
introducing
Learn how and when to remove this message
Learn how and when to remove this message
physics
atoms
many-body
bound state
degree of freedom
reaction coordinates
dissociation
shape resonance
Herman Feshbach
MIT
cold atoms
Fermi gases
Bose–Einstein condensates
scattering
interatomic potential
kinetic energy
BEC

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑