Knowledge

SN1 reaction

Source đź“ť

265: 293: 233: 197: 1331: 240: 1370: 316: 38: 160:
halides ion has moved sufficiently away from the carbocation. The negatively charged halide ion shields the carbocation from being attacked on the front side, and backside attack, which leads to inversion of configuration, is preferred. Thus the actual product no doubt consists of a mixture of enantiomers but the enantiomers with inverted configuration would predominate and complete racemization does not occurs.
1247:
However, under certain conditions, non-first-order reaction kinetics can be observed. In particular, when a large concentration of bromide is present while the concentration of water is limited, the reverse of the first step becomes important kinetically. As the SSA rate law indicates, under these
159:
1 mechanism, a carbocation is formed which is planar and hence attack of nucleophile (second step) may occur from either side to give a racemic product, but actually complete racemization does not take place. This is because the nucleophilic species attacks the carbocation even before the departing
307:
1 reaction is often regarded as being first order in alkyl halide and zero order in nucleophile, this is a simplification that holds true only under certain conditions. While it, too, is an approximation, the rate law derived from the steady state approximation (SSA) provides more insight into the
1243:
O to MeOH) does not affect the reaction rate, though the product is, of course, different. In this regime, the first step (ionization of the alkyl bromide) is slow, rate-determining, and irreversible, while the second step (nucleophilic addition) is fast and kinetically invisible.
939:
Under normal synthetic conditions, the entering nucleophile is more nucleophilic than the leaving group and is present in excess. Moreover, kinetic experiments are often conducted under initial rate conditions (5 to 10% conversion) and without the addition of bromide, so
1431:. This will be especially true if the reaction is heated. Finally, if the carbocation intermediate can rearrange to a more stable carbocation, it will give a product derived from the more stable carbocation rather than the simple substitution product. 1663:
Bateman LC, Church MG, Hughes ED, Ingold CK, Taher NA (1940). "188. Mechanism of substitution at a saturated carbon atom. Part XXIII. A kinetic demonstration of the unimolecular solvolysis of alkyl halides. (Section E) a general discussion".
1357:
hybridized carbon with trigonal planar molecular geometry. This allows two different ways for the nucleophilic attack, one on either side of the planar molecule. If neither approach is favored, then these two ways occur equally, yielding a
1234: 1449:
1 reaction involves formation of an unstable carbocation intermediate in the rate-determining step (RDS), anything that can facilitate this process will speed up the reaction. The normal solvents of choice are both
1238:
the simple first-order rate law described in introductory textbooks. Under these conditions, the concentration of the nucleophile does not affect the rate of the reaction, and changing the nucleophile (e.g. from
1381:
However, an excess of one stereoisomer can be observed, as the leaving group can remain in proximity to the carbocation intermediate for a short time and block nucleophilic attack. This stands in contrast to the
151:
2 mechanism. This type of mechanism involves two steps. The first step is the ionization of alkyl halide in the presence of aqueous acetone or ethyl alcohol. This step provides a carbocation as an intermediate.
935: 1557: 1414:
1 and E1 reactions are competitive reactions and it becomes difficult to favor one over the other. Even if the reaction is performed cold, some alkene may be formed. If an attempt is made to perform an
519: 655: 330:-butyl cation is a high-energy species that is present only at very low concentration and cannot be directly observed under normal conditions. Thus, the SSA can be applied to this species: 97:. This relationship holds for situations where the amount of nucleophile is much greater than that of the intermediate. Instead, the rate equation may be more accurately described using 756: 1057: 1466:
the leaving group in particular). Typical polar protic solvents include water and alcohols, which will also act as nucleophiles, and the process is known as solvolysis.
1252:
1 reactions are often observed to slow down when an exogenous source of the leaving group (in this case, bromide) is added to the reaction mixture. This is known as the
264: 1386:
2 mechanism, which is a stereospecific mechanism where stereochemistry is always inverted as the nucleophile comes in from the rear side of the leaving group.
973: 1248:
conditions there is a fractional (between zeroth and first order) dependence on , while there is a negative fractional order dependence on . Thus, S
1064: 1767: 1932: 1771: 292: 232: 1330: 258:) a third step is required to complete the reaction. When the solvent is water, the intermediate is an oxonium ion. This reaction step is fast. 1960: 1893:
Arnold H. Fainberg & S. Winstein (1956). "Correlation of Solvolysis Rates. III.1 t-Butyl Chloride in a Wide Range of Solvent Mixtures".
2407: 196: 763: 1282:
2 reaction. Additionally, bulky substituents on the central carbon increase the rate of carbocation formation because of the relief of
1369: 1577:
a solvent parameter. For example, 100% ethanol gives Y = −2.3, 50% ethanol in water Y = +1.65 and 15% concentration Y = +3.2.
1502: 336: 2172: 2049: 2006: 2313: 1953: 1796: 1743: 1647: 1366:
1 reaction of S-3-chloro-3-methylhexane with an iodide ion, which yields a racemic mixture of 3-iodo-3-methylhexane:
526: 1596: 1820:
Wagner, Carl E.; Marshall, Pamela A. (2010). "Synthesis of 2,5-Dichloro-2,5-dimethylhexane by an SN1 Reaction".
2221: 2216: 2026: 1591: 2386: 2381: 1299: 1274:
1 mechanism tends to dominate when the central carbon atom is surrounded by bulky groups because such groups
1337:
As the alpha and beta substitutions increase with respect to leaving groups, the reaction is diverted from S
2412: 1946: 662: 1428: 1403: 2351: 2041: 1927: 2078: 1978: 978: 131: 78: 1738:. Dougherty, Dennis A., 1952-. Mill Valley, California: University Science Books. pp. 638–639. 2308: 147:
et al. in 1940. This reaction does not depend much on the strength of the nucleophile, unlike the S
98: 1402:. If the reaction is performed under warm or hot conditions (which favor an increase in entropy), 93:
is often shown as having first-order dependence on the substrate and zero-order dependence on the
2356: 2157: 1791:. Richardson, Kathleen Schueller. (3rd ed.). New York: Harper & Row. pp. 330–331. 1696:
Peters, K. S. (2007). "Nature of Dynamic Processes Associated with the SN1 Reaction Mechanism".
1362:
of enantiomers if the reaction takes place at a stereocenter. This is illustrated below in the S
2111: 1452: 1399: 2341: 2273: 2131: 2121: 82: 62: 2336: 2064: 1830: 1395: 70: 8: 2346: 2278: 2263: 2206: 1567: 280: 122: 110: 17: 1834: 1353:
The carbocation intermediate formed in the reaction's rate determining step (RDS) is an
2371: 2141: 1970: 1761: 181: 173: 144: 140: 943: 2366: 2361: 2323: 2268: 2187: 2167: 2103: 1867: 1802: 1792: 1749: 1739: 1714: 1643: 1322: 1254: 239: 66: 45:
1 reaction. The leaving group is denoted "X", and the nucleophile is denoted "Nu–H".
2298: 2247: 2201: 1902: 1875: 1838: 1706: 1669: 1291: 1287: 1275: 1855:
Sorrell, Thomas N. "Organic Chemistry, 2nd Edition" University Science Books, 2006
312:
1 reaction. Consider the following reaction scheme for the mechanism shown above:
2376: 2288: 2237: 1865:
Ernest Grunwald & S. Winstein (1948). "The Correlation of Solvolysis Rates".
1440: 1359: 315: 1262:
1 mechanism (although the absence of a common ion effect does not rule it out).
2083: 2072: 1822: 1458: 1307: 1302:
suggests that this, too, will increase the rate of carbocation formation. The S
1229:{\displaystyle {\text{rate}}={\frac {d}{dt}}={\frac {k_{1}k_{2}}{k_{2}}}=k_{1}} 2401: 2331: 2303: 2211: 2162: 2136: 1586: 1283: 284: 272: 219: 90: 31: 1938: 1806: 1753: 2283: 2089: 1996: 1718: 1628:, 6th ed., Pearson/Prentice Hall, Upper Saddle River, New Jersey, USA, 2005 1601: 185: 114: 109:
under strongly basic conditions or, under strongly acidic conditions, with
106: 86: 2242: 2177: 1786: 1733: 1673: 323: 276: 251: 250:
Nucleophilic attack: the carbocation reacts with the nucleophile. If the
102: 94: 1906: 1879: 105:
intermediate and is commonly seen in reactions of secondary or tertiary
1698: 1474: 523:(2) Concentration of t-butyl cation, based on steady state assumption: 177: 136: 37: 1842: 1710: 2293: 1923: 1463: 1424: 1420: 1286:
that occurs. The resultant carbocation is also stabilized by both
1059:
often holds. Under these conditions, the SSA rate law reduces to:
930:{\displaystyle {\frac {d}{dt}}={\frac {k_{1}k_{2}}{k_{-1}+k_{2}}}} 1482: 255: 223: 1407: 2196: 1892: 1486: 1295: 212: 113:. With primary and secondary alkyl halides, the alternative 1552:{\displaystyle \log {\left({\frac {k}{k_{0}}}\right)}=mY\,} 30:"SN1" redirects here. For the Canadian sports channel, see 1864: 2016: 1662: 1427:
ion, the alkene will again be formed, this time via an
1258:
and the observation of this effect is evidence for an S
1731: 1419:
1 reaction using a strongly basic nucleophile such as
659:(3) Overall reaction rate, assuming rapid final step: 1505: 1406:
is likely to predominate, leading to formation of an
1067: 981: 946: 766: 760:(4) Steady state rate law, by plugging (2) into (3): 665: 529: 339: 135:. This dissociation pathway is well-described by the 27:
Substitution reaction with a carbocation intermediate
514:{\displaystyle {\frac {d}{dt}}=0=k_{1}-k_{-1}-k_{2}} 1551: 1456:(to stabilize ionic intermediates in general) and 1228: 1051: 967: 929: 750: 649: 513: 279:nucleophile by water acting as a base forming the 1686:Dr Hussain | Class Lecture | Archeived 17/08/2024 2399: 1784: 1306:1 mechanism therefore dominates in reactions at 226:anion) from the carbon atom: this step is slow. 168:An example of a reaction taking place with an S 1819: 1321:from the corresponding diol with concentrated 650:{\displaystyle ={\frac {k_{1}}{k_{-1}+k_{2}}}} 1968: 1954: 1695: 243:Recombination of carbocation with nucleophile 1766:: CS1 maint: multiple names: authors list ( 314: 73:of the mechanism expresses two properties—"S 1481:) with that of a standard solvent (80% v/v 1377:1 reaction, showing how racemisation occurs 1961: 1947: 1770:) CS1 maint: numeric names: authors list ( 1313:An example of a reaction proceeding in a S 1788:Mechanism and theory in organic chemistry 1666:Journal of the Chemical Society (Resumed) 1548: 238: 36: 207:1 reaction takes place in three steps: 14: 2400: 1987:Unimolecular nucleophilic substitution 51:unimolecular nucleophilic substitution 1997:Bimolecular nucleophilic substitution 1942: 1637: 751:{\displaystyle {\frac {d}{dt}}=k_{2}} 322:Though a relatively stable tertiary 2408:Nucleophilic substitution reactions 2050:Electrophilic aromatic substitution 24: 2017:Nucleophilic internal substitution 2007:Nucleophilic aromatic substitution 1434: 1368: 1348: 975:is negligible. For these reasons, 25: 2424: 1917: 1735:Modern physical organic chemistry 1642:(4th ed.). New York: Wiley. 1389: 129:1 reaction is often known as the 41:General reaction scheme for the S 1597:Neighbouring group participation 1329: 291: 263: 231: 195: 2173:Lindemann–Hinshelwood mechanism 1886: 1858: 1732:Anslyn, Eric V., 1960- (2006). 1566:a reactant constant (m = 1 for 1477:reaction rates of any solvent ( 1319:2,5-dichloro-2,5-dimethylhexane 1052:{\displaystyle k_{-1}\ll k_{2}} 218:carbocation by separation of a 2222:Outer sphere electron transfer 2217:Inner sphere electron transfer 2027:Nucleophilic acyl substitution 1849: 1813: 1778: 1725: 1689: 1680: 1656: 1631: 1618: 1592:Nucleophilic acyl substitution 1394:Two common side reactions are 1317:1 fashion is the synthesis of 1223: 1215: 1196: 1176: 1161: 1141: 1138: 1130: 1090: 1082: 1046: 1026: 1010: 995: 962: 947: 921: 901: 885: 870: 852: 832: 829: 821: 781: 773: 745: 725: 722: 707: 680: 672: 641: 621: 605: 590: 572: 564: 545: 530: 508: 488: 485: 470: 454: 439: 436: 421: 402: 394: 361: 346: 333:(1) Steady state assumption: 303:Although the rate law of the S 254:is a neutral molecule (i.e. a 111:secondary or tertiary alcohols 13: 1: 2387:Diffusion-controlled reaction 1611: 287:. This reaction step is fast. 275:: Removal of a proton on the 81:", and the "1" says that the 163: 7: 2042:Electrophilic substitutions 1580: 298: 101:. The reaction involves a 10: 2429: 2352:Energy profile (chemistry) 2314:More O'Ferrall–Jencks plot 1979:Nucleophilic substitutions 1928:Frostburg State University 1640:Advanced Organic Chemistry 1438: 1410:. At lower temperatures, S 29: 2382:Michaelis–Menten kinetics 2322: 2256: 2230: 2186: 2150: 2102: 2063: 2040: 1977: 1935:: the University of Maine 1785:Lowry, Thomas H. (1987). 1400:carbocation rearrangement 1300:Hammond–Leffler postulate 308:kinetic behavior of the S 132:dissociative substitution 79:nucleophilic substitution 2309:Potential energy surface 2188:Electron/Proton transfer 2073:Unimolecular elimination 1265: 143:was first introduced by 2357:Transition state theory 2158:Intramolecular reaction 2084:Bimolecular elimination 2151:Unimolecular reactions 2112:Electrophilic addition 1553: 1378: 1230: 1053: 969: 931: 752: 651: 515: 319: 244: 155:In the first step of S 46: 2342:Rate-determining step 2274:Reactive intermediate 2132:Free-radical addition 2122:Nucleophilic addition 2065:Elimination reactions 1554: 1396:elimination reactions 1372: 1231: 1054: 970: 932: 753: 652: 516: 318: 242: 99:steady-state kinetics 83:rate-determining step 63:substitution reaction 40: 2337:Equilibrium constant 1674:10.1039/JR9400000979 1503: 1065: 979: 944: 764: 663: 527: 337: 71:Hughes-Ingold symbol 2413:Reaction mechanisms 2347:Reaction coordinate 2279:Radical (chemistry) 2264:Elementary reaction 2207:Grotthuss mechanism 1971:reaction mechanisms 1907:10.1021/ja01593a033 1880:10.1021/ja01182a117 1835:2010JChEd..87...81W 123:inorganic chemistry 2372:Arrhenius equation 2142:Oxidative addition 2104:Addition reactions 1638:March, J. (1992). 1549: 1379: 1290:stabilization and 1226: 1049: 965: 927: 748: 647: 511: 320: 245: 182:tert-butyl bromide 174:reaction mechanism 145:Christopher Ingold 141:reaction mechanism 47: 2395: 2394: 2367:Activated complex 2362:Activation energy 2324:Chemical kinetics 2269:Reaction dynamics 2168:Photodissociation 1868:J. Am. Chem. Soc. 1843:10.1021/ed8000057 1711:10.1021/cr068021k 1626:Organic Chemistry 1624:L. G. Wade, Jr., 1532: 1323:hydrochloric acid 1276:sterically hinder 1255:common ion effect 1221: 1200: 1194: 1183: 1159: 1148: 1136: 1102: 1088: 1071: 1044: 1033: 1002: 954: 925: 919: 908: 877: 850: 839: 827: 793: 779: 743: 732: 714: 692: 678: 645: 639: 628: 597: 570: 537: 506: 495: 477: 446: 428: 400: 373: 353: 67:organic chemistry 16:(Redirected from 2420: 2299:Collision theory 2248:Matrix isolation 2202:Harpoon reaction 2079:E1cB-elimination 1963: 1956: 1949: 1940: 1939: 1911: 1910: 1895:J. Am. Chem. Soc 1890: 1884: 1883: 1862: 1856: 1853: 1847: 1846: 1817: 1811: 1810: 1782: 1776: 1775: 1765: 1757: 1729: 1723: 1722: 1693: 1687: 1684: 1678: 1677: 1660: 1654: 1653: 1635: 1629: 1622: 1558: 1556: 1555: 1550: 1538: 1537: 1533: 1531: 1530: 1518: 1333: 1292:hyperconjugation 1235: 1233: 1232: 1227: 1222: 1219: 1214: 1213: 1201: 1199: 1195: 1192: 1190: 1189: 1184: 1181: 1175: 1174: 1164: 1160: 1157: 1155: 1154: 1149: 1146: 1137: 1134: 1129: 1128: 1119: 1118: 1108: 1103: 1101: 1093: 1089: 1086: 1077: 1072: 1069: 1058: 1056: 1055: 1050: 1045: 1042: 1040: 1039: 1034: 1031: 1025: 1024: 1009: 1008: 1003: 1000: 994: 993: 974: 972: 971: 968:{\displaystyle } 966: 961: 960: 955: 952: 936: 934: 933: 928: 926: 924: 920: 917: 915: 914: 909: 906: 900: 899: 884: 883: 878: 875: 869: 868: 855: 851: 848: 846: 845: 840: 837: 828: 825: 820: 819: 810: 809: 799: 794: 792: 784: 780: 777: 768: 757: 755: 754: 749: 744: 741: 739: 738: 733: 730: 721: 720: 715: 712: 706: 705: 693: 691: 683: 679: 676: 667: 656: 654: 653: 648: 646: 644: 640: 637: 635: 634: 629: 626: 620: 619: 604: 603: 598: 595: 589: 588: 575: 571: 568: 563: 562: 552: 544: 543: 538: 535: 520: 518: 517: 512: 507: 504: 502: 501: 496: 493: 484: 483: 478: 475: 469: 468: 453: 452: 447: 444: 435: 434: 429: 426: 420: 419: 401: 398: 393: 392: 374: 372: 364: 360: 359: 354: 351: 341: 295: 267: 235: 199: 61:) reaction is a 21: 2428: 2427: 2423: 2422: 2421: 2419: 2418: 2417: 2398: 2397: 2396: 2391: 2377:Eyring equation 2318: 2289:Stereochemistry 2252: 2238:Solvent effects 2226: 2182: 2146: 2127: 2117: 2098: 2093: 2059: 2055: 2036: 2032: 2022: 2012: 2002: 1992: 1973: 1967: 1920: 1915: 1914: 1891: 1887: 1863: 1859: 1854: 1850: 1818: 1814: 1799: 1783: 1779: 1759: 1758: 1746: 1730: 1726: 1694: 1690: 1685: 1681: 1661: 1657: 1650: 1636: 1632: 1623: 1619: 1614: 1605: 1583: 1571:-butyl chloride 1526: 1522: 1517: 1513: 1512: 1504: 1501: 1500: 1494: 1459:protic solvents 1448: 1443: 1441:Solvent effects 1437: 1435:Solvent effects 1418: 1413: 1392: 1385: 1376: 1365: 1360:racemic mixture 1351: 1349:Stereochemistry 1344: 1340: 1316: 1305: 1281: 1273: 1268: 1261: 1251: 1242: 1218: 1209: 1205: 1191: 1185: 1180: 1179: 1170: 1166: 1165: 1156: 1150: 1145: 1144: 1133: 1124: 1120: 1114: 1110: 1109: 1107: 1094: 1085: 1078: 1076: 1068: 1066: 1063: 1062: 1041: 1035: 1030: 1029: 1020: 1016: 1004: 999: 998: 986: 982: 980: 977: 976: 956: 951: 950: 945: 942: 941: 916: 910: 905: 904: 895: 891: 879: 874: 873: 861: 857: 856: 847: 841: 836: 835: 824: 815: 811: 805: 801: 800: 798: 785: 776: 769: 767: 765: 762: 761: 740: 734: 729: 728: 716: 711: 710: 701: 697: 684: 675: 668: 666: 664: 661: 660: 636: 630: 625: 624: 615: 611: 599: 594: 593: 581: 577: 576: 567: 558: 554: 553: 551: 539: 534: 533: 528: 525: 524: 503: 497: 492: 491: 479: 474: 473: 464: 460: 448: 443: 442: 430: 425: 424: 412: 408: 397: 388: 384: 365: 355: 350: 349: 342: 340: 338: 335: 334: 311: 306: 301: 211:Formation of a 206: 171: 166: 158: 150: 128: 118: 76: 58: 44: 35: 28: 23: 22: 15: 12: 11: 5: 2426: 2416: 2415: 2410: 2393: 2392: 2390: 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2354: 2349: 2344: 2339: 2334: 2328: 2326: 2320: 2319: 2317: 2316: 2311: 2306: 2301: 2296: 2291: 2286: 2281: 2276: 2271: 2266: 2260: 2258: 2257:Related topics 2254: 2253: 2251: 2250: 2245: 2240: 2234: 2232: 2231:Medium effects 2228: 2227: 2225: 2224: 2219: 2214: 2209: 2204: 2199: 2193: 2191: 2184: 2183: 2181: 2180: 2175: 2170: 2165: 2160: 2154: 2152: 2148: 2147: 2145: 2144: 2139: 2134: 2129: 2125: 2119: 2115: 2108: 2106: 2100: 2099: 2097: 2096: 2091: 2087: 2081: 2076: 2069: 2067: 2061: 2060: 2058: 2057: 2053: 2046: 2044: 2038: 2037: 2035: 2034: 2030: 2024: 2020: 2014: 2010: 2004: 2000: 1994: 1990: 1983: 1981: 1975: 1974: 1966: 1965: 1958: 1951: 1943: 1937: 1936: 1930: 1919: 1918:External links 1916: 1913: 1912: 1885: 1857: 1848: 1823:J. Chem. Educ. 1812: 1797: 1777: 1744: 1724: 1705:(3): 859–873. 1688: 1679: 1655: 1648: 1630: 1616: 1615: 1613: 1610: 1609: 1608: 1603: 1599: 1594: 1589: 1582: 1579: 1560: 1559: 1547: 1544: 1541: 1536: 1529: 1525: 1521: 1516: 1511: 1508: 1492: 1446: 1436: 1433: 1429:E2 elimination 1416: 1411: 1404:E1 elimination 1391: 1390:Side reactions 1388: 1383: 1374: 1363: 1350: 1347: 1342: 1338: 1335: 1334: 1314: 1308:tertiary alkyl 1303: 1294:from attached 1279: 1271: 1267: 1264: 1259: 1249: 1240: 1225: 1217: 1212: 1208: 1204: 1198: 1188: 1178: 1173: 1169: 1163: 1153: 1143: 1140: 1132: 1127: 1123: 1117: 1113: 1106: 1100: 1097: 1092: 1084: 1081: 1075: 1048: 1038: 1028: 1023: 1019: 1015: 1012: 1007: 997: 992: 989: 985: 964: 959: 949: 923: 913: 903: 898: 894: 890: 887: 882: 872: 867: 864: 860: 854: 844: 834: 831: 823: 818: 814: 808: 804: 797: 791: 788: 783: 775: 772: 747: 737: 727: 724: 719: 709: 704: 700: 696: 690: 687: 682: 674: 671: 643: 633: 623: 618: 614: 610: 607: 602: 592: 587: 584: 580: 574: 566: 561: 557: 550: 547: 542: 532: 510: 500: 490: 487: 482: 472: 467: 463: 459: 456: 451: 441: 438: 433: 423: 418: 415: 411: 407: 404: 396: 391: 387: 383: 380: 377: 371: 368: 363: 358: 348: 345: 309: 304: 300: 297: 289: 288: 269: 268: 260: 259: 247: 246: 236: 228: 227: 204: 201: 200: 169: 165: 162: 156: 148: 126: 116: 77:" stands for " 74: 56: 42: 26: 9: 6: 4: 3: 2: 2425: 2414: 2411: 2409: 2406: 2405: 2403: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2332:Rate equation 2330: 2329: 2327: 2325: 2321: 2315: 2312: 2310: 2307: 2305: 2304:Arrow pushing 2302: 2300: 2297: 2295: 2292: 2290: 2287: 2285: 2282: 2280: 2277: 2275: 2272: 2270: 2267: 2265: 2262: 2261: 2259: 2255: 2249: 2246: 2244: 2241: 2239: 2236: 2235: 2233: 2229: 2223: 2220: 2218: 2215: 2213: 2212:Marcus theory 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2194: 2192: 2189: 2185: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2163:Isomerization 2161: 2159: 2156: 2155: 2153: 2149: 2143: 2140: 2138: 2137:Cycloaddition 2135: 2133: 2130: 2123: 2120: 2113: 2110: 2109: 2107: 2105: 2101: 2095: 2088: 2085: 2082: 2080: 2077: 2074: 2071: 2070: 2068: 2066: 2062: 2051: 2048: 2047: 2045: 2043: 2039: 2028: 2025: 2018: 2015: 2008: 2005: 1998: 1995: 1988: 1985: 1984: 1982: 1980: 1976: 1972: 1964: 1959: 1957: 1952: 1950: 1945: 1944: 1941: 1934: 1931: 1929: 1925: 1922: 1921: 1908: 1904: 1900: 1896: 1889: 1881: 1877: 1873: 1870: 1869: 1861: 1852: 1844: 1840: 1836: 1832: 1828: 1825: 1824: 1816: 1808: 1804: 1800: 1798:0-06-044084-8 1794: 1790: 1789: 1781: 1773: 1769: 1763: 1755: 1751: 1747: 1745:1-891389-31-9 1741: 1737: 1736: 1728: 1720: 1716: 1712: 1708: 1704: 1701: 1700: 1692: 1683: 1675: 1671: 1667: 1659: 1651: 1649:0-471-60180-2 1645: 1641: 1634: 1627: 1621: 1617: 1607: 1600: 1598: 1595: 1593: 1590: 1588: 1587:Arrow pushing 1585: 1584: 1578: 1576: 1572: 1570: 1565: 1545: 1542: 1539: 1534: 1527: 1523: 1519: 1514: 1509: 1506: 1499: 1498: 1497: 1495: 1488: 1484: 1480: 1476: 1472: 1467: 1465: 1461: 1460: 1455: 1454: 1442: 1432: 1430: 1426: 1422: 1409: 1405: 1401: 1397: 1387: 1371: 1367: 1361: 1356: 1346: 1332: 1328: 1327: 1326: 1324: 1320: 1311: 1309: 1301: 1297: 1293: 1289: 1285: 1284:steric strain 1277: 1263: 1257: 1256: 1245: 1236: 1210: 1206: 1202: 1186: 1171: 1167: 1151: 1125: 1121: 1115: 1111: 1104: 1098: 1095: 1079: 1073: 1060: 1036: 1021: 1017: 1013: 1005: 990: 987: 983: 957: 937: 911: 896: 892: 888: 880: 865: 862: 858: 842: 816: 812: 806: 802: 795: 789: 786: 770: 758: 735: 717: 702: 698: 694: 688: 685: 669: 657: 631: 616: 612: 608: 600: 585: 582: 578: 559: 555: 548: 540: 521: 498: 480: 465: 461: 457: 449: 431: 416: 413: 409: 405: 389: 385: 381: 378: 375: 369: 366: 356: 343: 331: 329: 325: 317: 313: 296: 294: 286: 285:hydronium ion 282: 278: 274: 273:Deprotonation 271: 270: 266: 262: 261: 257: 253: 249: 248: 241: 237: 234: 230: 229: 225: 221: 220:leaving group 217: 215: 210: 209: 208: 198: 194: 193: 192: 190: 188: 183: 179: 175: 161: 153: 146: 142: 138: 134: 133: 124: 120: 112: 108: 107:alkyl halides 104: 100: 96: 92: 91:rate equation 88: 84: 80: 72: 68: 64: 60: 52: 39: 33: 32:Sportsnet One 19: 2284:Molecularity 1986: 1901:(12): 2770. 1898: 1894: 1888: 1871: 1866: 1860: 1851: 1829:(1): 81–83. 1826: 1821: 1815: 1787: 1780: 1734: 1727: 1702: 1697: 1691: 1682: 1665: 1658: 1639: 1633: 1625: 1620: 1574: 1568: 1563: 1561: 1490: 1478: 1470: 1468: 1457: 1451: 1444: 1393: 1380: 1354: 1352: 1336: 1318: 1312: 1298:groups. The 1269: 1253: 1246: 1237: 1061: 938: 759: 658: 522: 332: 327: 321: 302: 290: 213: 202: 186: 167: 154: 130: 89:. Thus, the 87:unimolecular 54: 50: 48: 2243:Cage effect 2178:RRKM theory 2094:elimination 1473:correlates 1445:Since the S 1373:A typical S 324:carbocation 252:nucleophile 121:occurs. In 103:carbocation 95:nucleophile 2402:Categories 1874:(2): 846. 1699:Chem. Rev. 1612:References 1606:2 reaction 1496:) through 1475:solvolysis 1439:See also: 277:protonated 178:hydrolysis 137:cis effect 119:2 reaction 2294:Catalysis 2190:reactions 1762:cite book 1510:⁡ 1425:methoxide 1421:hydroxide 1310:centers. 1288:inductive 1014:≪ 1006:− 988:− 958:− 881:− 863:− 601:− 583:− 458:− 450:− 414:− 406:− 164:Mechanism 1933:Exercise 1924:Diagrams 1807:14214254 1754:55600610 1719:17319730 1581:See also 299:Rate law 189:-butanol 184:forming 1831:Bibcode 1668:: 979. 1483:ethanol 1471:Y scale 1464:solvate 281:alcohol 256:solvent 224:bromide 176:is the 125:, the S 1969:Basic 1805:  1795:  1752:  1742:  1717:  1646:  1573:) and 1408:alkene 1341:2 to S 283:and a 216:-butyl 203:This S 69:. The 2197:Redox 2033:Acyl) 1562:with 1487:water 1453:polar 1296:alkyl 1278:the S 1270:The S 1266:Scope 1220:tBuBr 1135:tBuBr 1087:tBuOH 826:tBuBr 778:tBuOH 677:tBuOH 569:tBuBr 399:tBuBr 2086:(E2) 2075:(E1) 1803:OCLC 1793:ISBN 1772:link 1768:link 1750:OCLC 1740:ISBN 1715:PMID 1644:ISBN 1569:tert 1469:The 1462:(to 1398:and 1070:rate 328:tert 214:tert 187:tert 139:. A 49:The 2056:Ar) 2013:Ar) 1903:doi 1876:doi 1839:doi 1707:doi 1703:107 1670:doi 1507:log 1489:) ( 1423:or 1345:1. 713:tBu 536:tBu 476:tBu 427:tBu 352:tBu 222:(a 180:of 85:is 65:in 18:SN1 2404:: 2124:(A 2114:(A 2052:(S 2029:(S 2023:i) 2019:(S 2009:(S 2003:2) 1999:(S 1993:1) 1989:(S 1926:: 1899:78 1897:. 1872:70 1837:. 1827:87 1801:. 1764:}} 1760:{{ 1748:. 1713:. 1355:sp 1325:: 1001:Br 953:Br 876:Br 596:Br 445:Br 326:, 191:: 172:1 2128:) 2126:N 2118:) 2116:E 2092:i 2090:E 2054:E 2031:N 2021:N 2011:N 2001:N 1991:N 1962:e 1955:t 1948:v 1909:. 1905:: 1882:. 1878:: 1845:. 1841:: 1833:: 1809:. 1774:) 1756:. 1721:. 1709:: 1676:. 1672:: 1652:. 1604:N 1602:S 1575:Y 1564:m 1546:Y 1543:m 1540:= 1535:) 1528:0 1524:k 1520:k 1515:( 1493:0 1491:k 1485:/ 1479:k 1447:N 1417:N 1415:S 1412:N 1384:N 1382:S 1375:N 1364:N 1343:N 1339:N 1315:N 1304:N 1280:N 1272:N 1260:N 1250:N 1241:2 1239:H 1224:] 1216:[ 1211:1 1207:k 1203:= 1197:] 1193:O 1187:2 1182:H 1177:[ 1172:2 1168:k 1162:] 1158:O 1152:2 1147:H 1142:[ 1139:] 1131:[ 1126:2 1122:k 1116:1 1112:k 1105:= 1099:t 1096:d 1091:] 1083:[ 1080:d 1074:= 1047:] 1043:O 1037:2 1032:H 1027:[ 1022:2 1018:k 1011:] 996:[ 991:1 984:k 963:] 948:[ 922:] 918:O 912:2 907:H 902:[ 897:2 893:k 889:+ 886:] 871:[ 866:1 859:k 853:] 849:O 843:2 838:H 833:[ 830:] 822:[ 817:2 813:k 807:1 803:k 796:= 790:t 787:d 782:] 774:[ 771:d 746:] 742:O 736:2 731:H 726:[ 723:] 718:+ 708:[ 703:2 699:k 695:= 689:t 686:d 681:] 673:[ 670:d 642:] 638:O 632:2 627:H 622:[ 617:2 613:k 609:+ 606:] 591:[ 586:1 579:k 573:] 565:[ 560:1 556:k 549:= 546:] 541:+ 531:[ 509:] 505:O 499:2 494:H 489:[ 486:] 481:+ 471:[ 466:2 462:k 455:] 440:[ 437:] 432:+ 422:[ 417:1 410:k 403:] 395:[ 390:1 386:k 382:= 379:0 376:= 370:t 367:d 362:] 357:+ 347:[ 344:d 310:N 305:N 205:N 170:N 157:N 149:N 127:N 117:N 115:S 75:N 59:1 57:N 55:S 53:( 43:N 34:. 20:)

Index

SN1
Sportsnet One

substitution reaction
organic chemistry
Hughes-Ingold symbol
nucleophilic substitution
rate-determining step
unimolecular
rate equation
nucleophile
steady-state kinetics
carbocation
alkyl halides
secondary or tertiary alcohols
SN2 reaction
inorganic chemistry
dissociative substitution
cis effect
reaction mechanism
Christopher Ingold
reaction mechanism
hydrolysis
tert-butyl bromide
tert-butanol
reaction tert-butylbromide water overall
tert-butyl
leaving group
bromide
SN1 mechanism: dissociation to carbocation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑