Knowledge

Topology optimization

Source đź“ť

1393: 1485: 1375: 1363: 1351: 1339: 717:
indicates an absence of material. Owing to the attainable topological complexity of the design being dependent on the number of elements, a large number is preferred. Large numbers of finite elements increases the attainable topological complexity, but come at a cost. Firstly, solving the FEM system becomes more expensive. Secondly, algorithms that can handle a large number (several thousands of elements is not uncommon) of discrete variables with multiple constraints are unavailable. Moreover, they are impractically sensitive to parameter variations. In literature problems with up to 30000 variables have been reported.
914: 922: 1401: 394: 930: 94: 948: 1415: 576:. This indicates the allowable volume within which the design can exist. Assembly and packaging requirements, human and tool accessibility are some of the factors that need to be considered in identifying this space . With the definition of the design space, regions or components in the model that cannot be modified during the course of the optimization are considered as non-design regions. 389:{\displaystyle {\begin{aligned}&{\underset {\rho }{\operatorname {minimize} }}&&F=F(\mathbf {u(\rho ),\rho } )=\int _{\Omega }f(\mathbf {u(\rho ),\rho } )\mathrm {d} V\\&\operatorname {subject\;to} &&G_{0}(\rho )=\int _{\Omega }\rho \mathrm {d} V-V_{0}\leq 0\\&&&G_{j}(\mathbf {u} (\rho ),\rho )\leq 0{\text{ with }}j=1,...,m\end{aligned}}} 1330:
of many engineering applications. Topology optimisation for fluid structure interaction problems has been studied in e.g. references and. Design solutions solved for different Reynolds numbers are shown below. The design solutions depend on the fluid flow with indicate that the coupling between the fluid and the structure is resolved in the design problems.
1452:
conversion of thermal energy into electric energy and the Peltier effect concerns the conversion of electric energy into thermal energy. By spatially distributing two thermoelectric materials in a two dimensional design space with a topology optimisation methodology, it is possible to exceed performance of the constitutive thermoelectric materials for
1468:
The current proliferation of 3D printer technology has allowed designers and engineers to use topology optimization techniques when designing new products. Topology optimization combined with 3D printing can result in less weight, improved structural performance and shortened design-to-manufacturing
1329:
is a strongly coupled phenomenon and concerns the interaction between a stationary or moving fluid and an elastic structure. Many engineering applications and natural phenomena are subject to fluid-structure-interaction and to take such effects into consideration is therefore critical in the design
1451:
is a multi-physic problem which concerns the interaction and coupling between electric and thermal energy in semi conducting materials. Thermoelectric energy conversion can be described by two separately identified effects: The Seebeck effect and the Peltier effect. The Seebeck effect concerns the
1019:
On a broad level, one can visualize that the more the material, the less the deflection as there will be more material to resist the loads. So, the optimization requires an opposing constraint, the volume constraint. This is in reality a cost factor, as we would not want to spend a lot of money on
729:
has caused the community to search for other options. One is the modelling of the densities with continuous variables. The material densities can now also attain values between zero and one. Gradient based algorithms that handle large amounts of continuous variables and multiple constraints are
716:
Solving topology optimization problems in a discrete sense is done by discretizing the design domain into finite elements. The material densities inside these elements are then treated as the problem variables. In this case material density of one indicates the presence of material, while zero
904:
There are several commercial topology optimization software on the market. Most of them use topology optimization as a hint how the optimal design should look like, and manual geometry re-construction is required. There are a few solutions which produce optimal designs ready for Additive
893:, to make sure the derivatives of the objective function are non-zero when the density becomes zero. The higher the penalisation factor, the more SIMP penalises the algorithm in the use of non-binary densities. Unfortunately, the penalisation parameter also introduces non-convexities. 1312:
based on image processing are currently being used to alleviate some of these issues. Although it seemed like this was purely a heuristic approach for a long time, theoretical connections to nonlocal elasticity have been made to support the physical sense of these methods.
1094: 64:. Due to the free forms that naturally occur, the result is often difficult to manufacture. For that reason the result emerging from topology optimization is often fine-tuned for manufacturability. Adding constraints to the formulation in order to 1404:
Design evolution for a fluid-structure-interaction problem from reference. The objective of the design problem is to minimize the structural compliance. The fluid-structure-interaction problem is modelled with Navier-Cauchy and Navier-Stokes
1249: 1292: 1424: 1196: 452:. This function represents the quantity that is being minimized for best performance. The most common objective function is compliance, where minimizing compliance leads to maximizing the stiffness of a structure. 1427:
Design evolution for an off-diagonal thermoelectric generator. The design solution of an optimisation problem solved for electric power output. The performance of the device has been optimised by distributing
1016:) of the structure under the prescribed boundary conditions. The lower the strain energy the higher the stiffness of the structure. So, the objective function of the problem is to minimize the strain energy. 1418:
A sketch of the design problem. The aim of the design problem is to spatially distribute two materials, Material A and Material B, to maximise a performance measure such as cooling power or electric power
1481:. The third medium contact (TMC) method is an implicit contact formulation that is continuous and differentiable. This makes TMC suitable for use with gradient-based approaches to topology optimization. 1301:
Mesh dependency—Mesh Dependency means that the design obtained on one mesh is not the one that will be obtained on another mesh. The features of the design become more intricate as the mesh gets refined.
525: 811: 659: 60:
Topology optimization has a wide range of applications in aerospace, mechanical, bio-chemical and civil engineering. Currently, engineers mostly use topology optimization at the concept level of a
99: 1029: 1441: 450: 730:
available. But the material properties have to be modelled in a continuous setting. This is done through interpolation. One of the most implemented interpolation methodologies is the
694: 484: 598: 1436:(blue) with a density-based topology optimisation methodology. The aim of the optimisation problem is to maximise the electric power output of the thermoelectric generator. 1141: 1753: 574: 1956:
Picelli, R.; Vicente, W.M.; Pavanello, R. (2017). "Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads".
2022: 1202: 891: 545: 831: 1983:
Jenkins, Nicholas; Maute, Kurt (2016). "An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems".
864: 1008:
A stiff structure is one that has the least possible displacement when given certain set of boundary conditions. A global measure of the displacements is the
661:
a characteristic that the solution must satisfy. Examples are the maximum amount of material to be distributed (volume constraint) or maximum stress values.
2403:
Mahdavi, A.; Balaji, R.; Frecker, M.; Mockensturm, E. M. (2006). "Topology optimization of 2D continua for minimum compliance using parallel computing".
38:
and sizing optimization in the sense that the design can attain any shape within the design space, instead of dealing with predefined configurations.
1255: 1147: 1488:
Design development and deformation of self-engaging hooks resulting from topology optimization of a contact problem using the TMC method .
1444:
Design evolution for a thermoelectric cooler. The aim of the design problem is to maximise the cooling power of the thermoelectric cooler.
866:. This has been shown to confirm the micro-structure of the materials. In the SIMP method a lower bound on the Young's modulus is added, 2349:
Pedersen, Claus B. W.; Allinger, Peter (2006). "Industrial Implementation and Applications of Topology Optimization and Future Needs".
1913:
Yoon, Gil Ho (2010). "Topology optimization for stationary fluid-structure interaction problems using a new monolithic formulation".
1297:
But, a straightforward implementation in the finite element framework of such a problem is still infeasible owing to issues such as:
1484: 1392: 489: 1684: 969: 2393: 2366: 2077: 813:. It interpolates the Young's modulus of the material to the scalar selection field. The value of the penalisation parameter 2432:
Leiva, Juan; Watson, Brian; Kosaka, Iku (1999). "Modern structural optimization concepts applied to topology optimization".
1685:
Critical study of design parameterization in topology optimization; The influence of design parameterization on local minima
737: 605: 1089:{\displaystyle \min _{\rho }\;\int _{\Omega }{\frac {1}{2}}\mathbf {\sigma } :\mathbf {\varepsilon } \,\mathrm {d} \Omega } 1020:
the material. To obtain the total material utilized, an integration of the selection field over the volume can be done.
2470: 1374: 995: 73: 1396:
Sketch of the well-known wall problem. The objective of the design problem is to minimize the structural compliance.
977: 68:
is an active field of research. In some cases results from topology optimization can be directly manufactured using
1362: 455:
The material distribution as a problem variable. This is described by the density of the material at each location
2376:
Schramm, Uwe; Zhou, Ming (2006). "Recent Developments in the Commercial Implementation of Topology Optimization".
409: 2485: 1546: 1326: 1023:
Finally the elasticity governing differential equations are plugged in so as to get the final problem statement.
1469:
cycle. As the designs, while efficient, might not be realisable with more traditional manufacturing techniques.
1634: 973: 708:
There are various implementation methodologies that have been used to solve topology optimization problems.
2021:
Lundgaard, Christian; Alexandersen, Joe; Zhou, Mingdong; Andreasen, Casper Schousboe; Sigmund, Ole (2018).
65: 1478: 668: 458: 50: 22:
is a mathematical method that optimizes material layout within a given design space, for a given set of
61: 1423: 1309: 1770: 1386:
Design solutions for different Reynolds number for a wall inserted in a channel with a moving fluid.
581: 1457: 1105: 958: 600: 46: 34:
with the goal of maximizing the performance of the system. Topology optimization is different from
31: 2078:"A density-based topology optimization methodology for thermoelectric energy conversion problems" 1700: 962: 2063: 1765: 1453: 1400: 553: 69: 1244:{\displaystyle \mathbf {\nabla } \cdot \mathbf {\sigma } \,+\,\mathbf {F} \;=\;{\mathbf {0} }} 45:(FEM) to evaluate the design performance. The design is optimized using either gradient-based 2480: 1448: 697: 42: 2490: 2303: 2248: 2191: 2131: 1922: 1812: 1712: 1649: 869: 530: 85: 8: 2023:"Revisiting density-based topology optimization for fluid-structure-interaction problems" 913: 27: 2378:
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
2351:
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
2307: 2252: 2195: 2135: 1926: 1816: 1716: 1653: 921: 2420: 2327: 2272: 2238: 2181: 2147: 2100: 2045: 2000: 1938: 1889: 1836: 1665: 1604: 1569: 1527: 816: 404: 54: 35: 1724: 836: 2475: 2389: 2362: 2331: 2319: 2276: 2264: 2207: 2151: 2119: 2104: 2049: 2004: 1942: 1893: 1881: 1861: 1828: 1775: 1728: 1573: 1531: 1433: 696:
often includes solving a differential equation. This is most commonly done using the
2455: 2424: 1840: 1669: 1608: 2437: 2412: 2381: 2380:. Solid Mechanics and Its Applications. Vol. 137. Springer. pp. 239–248. 2354: 2353:. Solid Mechanics and Its Applications. Vol. 137. Springer. pp. 229–238. 2311: 2256: 2199: 2139: 2092: 2037: 1992: 1965: 1930: 1873: 1820: 1720: 1657: 1596: 1561: 1519: 1587:
Bendsøe, M. P. (1989). "Optimal shape design as a material distribution problem".
725:
The earlier stated complexities with solving topology optimization problems using
527:
is a state field that satisfies a linear or nonlinear state equation depending on
1621: 23: 2226: 1969: 1013: 2291: 2260: 2203: 2168:
Frederiksen, Andreas Henrik; Sigmund, Ole; Poulios, Konstantinos (2023-10-07).
2416: 2315: 2143: 2096: 2041: 1996: 1877: 1523: 2464: 2385: 2358: 2323: 2268: 2211: 2169: 1885: 1832: 1779: 1732: 1304:
Numerical instabilities—The selection of region in the form of a chess board.
1009: 929: 486:. Material is either present, indicated by a 1, or absent, indicated by a 0. 1440: 1287:{\displaystyle \mathbf {\sigma } \;=\;{\mathsf {C}}:\mathbf {\varepsilon } } 1429: 2434:
40th Structures, Structural Dynamics, and Materials Conference and Exhibit
1661: 1477:
Internal contact can be included in topology optimization by applying the
726: 84:
A topology optimization problem can be written in the general form of an
16:
Mathematical method for optimizing material layout under given conditions
2441: 1800: 1600: 1565: 1507: 1191:{\displaystyle \int _{\Omega }\rho \,\mathrm {d} \Omega \;\leq \;V^{*}} 2225:
Bluhm, Gore Lukas; Sigmund, Ole; Poulios, Konstantinos (2021-03-04).
1934: 1824: 1754:"Checkerboard Problem in Finite Element Based Topology Optimization" 947: 2243: 2227:"Internal contact modeling for finite strain topology optimization" 2186: 1547:"Topology optimization using a dual method with discrete variables" 2020: 1758:
International Journal of Advances in Engineering & Technology
1689:. 2nd International Conference on Engineering Optimization, 2010 1414: 720: 2402: 700:
since these equations do not have a known analytical solution.
2120:"Topology Optimization of Segmented Thermoelectric Generators" 1862:"Sensitivity filtering from a continuum mechanics perspective" 1752:
Shukla, Avinash; Misra, Anadi; Kumar, Sunil (September 2013).
734:
method (SIMP). This interpolation is essentially a power law
49:
techniques such as the optimality criteria algorithm and the
520:{\displaystyle \mathbf {u} =\mathbf {u} (\mathbf {\rho } )} 2292:"A finite element method for contact using a third medium" 2118:
Lundgaard, Christian; Sigmund, Ole; Bjørk, Rasmus (2018).
1915:
International Journal for Numerical Methods in Engineering
1805:
International Journal for Numerical Methods in Engineering
41:
The conventional topology optimization formulation uses a
2167: 1635:"Material interpolation schemes in topology optimization" 711: 2289: 1955: 2436:. American Institute of Aeronautics and Astronautics. 2290:
Wriggers, P.; Schröder, J.; Schwarz, A. (2013-03-30).
1463: 806:{\displaystyle E\;=\;E_{0}\,+\,\rho ^{p}(E_{1}-E_{0})} 654:{\displaystyle G_{j}(\mathbf {u} (\rho ),\rho )\leq 0} 585: 2170:"Topology optimization of self-contacting structures" 2117: 1258: 1205: 1150: 1108: 1032: 872: 839: 819: 740: 671: 608: 584: 556: 533: 492: 461: 412: 97: 2224: 1409: 925:
Topology optimization result when filtering is used
1286: 1243: 1190: 1135: 1088: 885: 858: 825: 805: 688: 653: 592: 568: 539: 519: 478: 444: 388: 2431: 682: 676: 429: 423: 180: 174: 138: 132: 2462: 2348: 2075: 2016: 2014: 1751: 1034: 1701:"On some recent advances in shape optimization" 1699:Allaire, GrĂ©goire; Henrot, Antoine (May 2001). 917:Checker Board Patterns are shown in this result 703: 1632: 1321: 399:The problem statement includes the following: 72:; topology optimization is thus a key part of 2405:Structural and Multidisciplinary Optimization 2085:Structural and Multidisciplinary Optimization 2030:Structural and Multidisciplinary Optimization 2011: 1985:Structural and Multidisciplinary Optimization 1866:Structural and Multidisciplinary Optimization 1698: 1512:Structural and Multidisciplinary Optimization 933:Topology optimization of a compliance problem 721:Solving the problem with continuous variables 1982: 1859: 1510:(2013). "Topology optimization approaches". 1505: 1380:Design solution and pressure field for Re=40 1368:Design solution and pressure field for Re=10 445:{\displaystyle F(\mathbf {u(\rho ),\rho } )} 2375: 2076:Lundgaard, Christian; Sigmund, Ole (2018). 1682:van Dijk, NP. Langelaar, M. van Keulen, F. 1356:Design solution and velocity field for Re=5 1344:Design solution and velocity field for Re=1 976:. Unsourced material may be challenged and 1860:Sigmund, Ole; Maute, Kurt (October 2012). 1268: 1264: 1233: 1229: 1177: 1173: 1043: 748: 744: 732:Solid Isotropic Material with Penalisation 228: 2242: 2185: 1769: 1705:Comptes Rendus de l'AcadĂ©mie des Sciences 1223: 1219: 1164: 1126: 1116: 1112: 1077: 996:Learn how and when to remove this message 849: 763: 759: 53:or non gradient-based algorithms such as 1483: 1439: 1422: 1413: 1399: 1391: 1316: 937: 928: 920: 912: 2064:Thermoelectrics handbook: macro to nano 1798: 1586: 1544: 2463: 1958:Finite Elements in Analysis and Design 1271: 899: 712:Solving with discrete/binary variables 2163: 2161: 1912: 1633:Bendsøe, M. P.; Sigmund, O. (1999). 974:adding citations to reliable sources 941: 79: 1615: 1472: 1464:3F3D Form Follows Force 3D Printing 689:{\displaystyle \mathbf {u(\rho )} } 479:{\displaystyle \rho (\mathbf {x} )} 13: 2342: 2158: 1801:"Filters in topology optimization" 1207: 1170: 1166: 1156: 1083: 1079: 1049: 560: 275: 266: 232: 229: 225: 222: 219: 216: 213: 210: 207: 194: 159: 14: 2502: 2449: 74:design for additive manufacturing 2456:Topology optimization animations 1410:Thermoelectric energy conversion 1373: 1361: 1349: 1337: 1236: 1225: 946: 673: 623: 502: 494: 469: 432: 420: 322: 183: 171: 141: 129: 2283: 2218: 2124:Journal of Electronic Materials 2111: 2069: 2056: 1976: 1949: 1906: 1853: 1799:Bourdin, Blaise (2001-03-30). 1792: 1745: 1692: 1676: 1626: 1580: 1538: 1499: 1130: 1117: 853: 840: 800: 774: 642: 633: 627: 619: 593:{\displaystyle \scriptstyle m} 563: 557: 514: 506: 473: 465: 439: 416: 341: 332: 326: 318: 255: 249: 190: 167: 148: 125: 66:increase the manufacturability 1: 1725:10.1016/S1620-7742(01)01349-6 1623:, a monograph of the subject. 1492: 1136:{\displaystyle \rho \,\in \,} 1642:Archive of Applied Mechanics 704:Implementation methodologies 7: 1970:10.1016/j.finel.2017.07.005 1479:third medium contact method 1327:Fluid-structure-interaction 1322:Fluid-structure-interaction 908: 833:is generally taken between 51:method of moving asymptotes 10: 2507: 2261:10.1007/s00466-021-01974-x 2204:10.1007/s00466-023-02396-7 1764:(4). CiteSeer: 1769–1774. 1707:. Series IIB - Mechanics. 2471:Mathematical optimization 2417:10.1007/s00158-006-0006-1 2316:10.1007/s00466-013-0848-5 2144:10.1007/s11664-018-6606-x 2097:10.1007/s00158-018-1919-1 2042:10.1007/s00158-018-1940-4 1997:10.1007/s00158-016-1467-5 1878:10.1007/s00158-012-0814-4 1524:10.1007/s00158-013-0978-6 1458:thermoelectric generators 569:{\displaystyle (\Omega )} 2386:10.1007/1-4020-4752-5_24 2359:10.1007/1-4020-4752-5_23 1872:(4). Springer: 471–475. 1711:(5). Elsevier: 383–396. 1308:Some techniques such as 47:mathematical programming 2296:Computational Mechanics 2231:Computational Mechanics 2174:Computational Mechanics 1811:(9). Wiley: 2143–2158. 1589:Structural Optimization 1554:Structural Optimization 2486:Structural engineering 1489: 1454:thermoelectric coolers 1445: 1437: 1420: 1406: 1397: 1288: 1245: 1192: 1137: 1090: 934: 926: 918: 887: 860: 827: 807: 690: 655: 594: 570: 541: 521: 480: 446: 390: 70:additive manufacturing 2062:Rowe, David Michael. 1662:10.1007/s004190050248 1487: 1443: 1426: 1417: 1403: 1395: 1317:Multiphysics problems 1289: 1246: 1193: 1138: 1091: 938:Structural compliance 932: 924: 916: 888: 886:{\displaystyle E_{0}} 861: 828: 808: 698:finite element method 691: 656: 595: 571: 542: 540:{\displaystyle \rho } 522: 481: 447: 391: 43:finite element method 20:Topology optimization 1545:Beckers, M. (1999). 1256: 1203: 1148: 1106: 1030: 970:improve this section 870: 837: 817: 738: 669: 606: 582: 554: 531: 490: 459: 410: 95: 86:optimization problem 2442:10.2514/6.1999-1388 2308:2013CompM..52..837W 2253:2021CompM..67.1099B 2196:2023CompM..73..967F 2136:2018JEMat..47.6959L 1927:2010IJNME..82..591Y 1817:2001IJNME..50.2143B 1717:2001CRASB.329..383A 1654:1999AAM....69..635B 900:Commercial software 28:boundary conditions 2066:. CRC press, 2005. 1601:10.1007/BF01650949 1566:10.1007/BF01197709 1490: 1446: 1438: 1421: 1407: 1398: 1284: 1241: 1188: 1133: 1086: 1042: 935: 927: 919: 883: 856: 823: 803: 686: 651: 590: 589: 566: 537: 517: 476: 442: 405:objective function 386: 384: 111: 55:genetic algorithms 36:shape optimization 2395:978-1-4020-4729-9 2368:978-1-4020-4729-9 2130:(12): 6959–6971. 1648:(9–10): 635–654. 1449:Thermoelectricity 1434:bismuth telluride 1062: 1033: 1006: 1005: 998: 826:{\displaystyle p} 550:The design space 353: 104: 80:Problem statement 2498: 2445: 2428: 2399: 2372: 2336: 2335: 2287: 2281: 2280: 2246: 2237:(4): 1099–1114. 2222: 2216: 2215: 2189: 2165: 2156: 2155: 2115: 2109: 2108: 2091:(4): 1427–1442. 2082: 2073: 2067: 2060: 2054: 2053: 2027: 2018: 2009: 2008: 1991:(5): 1191–1208. 1980: 1974: 1973: 1953: 1947: 1946: 1935:10.1002/nme.2777 1910: 1904: 1903: 1901: 1900: 1857: 1851: 1850: 1848: 1847: 1796: 1790: 1789: 1787: 1786: 1773: 1749: 1743: 1742: 1740: 1739: 1696: 1690: 1680: 1674: 1673: 1639: 1630: 1624: 1619: 1613: 1612: 1584: 1578: 1577: 1551: 1542: 1536: 1535: 1518:(6): 1031–1055. 1503: 1473:Internal contact 1377: 1365: 1353: 1352: 1341: 1340: 1293: 1291: 1290: 1285: 1283: 1275: 1274: 1263: 1250: 1248: 1247: 1242: 1240: 1239: 1228: 1218: 1210: 1197: 1195: 1194: 1189: 1187: 1186: 1169: 1160: 1159: 1142: 1140: 1139: 1134: 1095: 1093: 1092: 1087: 1082: 1076: 1068: 1063: 1055: 1053: 1052: 1041: 1001: 994: 990: 987: 981: 950: 942: 892: 890: 889: 884: 882: 881: 865: 863: 862: 859:{\displaystyle } 857: 832: 830: 829: 824: 812: 810: 809: 804: 799: 798: 786: 785: 773: 772: 758: 757: 727:binary variables 695: 693: 692: 687: 685: 660: 658: 657: 652: 626: 618: 617: 599: 597: 596: 591: 575: 573: 572: 567: 546: 544: 543: 538: 526: 524: 523: 518: 513: 505: 497: 485: 483: 482: 477: 472: 451: 449: 448: 443: 438: 395: 393: 392: 387: 385: 354: 352: with  351: 325: 317: 316: 306: 305: 304: 294: 293: 278: 270: 269: 248: 247: 237: 235: 204: 197: 189: 163: 162: 147: 114: 112: 101: 2506: 2505: 2501: 2500: 2499: 2497: 2496: 2495: 2461: 2460: 2452: 2396: 2369: 2345: 2343:Further reading 2340: 2339: 2288: 2284: 2223: 2219: 2166: 2159: 2116: 2112: 2080: 2074: 2070: 2061: 2057: 2025: 2019: 2012: 1981: 1977: 1954: 1950: 1911: 1907: 1898: 1896: 1858: 1854: 1845: 1843: 1825:10.1002/nme.116 1797: 1793: 1784: 1782: 1771:10.1.1.670.6771 1750: 1746: 1737: 1735: 1697: 1693: 1681: 1677: 1637: 1631: 1627: 1620: 1616: 1585: 1581: 1549: 1543: 1539: 1504: 1500: 1495: 1475: 1466: 1412: 1390: 1389: 1388: 1387: 1383: 1382: 1381: 1378: 1370: 1369: 1366: 1358: 1357: 1354: 1350: 1346: 1345: 1342: 1338: 1324: 1319: 1279: 1270: 1269: 1259: 1257: 1254: 1253: 1235: 1234: 1224: 1214: 1206: 1204: 1201: 1200: 1182: 1178: 1165: 1155: 1151: 1149: 1146: 1145: 1107: 1104: 1103: 1078: 1072: 1064: 1054: 1048: 1044: 1037: 1031: 1028: 1027: 1002: 991: 985: 982: 967: 951: 940: 911: 905:Manufacturing. 902: 896: 877: 873: 871: 868: 867: 838: 835: 834: 818: 815: 814: 794: 790: 781: 777: 768: 764: 753: 749: 739: 736: 735: 723: 714: 706: 672: 670: 667: 666: 622: 613: 609: 607: 604: 603: 583: 580: 579: 555: 552: 551: 532: 529: 528: 509: 501: 493: 491: 488: 487: 468: 460: 457: 456: 419: 411: 408: 407: 383: 382: 350: 321: 312: 308: 302: 301: 289: 285: 274: 265: 261: 243: 239: 236: 206: 202: 201: 193: 170: 158: 154: 128: 113: 103: 98: 96: 93: 92: 82: 17: 12: 11: 5: 2504: 2494: 2493: 2488: 2483: 2478: 2473: 2459: 2458: 2451: 2450:External links 2448: 2447: 2446: 2429: 2411:(2): 121–132. 2400: 2394: 2373: 2367: 2344: 2341: 2338: 2337: 2302:(4): 837–847. 2282: 2217: 2180:(4): 967–981. 2157: 2110: 2068: 2055: 2036:(3): 969–995. 2010: 1975: 1948: 1921:(5): 591–616. 1905: 1852: 1791: 1744: 1691: 1675: 1625: 1614: 1595:(4): 193–202. 1579: 1537: 1506:Sigmund, Ole; 1497: 1496: 1494: 1491: 1474: 1471: 1465: 1462: 1411: 1408: 1385: 1384: 1379: 1372: 1371: 1367: 1360: 1359: 1355: 1348: 1347: 1343: 1336: 1335: 1334: 1333: 1332: 1323: 1320: 1318: 1315: 1306: 1305: 1302: 1295: 1294: 1282: 1278: 1273: 1267: 1262: 1251: 1238: 1232: 1227: 1222: 1217: 1213: 1209: 1198: 1185: 1181: 1176: 1172: 1168: 1163: 1158: 1154: 1143: 1132: 1129: 1125: 1122: 1119: 1115: 1111: 1097: 1096: 1085: 1081: 1075: 1071: 1067: 1061: 1058: 1051: 1047: 1040: 1036: 1004: 1003: 954: 952: 945: 939: 936: 910: 907: 901: 898: 880: 876: 855: 852: 848: 845: 842: 822: 802: 797: 793: 789: 784: 780: 776: 771: 767: 762: 756: 752: 747: 743: 722: 719: 713: 710: 705: 702: 684: 681: 678: 675: 663: 662: 650: 647: 644: 641: 638: 635: 632: 629: 625: 621: 616: 612: 588: 577: 565: 562: 559: 548: 536: 516: 512: 508: 504: 500: 496: 475: 471: 467: 464: 453: 441: 437: 434: 431: 428: 425: 422: 418: 415: 397: 396: 381: 378: 375: 372: 369: 366: 363: 360: 357: 349: 346: 343: 340: 337: 334: 331: 328: 324: 320: 315: 311: 307: 303: 300: 297: 292: 288: 284: 281: 277: 273: 268: 264: 260: 257: 254: 251: 246: 242: 238: 234: 231: 227: 224: 221: 218: 215: 212: 209: 205: 203: 200: 196: 192: 188: 185: 182: 179: 176: 173: 169: 166: 161: 157: 153: 150: 146: 143: 140: 137: 134: 131: 127: 124: 121: 118: 115: 110: 107: 102: 100: 81: 78: 62:design process 15: 9: 6: 4: 3: 2: 2503: 2492: 2489: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2469: 2468: 2466: 2457: 2454: 2453: 2443: 2439: 2435: 2430: 2426: 2422: 2418: 2414: 2410: 2406: 2401: 2397: 2391: 2387: 2383: 2379: 2374: 2370: 2364: 2360: 2356: 2352: 2347: 2346: 2333: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2301: 2297: 2293: 2286: 2278: 2274: 2270: 2266: 2262: 2258: 2254: 2250: 2245: 2240: 2236: 2232: 2228: 2221: 2213: 2209: 2205: 2201: 2197: 2193: 2188: 2183: 2179: 2175: 2171: 2164: 2162: 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2125: 2121: 2114: 2106: 2102: 2098: 2094: 2090: 2086: 2079: 2072: 2065: 2059: 2051: 2047: 2043: 2039: 2035: 2031: 2024: 2017: 2015: 2006: 2002: 1998: 1994: 1990: 1986: 1979: 1971: 1967: 1963: 1959: 1952: 1944: 1940: 1936: 1932: 1928: 1924: 1920: 1916: 1909: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1863: 1856: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1810: 1806: 1802: 1795: 1781: 1777: 1772: 1767: 1763: 1759: 1755: 1748: 1734: 1730: 1726: 1722: 1718: 1714: 1710: 1706: 1702: 1695: 1688: 1686: 1679: 1671: 1667: 1663: 1659: 1655: 1651: 1647: 1643: 1636: 1629: 1622: 1618: 1610: 1606: 1602: 1598: 1594: 1590: 1583: 1575: 1571: 1567: 1563: 1559: 1555: 1548: 1541: 1533: 1529: 1525: 1521: 1517: 1513: 1509: 1502: 1498: 1486: 1482: 1480: 1470: 1461: 1459: 1455: 1450: 1442: 1435: 1432:(yellow) and 1431: 1425: 1416: 1402: 1394: 1376: 1364: 1331: 1328: 1314: 1311: 1303: 1300: 1299: 1298: 1280: 1276: 1265: 1260: 1252: 1230: 1220: 1215: 1211: 1199: 1183: 1179: 1174: 1161: 1152: 1144: 1127: 1123: 1120: 1113: 1109: 1102: 1101: 1100: 1073: 1069: 1065: 1059: 1056: 1045: 1038: 1026: 1025: 1024: 1021: 1017: 1015: 1012:(also called 1011: 1010:strain energy 1000: 997: 989: 986:December 2018 979: 975: 971: 965: 964: 960: 955:This section 953: 949: 944: 943: 931: 923: 915: 906: 897: 894: 878: 874: 850: 846: 843: 820: 795: 791: 787: 782: 778: 769: 765: 760: 754: 750: 745: 741: 733: 728: 718: 709: 701: 699: 679: 648: 645: 639: 636: 630: 614: 610: 602: 586: 578: 549: 534: 510: 498: 462: 454: 435: 426: 413: 406: 402: 401: 400: 379: 376: 373: 370: 367: 364: 361: 358: 355: 347: 344: 338: 335: 329: 313: 309: 298: 295: 290: 286: 282: 279: 271: 262: 258: 252: 244: 240: 198: 186: 177: 164: 155: 151: 144: 135: 122: 119: 116: 108: 105: 91: 90: 89: 87: 77: 75: 71: 67: 63: 58: 56: 52: 48: 44: 39: 37: 33: 29: 25: 21: 2481:Construction 2433: 2408: 2404: 2377: 2350: 2299: 2295: 2285: 2234: 2230: 2220: 2177: 2173: 2127: 2123: 2113: 2088: 2084: 2071: 2058: 2033: 2029: 1988: 1984: 1978: 1961: 1957: 1951: 1918: 1914: 1908: 1897:. Retrieved 1869: 1865: 1855: 1844:. Retrieved 1808: 1804: 1794: 1783:. Retrieved 1761: 1757: 1747: 1736:. Retrieved 1708: 1704: 1694: 1683: 1678: 1645: 1641: 1628: 1617: 1592: 1588: 1582: 1557: 1553: 1540: 1515: 1511: 1501: 1476: 1467: 1447: 1430:Skutterudite 1325: 1307: 1296: 1099:subject to: 1098: 1022: 1018: 1007: 992: 983: 968:Please help 956: 903: 895: 731: 724: 715: 707: 664: 398: 83: 59: 40: 19: 18: 2491:3D printing 1508:Maute, Kurt 665:Evaluating 601:constraints 32:constraints 2465:Categories 2244:2010.14277 2187:2305.06750 1899:2021-06-17 1846:2020-08-02 1785:2022-02-14 1738:2021-09-12 1493:References 1405:equations. 1014:compliance 2332:254032357 2324:0178-7675 2277:225076340 2269:0178-7675 2212:1432-0924 2152:105113187 2105:126031362 2050:125798826 2005:124632210 1964:: 44–55. 1943:122993997 1894:253680268 1886:1615-1488 1833:1097-0207 1780:2231-1963 1766:CiteSeerX 1733:1620-7742 1574:122845784 1560:: 14–24. 1532:124426387 1310:filtering 1281:ε 1261:σ 1216:σ 1212:⋅ 1208:∇ 1184:∗ 1175:≤ 1171:Ω 1162:ρ 1157:Ω 1153:∫ 1114:∈ 1110:ρ 1084:Ω 1074:ε 1066:σ 1050:Ω 1046:∫ 1039:ρ 957:does not 788:− 766:ρ 680:ρ 646:≤ 640:ρ 631:ρ 561:Ω 535:ρ 511:ρ 463:ρ 436:ρ 427:ρ 345:≤ 339:ρ 330:ρ 296:≤ 283:− 272:ρ 267:Ω 263:∫ 253:ρ 187:ρ 178:ρ 160:Ω 156:∫ 145:ρ 136:ρ 109:ρ 2476:Topology 2425:61564700 1841:38860291 1670:11368603 1609:18253872 909:Examples 106:minimize 2304:Bibcode 2249:Bibcode 2192:Bibcode 2132:Bibcode 1923:Bibcode 1813:Bibcode 1713:Bibcode 1650:Bibcode 978:removed 963:sources 2423:  2392:  2365:  2330:  2322:  2275:  2267:  2210:  2150:  2103:  2048:  2003:  1941:  1892:  1884:  1839:  1831:  1778:  1768:  1731:  1668:  1607:  1572:  1530:  1419:output 2421:S2CID 2328:S2CID 2273:S2CID 2239:arXiv 2182:arXiv 2148:S2CID 2101:S2CID 2081:(PDF) 2046:S2CID 2026:(PDF) 2001:S2CID 1939:S2CID 1890:S2CID 1837:S2CID 1666:S2CID 1638:(PDF) 1605:S2CID 1570:S2CID 1550:(PDF) 1528:S2CID 24:loads 2390:ISBN 2363:ISBN 2320:ISSN 2265:ISSN 2208:ISSN 1882:ISSN 1829:ISSN 1776:ISSN 1729:ISSN 1456:and 961:any 959:cite 88:as: 30:and 2438:doi 2413:doi 2382:doi 2355:doi 2312:doi 2257:doi 2200:doi 2140:doi 2093:doi 2038:doi 1993:doi 1966:doi 1962:135 1931:doi 1874:doi 1821:doi 1721:doi 1709:329 1658:doi 1597:doi 1562:doi 1520:doi 1035:min 972:by 403:An 2467:: 2419:. 2409:32 2407:. 2388:. 2361:. 2326:. 2318:. 2310:. 2300:52 2298:. 2294:. 2271:. 2263:. 2255:. 2247:. 2235:67 2233:. 2229:. 2206:. 2198:. 2190:. 2178:73 2176:. 2172:. 2160:^ 2146:. 2138:. 2128:47 2126:. 2122:. 2099:. 2089:57 2087:. 2083:. 2044:. 2034:58 2032:. 2028:. 2013:^ 1999:. 1989:54 1987:. 1960:. 1937:. 1929:. 1919:82 1917:. 1888:. 1880:. 1870:46 1868:. 1864:. 1835:. 1827:. 1819:. 1809:50 1807:. 1803:. 1774:. 1760:. 1756:. 1727:. 1719:. 1703:. 1664:. 1656:. 1646:69 1644:. 1640:. 1603:. 1591:. 1568:. 1558:17 1556:. 1552:. 1526:. 1516:48 1514:. 1460:. 76:. 57:. 26:, 2444:. 2440:: 2427:. 2415:: 2398:. 2384:: 2371:. 2357:: 2334:. 2314:: 2306:: 2279:. 2259:: 2251:: 2241:: 2214:. 2202:: 2194:: 2184:: 2154:. 2142:: 2134:: 2107:. 2095:: 2052:. 2040:: 2007:. 1995:: 1972:. 1968:: 1945:. 1933:: 1925:: 1902:. 1876:: 1849:. 1823:: 1815:: 1788:. 1762:6 1741:. 1723:: 1715:: 1687:. 1672:. 1660:: 1652:: 1611:. 1599:: 1593:1 1576:. 1564:: 1534:. 1522:: 1277:: 1272:C 1266:= 1237:0 1231:= 1226:F 1221:+ 1180:V 1167:d 1131:] 1128:1 1124:, 1121:0 1118:[ 1080:d 1070:: 1060:2 1057:1 999:) 993:( 988:) 984:( 980:. 966:. 879:0 875:E 854:] 851:3 847:, 844:1 841:[ 821:p 801:) 796:0 792:E 783:1 779:E 775:( 770:p 761:+ 755:0 751:E 746:= 742:E 683:) 677:( 674:u 649:0 643:) 637:, 634:) 628:( 624:u 620:( 615:j 611:G 587:m 564:) 558:( 547:. 515:) 507:( 503:u 499:= 495:u 474:) 470:x 466:( 440:) 433:, 430:) 424:( 421:u 417:( 414:F 380:m 377:, 374:. 371:. 368:. 365:, 362:1 359:= 356:j 348:0 342:) 336:, 333:) 327:( 323:u 319:( 314:j 310:G 299:0 291:0 287:V 280:V 276:d 259:= 256:) 250:( 245:0 241:G 233:o 230:t 226:t 223:c 220:e 217:j 214:b 211:u 208:s 199:V 195:d 191:) 184:, 181:) 175:( 172:u 168:( 165:f 152:= 149:) 142:, 139:) 133:( 130:u 126:( 123:F 120:= 117:F

Index

loads
boundary conditions
constraints
shape optimization
finite element method
mathematical programming
method of moving asymptotes
genetic algorithms
design process
increase the manufacturability
additive manufacturing
design for additive manufacturing
optimization problem
objective function
constraints
finite element method
binary variables




cite
sources
improve this section
adding citations to reliable sources
removed
Learn how and when to remove this message
strain energy
compliance
filtering

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑