Knowledge

Shape optimization

Source đź“ť

1535:). The selection of the parametrization approach depends mainly on the size of the problem: the CAD approach is preferred for small-to-medium sized models whilst the mesh morphing approach is the best (and sometimes the only feasible one) for large and very large models. The multi-objective Pareto optimization (NSGA II) could be utilized as a powerful approach for shape optimization. In this regard, the Pareto optimization approach displays useful advantages in design method such as the effect of area constraint that other multi-objective optimization cannot declare it. The approach of using a penalty function is an effective technique which could be used in the first stage of optimization. In this method the constrained shape design problem is adapted to an unconstrained problem with utilizing the constraints in the objective function as a penalty factor. Most of the time penalty factor is dependent to the amount of constraint variation rather than constraint number. The GA real-coded technique is applied in the present optimization problem. Therefore, the calculations are based on real value of variables. 25: 501:
defined on a rectangular box around the shape, which is positive inside of the shape, zero on the boundary of the shape, and negative outside of the shape. One can then evolve this function instead of the shape itself. One can consider a rectangular grid on the box and sample the function at the grid
1510:
Shape optimization can be faced using standard optimization methods if a parametrization of the geometry is defined. Such parametrization is very important in CAE field where goal functions are usually complex functions evaluated using numerical models (CFD, FEA,...). A convenient approach, suitable
489:
One approach is to follow the boundary of the shape. For that, one can sample the shape boundary in a relatively dense and uniform manner, that is, to consider enough points to get a sufficiently accurate outline of the shape. Then, one can evolve the shape by gradually moving the boundary points.
513:
A third approach is to think of the shape evolution as of a flow problem. That is, one can imagine that the shape is made of a plastic material gradually deforming such that any point inside or on the boundary of the shape can be always traced back to a point of the original shape in a one-to-one
110:
is, in addition, concerned with the number of connected components/boundaries belonging to the domain. Such methods are needed since typically shape optimization methods work in a subset of allowable shapes which have fixed topological properties, such as having a fixed number of holes in them.
1201: 273:, which is a way of saying that we would like to find a rather pleasing shape as a solution, not some jumble of rough bits and pieces. Sometimes additional constraints need to be imposed to that end to ensure well-posedness of the problem and uniqueness of the solution. 1377: 930: 1522:
In this case the parametrization is defined after the meshing stage acting directly on the numerical model used for calculation that is changed using mesh updating methods. There are several algorithms available for mesh morphing
664: 418: 349: 1283: 1009: 447:
Given a known three-dimensional object with a fixed radiation source inside, deduce the shape and size of the source based on measurements done on part of the boundary of the object. A formulation of this
1511:
for a wide class of problems, consists in the parametrization of the CAD model coupled with a full automation of all the process required for function evaluation (meshing, solving and result processing).
1080: 1436:
is evolved in the direction of negative shape gradient in order to reduce the value of the cost functional. Higher order derivatives can be similarly defined, leading to Newtonlike methods.
236: 1045: 186: 1407: 1291: 1434: 1492: 1465: 1072: 749: 566: 539: 777: 1439:
Typically, gradient descent is preferred, even if requires a large number of iterations, because, it can be hard to compute the second-order derivative (that is, the
259: 143: 502:
points. As the shape evolves, the grid points do not change; only the function values at the grid points change. This approach, of using a fixed grid, is called the
722: 1224: 769: 695: 1524: 581: 361: 1512: 1574:
Talebitooti, R.; shojaeefard, M.H.; Yarmohammadisatri, Sadegh (2015). "Shape design optimization of cylindrical tank using b-spline curves".
1528: 299: 1516: 1229: 942: 1196:{\displaystyle d{\mathcal {F}}(\Omega _{0};V)=\lim _{s\to 0}{\frac {{\mathcal {F}}(\Omega _{s})-{\mathcal {F}}(\Omega _{0})}{s}}} 474:. That is, one starts with an initial guess for a shape, and then gradually evolves it, until it morphs into the optimal shape. 1732:— Simulations and bibliography of the optopo group at Ecole Polytechnique (France). Homogenization method and level set method. 669:
The idea is again that shapes are difficult entities to be dealt with directly, so manipulate them by means of a function.
1494:
is present, one has to find ways to convert the constrained problem into an unconstrained one. Sometimes ideas based on
1750: 1709: 1694: 1679: 1664: 1642: 1627: 1613: 277: 68: 46: 39: 202: 270: 280:
problem. Furthermore, the space of allowable shapes over which the optimization is performed does not admit a
1372:{\displaystyle d{\mathcal {F}}(\Omega _{0};V)=\langle \nabla {\mathcal {F}},V\rangle _{\partial \Omega _{0}}} 1017: 158: 101: 1385: 111:
Topological optimization techniques can then help work around the limitations of pure shape optimization.
294:
Among all three-dimensional shapes of given volume, find the one which has minimal surface area. Here:
1416: 1473: 1446: 1745: 925:{\displaystyle x(0)=x_{0}\in \Omega _{0},\quad x'(s)=V(x(s)),\quad T_{s}(x_{0})=x(s),\quad s\geq 0} 423: 193: 150: 97: 93: 33: 1050: 727: 544: 517: 1549: 498: 50: 1554: 1532: 244: 128: 107: 1499: 1495: 700: 482:
To solve a shape optimization problem, one needs to find a way to represent a shape in the
262: 8: 266: 1209: 754: 680: 467: 427: 1705: 1690: 1675: 1660: 1638: 1623: 1609: 146: 1587: 1515:
is a valid choice for complex problems that resolves typical issues associated with
1583: 1410: 507: 471: 441: 284:
structure, making application of traditional optimization methods more difficult.
659:{\displaystyle f_{t}:\Omega _{0}\to \Omega _{t},{\mbox{ for }}0\leq t\leq t_{0}.} 483: 449: 85: 413:{\displaystyle {\mathcal {G}}(\Omega )={\mbox{Volume}}(\Omega )={\mbox{const.}}} 100:. In many cases, the functional being solved depends on the solution of a given 1440: 573: 434: 1206:
if this limit exists. If in addition the derivative is linear with respect to
1739: 506:. The idea of using a function to represent the shape is at the basis of the 453: 1519:
such as discontinuities in the computed objective and constraint functions.
1470:
If the shape optimization problem has constraints, that is, the functional
1729: 281: 440:
Find the shape of various mechanical structures, which can resist a given
437:. Here the constraints could be the wing strength, or the wing dimensions. 1672:
Introduction to Shape Optimization: Theory, Approximation and Computation
1657:
Shapes and Geometries - Analysis, Differential Calculus, and Optimization
123: 119: 1573: 344:{\displaystyle {\mathcal {F}}(\Omega )={\mbox{Area}}(\partial \Omega )} 1717:
Differentiation with respect to the domain in boundary value problems
1650:
A Survey on Level Set Methods for Inverse Problems and Optimal Design
1278:{\displaystyle \nabla {\mathcal {F}}\in L^{2}(\partial \Omega _{0})} 1652:. European Journal of Applied Mathematics, vol.16 pp. 263–301. 1544: 1004:{\displaystyle \Omega _{0}\mapsto T_{s}(\Omega _{0})=\Omega _{s}.} 486:, and follow its evolution. Several approaches are usually used. 1687:
Numerical Methods in Sensitivity Analysis and Shape Optimization
1719:. Numer. Funct. Anal. and Optimiz., 2(7&8), 649-687 (1980). 122:, shape optimization can be posed as the problem of finding a 89: 1409:
is called the shape gradient. This gives a natural idea of
16:
Problem of finding the optimal shape under given conditions
672: 1635:
Topology Optimization: Theory, Methods and Applications
1618:
Ashok D. Belegundu, Tirupathi R. Chandrupatla. (2003)
1608:. Applied Mathematical Sciences 146, Springer Verlag. 625: 404: 385: 323: 1620:
Optimization Concepts and applications in Engineering
1476: 1449: 1419: 1388: 1294: 1232: 1212: 1083: 1053: 1020: 945: 780: 757: 730: 703: 683: 584: 547: 520: 364: 302: 247: 205: 161: 131: 92:
which is optimal in that it minimizes a certain cost
433:Find the shape of an airplane wing which minimizes 1486: 1459: 1428: 1401: 1371: 1277: 1218: 1195: 1066: 1039: 1003: 924: 763: 743: 716: 689: 658: 560: 533: 412: 343: 253: 230: 180: 137: 1674:. Society for Industrial and Applied Mathematic. 1737: 1120: 1606:Shape optimization by the homogenization method 466:Shape optimization problems are usually solved 477: 1350: 1330: 1505: 88:theory. The typical problem is to find the 1074:with respect to the shape is the limit of 456:fit leads to a shape optimization problem. 231:{\displaystyle {\mathcal {G}}(\Omega )=0.} 69:Learn how and when to remove this message 1014:Then the Gâteaux or shape derivative of 32:This article includes a list of general 1040:{\displaystyle {\mathcal {F}}(\Omega )} 673:Iterative methods using shape gradients 181:{\displaystyle {\mathcal {F}}(\Omega )} 1738: 1702:Applied Shape Optimization for Fluids 1655:Delfour, M.C.; Zolesio, J.-P. (2001) 1567: 1402:{\displaystyle \nabla {\mathcal {F}}} 1700:Mohammadi, B.; Pironneau, O. (2001) 18: 444:while having a minimal mass/volume. 13: 1685:Laporte, E.; Le Tallec, P. (2003) 1670:Haslinger, J.; Mäkinen, R. (2003) 1479: 1452: 1423: 1420: 1394: 1389: 1358: 1354: 1338: 1333: 1309: 1300: 1263: 1259: 1238: 1233: 1175: 1166: 1149: 1140: 1098: 1089: 1055: 1031: 1023: 989: 973: 947: 810: 732: 697:and the family of transformations 612: 599: 549: 522: 497:Another approach is to consider a 394: 375: 367: 335: 332: 313: 305: 248: 241:Usually we are interested in sets 216: 208: 172: 164: 132: 38:it lacks sufficient corresponding 14: 1762: 1723: 1633:Bendsøe M. P.; Sigmund O. (2003) 677:Consider a smooth velocity field 278:infinite-dimensional optimization 1429:{\displaystyle \partial \Omega } 104:defined on the variable domain. 23: 1648:Burger, M.; Osher, S.L. (2005) 1588:10.1016/j.compfluid.2014.12.004 1443:) of the objective functional 1226:, there is a unique element of 912: 867: 822: 1487:{\displaystyle {\mathcal {G}}} 1460:{\displaystyle {\mathcal {F}}} 1324: 1305: 1272: 1256: 1184: 1171: 1158: 1145: 1127: 1113: 1094: 1034: 1028: 982: 969: 956: 906: 900: 891: 878: 861: 858: 852: 846: 837: 831: 790: 784: 608: 397: 391: 378: 372: 338: 329: 316: 310: 219: 213: 175: 169: 1: 1560: 461: 269:and consist of finitely many 114: 102:partial differential equation 514:fashion. Mathematically, if 7: 1704:. Oxford University Press. 1538: 1067:{\displaystyle \Omega _{0}} 744:{\displaystyle \Omega _{0}} 561:{\displaystyle \Omega _{t}} 534:{\displaystyle \Omega _{0}} 287: 10: 1767: 1598: 541:is the initial shape, and 478:Keeping track of the shape 1751:Mathematical optimization 751:under the velocity field 422:The answer, given by the 276:Shape optimization is an 1506:Geometry parametrization 424:isoperimetric inequality 84:is part of the field of 254:{\displaystyle \Omega } 138:{\displaystyle \Omega } 96:while satisfying given 53:more precise citations. 1550:Topological derivative 1533:radial basis functions 1488: 1461: 1430: 1403: 1373: 1279: 1220: 1197: 1068: 1041: 1005: 926: 765: 745: 724:of the initial domain 718: 691: 660: 562: 535: 414: 345: 255: 232: 192:possibly subject to a 182: 139: 1576:Computer & Fluids 1555:Topology optimization 1489: 1462: 1431: 1413:, where the boundary 1404: 1374: 1280: 1221: 1198: 1069: 1042: 1006: 927: 766: 746: 719: 717:{\displaystyle T_{s}} 692: 661: 568:is the shape at time 563: 536: 415: 346: 256: 233: 183: 140: 108:Topology optimization 1500:adjoint state method 1496:Lagrange multipliers 1474: 1447: 1417: 1386: 1292: 1230: 1210: 1081: 1051: 1018: 943: 778: 755: 728: 701: 681: 582: 572:, one considers the 545: 518: 362: 300: 245: 203: 159: 129: 1604:Allaire, G. (2002) 492:Lagrangian approach 490:This is called the 1484: 1457: 1426: 1399: 1369: 1275: 1216: 1193: 1134: 1064: 1037: 1001: 922: 761: 741: 714: 687: 656: 629: 558: 531: 410: 408: 389: 341: 327: 251: 228: 178: 135: 82:Shape optimization 1525:deforming volumes 1219:{\displaystyle V} 1191: 1119: 764:{\displaystyle V} 690:{\displaystyle V} 628: 504:Eulerian approach 472:iterative methods 407: 388: 326: 79: 78: 71: 1758: 1715:Simon J. (1980) 1592: 1591: 1571: 1493: 1491: 1490: 1485: 1483: 1482: 1466: 1464: 1463: 1458: 1456: 1455: 1435: 1433: 1432: 1427: 1411:gradient descent 1408: 1406: 1405: 1400: 1398: 1397: 1378: 1376: 1375: 1370: 1368: 1367: 1366: 1365: 1342: 1341: 1317: 1316: 1304: 1303: 1284: 1282: 1281: 1276: 1271: 1270: 1255: 1254: 1242: 1241: 1225: 1223: 1222: 1217: 1202: 1200: 1199: 1194: 1192: 1187: 1183: 1182: 1170: 1169: 1157: 1156: 1144: 1143: 1136: 1133: 1106: 1105: 1093: 1092: 1073: 1071: 1070: 1065: 1063: 1062: 1046: 1044: 1043: 1038: 1027: 1026: 1010: 1008: 1007: 1002: 997: 996: 981: 980: 968: 967: 955: 954: 931: 929: 928: 923: 890: 889: 877: 876: 830: 818: 817: 805: 804: 770: 768: 767: 762: 750: 748: 747: 742: 740: 739: 723: 721: 720: 715: 713: 712: 696: 694: 693: 688: 665: 663: 662: 657: 652: 651: 630: 626: 620: 619: 607: 606: 594: 593: 567: 565: 564: 559: 557: 556: 540: 538: 537: 532: 530: 529: 508:level-set method 419: 417: 416: 411: 409: 405: 390: 386: 371: 370: 350: 348: 347: 342: 328: 324: 309: 308: 260: 258: 257: 252: 237: 235: 234: 229: 212: 211: 187: 185: 184: 179: 168: 167: 144: 142: 141: 136: 74: 67: 63: 60: 54: 49:this article by 40:inline citations 27: 26: 19: 1766: 1765: 1761: 1760: 1759: 1757: 1756: 1755: 1746:Optimal control 1736: 1735: 1726: 1622:Prentice Hall. 1601: 1596: 1595: 1572: 1568: 1563: 1541: 1508: 1478: 1477: 1475: 1472: 1471: 1451: 1450: 1448: 1445: 1444: 1418: 1415: 1414: 1393: 1392: 1387: 1384: 1383: 1361: 1357: 1353: 1349: 1337: 1336: 1312: 1308: 1299: 1298: 1293: 1290: 1289: 1266: 1262: 1250: 1246: 1237: 1236: 1231: 1228: 1227: 1211: 1208: 1207: 1178: 1174: 1165: 1164: 1152: 1148: 1139: 1138: 1137: 1135: 1123: 1101: 1097: 1088: 1087: 1082: 1079: 1078: 1058: 1054: 1052: 1049: 1048: 1022: 1021: 1019: 1016: 1015: 992: 988: 976: 972: 963: 959: 950: 946: 944: 941: 940: 885: 881: 872: 868: 823: 813: 809: 800: 796: 779: 776: 775: 756: 753: 752: 735: 731: 729: 726: 725: 708: 704: 702: 699: 698: 682: 679: 678: 675: 647: 643: 627: for  624: 615: 611: 602: 598: 589: 585: 583: 580: 579: 574:diffeomorphisms 552: 548: 546: 543: 542: 525: 521: 519: 516: 515: 484:computer memory 480: 464: 459: 450:inverse problem 403: 384: 366: 365: 363: 360: 359: 322: 304: 303: 301: 298: 297: 290: 246: 243: 242: 207: 206: 204: 201: 200: 163: 162: 160: 157: 156: 130: 127: 126: 117: 86:optimal control 75: 64: 58: 55: 45:Please help to 44: 28: 24: 17: 12: 11: 5: 1764: 1754: 1753: 1748: 1734: 1733: 1725: 1724:External links 1722: 1721: 1720: 1713: 1698: 1689:. Birkhäuser. 1683: 1668: 1653: 1646: 1631: 1616: 1600: 1597: 1594: 1593: 1565: 1564: 1562: 1559: 1558: 1557: 1552: 1547: 1540: 1537: 1507: 1504: 1481: 1454: 1425: 1422: 1396: 1391: 1380: 1379: 1364: 1360: 1356: 1352: 1348: 1345: 1340: 1335: 1332: 1329: 1326: 1323: 1320: 1315: 1311: 1307: 1302: 1297: 1274: 1269: 1265: 1261: 1258: 1253: 1249: 1245: 1240: 1235: 1215: 1204: 1203: 1190: 1186: 1181: 1177: 1173: 1168: 1163: 1160: 1155: 1151: 1147: 1142: 1132: 1129: 1126: 1122: 1118: 1115: 1112: 1109: 1104: 1100: 1096: 1091: 1086: 1061: 1057: 1036: 1033: 1030: 1025: 1012: 1011: 1000: 995: 991: 987: 984: 979: 975: 971: 966: 962: 958: 953: 949: 934: 933: 921: 918: 915: 911: 908: 905: 902: 899: 896: 893: 888: 884: 880: 875: 871: 866: 863: 860: 857: 854: 851: 848: 845: 842: 839: 836: 833: 829: 826: 821: 816: 812: 808: 803: 799: 795: 792: 789: 786: 783: 760: 738: 734: 711: 707: 686: 674: 671: 667: 666: 655: 650: 646: 642: 639: 636: 633: 623: 618: 614: 610: 605: 601: 597: 592: 588: 555: 551: 528: 524: 479: 476: 463: 460: 458: 457: 445: 438: 431: 421: 420: 402: 399: 396: 393: 383: 380: 377: 374: 369: 353: 352: 340: 337: 334: 331: 321: 318: 315: 312: 307: 291: 289: 286: 250: 239: 238: 227: 224: 221: 218: 215: 210: 190: 189: 177: 174: 171: 166: 134: 120:Mathematically 116: 113: 77: 76: 31: 29: 22: 15: 9: 6: 4: 3: 2: 1763: 1752: 1749: 1747: 1744: 1743: 1741: 1731: 1728: 1727: 1718: 1714: 1711: 1710:0-19-850743-7 1707: 1703: 1699: 1696: 1695:0-8176-4322-2 1692: 1688: 1684: 1681: 1680:0-89871-536-9 1677: 1673: 1669: 1666: 1665:0-89871-489-3 1662: 1658: 1654: 1651: 1647: 1644: 1643:3-540-42992-1 1640: 1636: 1632: 1629: 1628:0-13-031279-7 1625: 1621: 1617: 1615: 1614:0-387-95298-5 1611: 1607: 1603: 1602: 1589: 1585: 1581: 1577: 1570: 1566: 1556: 1553: 1551: 1548: 1546: 1543: 1542: 1536: 1534: 1530: 1526: 1520: 1518: 1514: 1513:Mesh morphing 1503: 1501: 1497: 1468: 1442: 1437: 1412: 1362: 1346: 1343: 1327: 1321: 1318: 1313: 1295: 1288: 1287: 1286: 1267: 1251: 1247: 1243: 1213: 1188: 1179: 1161: 1153: 1130: 1124: 1116: 1110: 1107: 1102: 1084: 1077: 1076: 1075: 1059: 998: 993: 985: 977: 964: 960: 951: 939: 938: 937: 919: 916: 913: 909: 903: 897: 894: 886: 882: 873: 869: 864: 855: 849: 843: 840: 834: 827: 824: 819: 814: 806: 801: 797: 793: 787: 781: 774: 773: 772: 758: 736: 709: 705: 684: 670: 653: 648: 644: 640: 637: 634: 631: 621: 616: 603: 595: 590: 586: 578: 577: 576: 575: 571: 553: 526: 511: 509: 505: 500: 495: 493: 487: 485: 475: 473: 469: 455: 454:least-squares 451: 446: 443: 439: 436: 432: 429: 425: 400: 381: 358: 357: 356: 319: 296: 295: 293: 292: 285: 283: 279: 274: 272: 268: 264: 225: 222: 199: 198: 197: 195: 155: 154: 153: 152: 148: 125: 121: 112: 109: 105: 103: 99: 95: 91: 87: 83: 73: 70: 62: 52: 48: 42: 41: 35: 30: 21: 20: 1730:Optopo Group 1716: 1701: 1686: 1671: 1656: 1649: 1637:. Springer. 1634: 1619: 1605: 1579: 1575: 1569: 1529:pseudosolids 1521: 1509: 1502:, can work. 1469: 1438: 1381: 1205: 1013: 935: 676: 668: 569: 512: 503: 496: 491: 488: 481: 465: 354: 282:vector space 275: 240: 196:of the form 191: 118: 106: 81: 80: 65: 56: 37: 1582:: 100–112. 1498:, like the 936:and denote 470:, by using 468:numerically 124:bounded set 98:constraints 51:introducing 1740:Categories 1561:References 1517:re-meshing 462:Techniques 271:components 261:which are 194:constraint 151:functional 147:minimizing 115:Definition 94:functional 34:references 1424:Ω 1421:∂ 1390:∇ 1359:Ω 1355:∂ 1351:⟩ 1334:∇ 1331:⟨ 1310:Ω 1264:Ω 1260:∂ 1244:∈ 1234:∇ 1176:Ω 1162:− 1150:Ω 1128:→ 1099:Ω 1056:Ω 1032:Ω 990:Ω 974:Ω 957:↦ 948:Ω 917:≥ 811:Ω 807:∈ 733:Ω 641:≤ 635:≤ 613:Ω 609:→ 600:Ω 550:Ω 523:Ω 395:Ω 376:Ω 336:Ω 333:∂ 314:Ω 263:Lipschitz 249:Ω 217:Ω 173:Ω 133:Ω 59:June 2020 1659:. SIAM. 1545:SU2 code 1539:See also 828:′ 499:function 288:Examples 267:boundary 1599:Sources 1441:Hessian 426:, is a 47:improve 1708:  1693:  1678:  1663:  1641:  1626:  1612:  1382:where 452:using 442:stress 406:const. 387:Volume 355:with 36:, but 265:or C 90:shape 1706:ISBN 1691:ISBN 1676:ISBN 1661:ISBN 1639:ISBN 1624:ISBN 1610:ISBN 1285:and 435:drag 428:ball 325:Area 1584:doi 1580:109 1121:lim 1047:at 1742:: 1578:. 1531:, 1527:, 1467:. 771:: 510:. 494:. 226:0. 149:a 145:, 1712:. 1697:. 1682:. 1667:. 1645:. 1630:. 1590:. 1586:: 1523:( 1480:G 1453:F 1395:F 1363:0 1347:V 1344:, 1339:F 1328:= 1325:) 1322:V 1319:; 1314:0 1306:( 1301:F 1296:d 1273:) 1268:0 1257:( 1252:2 1248:L 1239:F 1214:V 1189:s 1185:) 1180:0 1172:( 1167:F 1159:) 1154:s 1146:( 1141:F 1131:0 1125:s 1117:= 1114:) 1111:V 1108:; 1103:0 1095:( 1090:F 1085:d 1060:0 1035:) 1029:( 1024:F 999:. 994:s 986:= 983:) 978:0 970:( 965:s 961:T 952:0 932:, 920:0 914:s 910:, 907:) 904:s 901:( 898:x 895:= 892:) 887:0 883:x 879:( 874:s 870:T 865:, 862:) 859:) 856:s 853:( 850:x 847:( 844:V 841:= 838:) 835:s 832:( 825:x 820:, 815:0 802:0 798:x 794:= 791:) 788:0 785:( 782:x 759:V 737:0 710:s 706:T 685:V 654:. 649:0 645:t 638:t 632:0 622:, 617:t 604:0 596:: 591:t 587:f 570:t 554:t 527:0 430:. 401:= 398:) 392:( 382:= 379:) 373:( 368:G 351:, 339:) 330:( 320:= 317:) 311:( 306:F 223:= 220:) 214:( 209:G 188:, 176:) 170:( 165:F 72:) 66:( 61:) 57:( 43:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message
optimal control
shape
functional
constraints
partial differential equation
Topology optimization
Mathematically
bounded set
minimizing
functional
constraint
Lipschitz
boundary
components
infinite-dimensional optimization
vector space
isoperimetric inequality
ball
drag
stress
inverse problem
least-squares
numerically
iterative methods
computer memory

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑