Knowledge

Restriction enzyme

Source đź“ť

732:, with recognition sites that are usually undivided and palindromic and 4–8 nucleotides in length. They recognize and cleave DNA at the same site, and they do not use ATP or AdoMet for their activity—they usually require only Mg as a cofactor. These enzymes cleave the phosphodiester bond of double helix DNA. It can either cleave at the center of both strands to yield a blunt end, or at a staggered position leaving overhangs called sticky ends. These are the most commonly available and used restriction enzymes. In the 1990s and early 2000s, new enzymes from this family were discovered that did not follow all the classical criteria of this enzyme class, and new subfamily 600:. These enzymes cut at a site that differs, and is a random distance (at least 1000 bp) away, from their recognition site. Cleavage at these random sites follows a process of DNA translocation, which shows that these enzymes are also molecular motors. The recognition site is asymmetrical and is composed of two specific portions—one containing 3–4 nucleotides, and another containing 4–5 nucleotides—separated by a non-specific spacer of about 6–8 nucleotides. These enzymes are multifunctional and are capable of both restriction digestion and modification activities, depending upon the methylation status of the target DNA. The cofactors 460: 478: 1159:, with the ultimate goal of inducing target mutagenesis and aberrations of human-infecting viruses. The human genome already contains remnants of retroviral genomes that have been inactivated and harnessed for self-gain. Indeed, the mechanisms for silencing active L1 genomic retroelements by the three prime repair exonuclease 1 (TREX1) and excision repair cross complementing 1(ERCC) appear to mimic the action of RM-systems in bacteria, and the non-homologous end-joining (NHEJ) that follows the use of ZFN without a repair template. 420: 1076:. This allows flexibility when inserting gene fragments into the plasmid vector; restriction sites contained naturally within genes influence the choice of endonuclease for digesting the DNA, since it is necessary to avoid restriction of wanted DNA while intentionally cutting the ends of the DNA. To clone a gene fragment into a vector, both plasmid DNA and gene insert are typically cut with the same restriction enzymes, and then glued together with the assistance of an enzyme known as a 1820: 1143:
dimerization being mediated in-situ through the FokI domain. Each zinc finger array (ZFA) is capable of recognizing 9–12 base pairs, making for 18–24 for the pair. A 5–7 bp spacer between the cleavage sites further enhances the specificity of ZFN, making them a safe and more precise tool that can be applied in humans. A recent Phase I clinical trial of ZFN for the targeted abolition of the CCR5 co-receptor for HIV-1 has been undertaken.
1806: 35: 743:, containing more than one subunit. They cleave DNA on both sides of their recognition to cut out the recognition site. They require both AdoMet and Mg cofactors. Type IIE restriction endonucleases (e.g., NaeI) cleave DNA following interaction with two copies of their recognition sequence. One recognition site acts as the target for cleavage, while the other acts as an 639: 774:
Type III restriction enzymes (e.g., EcoP15) recognize two separate non-palindromic sequences that are inversely oriented. They cut DNA about 20–30 base pairs after the recognition site. These enzymes contain more than one subunit and require AdoMet and ATP cofactors for their roles in DNA methylation
747:
that speeds up or improves the efficiency of enzyme cleavage. Similar to type IIE enzymes, type IIF restriction endonucleases (e.g. NgoMIV) interact with two copies of their recognition sequence but cleave both sequences at the same time. Type IIG restriction endonucleases (e.g., RM.Eco57I) do have a
321:
K, is known as the restricting host and appears to have the ability to reduce the biological activity of the phage λ. If a phage becomes established in one strain, the ability of that phage to grow also becomes restricted in other strains. In the 1960s, it was shown in work done in the laboratories
935:
group that mimics ribonucleases for specific RNA sequence and cleaves at a non-base-paired region (RNA bulge) of the targeted RNA formed when the enzyme binds the RNA. This enzyme shows selectivity by cleaving only at one site that either does not have a mismatch or is kinetically preferred out of
518:
requirements, the nature of their target sequence, and the position of their DNA cleavage site relative to the target sequence. DNA sequence analysis of restriction enzymes however show great variations, indicating that there are more than four types. All types of enzymes recognize specific short
1146:
Others have proposed using the bacteria R-M system as a model for devising human anti-viral gene or genomic vaccines and therapies since the RM system serves an innate defense-role in bacteria by restricting tropism by bacteriophages. There is research on REases and ZFN that can cleave the DNA of
427:
Restriction enzymes recognize a specific sequence of nucleotides and produce a double-stranded cut in the DNA. The recognition sequences can also be classified by the number of bases in its recognition site, usually between 4 and 8 bases, and the number of bases in the sequence will determine how
276:
More than 3,600 restriction endonucleases are known which represent over 250 different specificities. Over 3,000 of these have been studied in detail, and more than 800 of these are available commercially. These enzymes are routinely used for DNA modification in laboratories, and they are a vital
864:) utilize guide RNAs to target specific non-palindromic sequences found on invading organisms. They can cut DNA of variable length, provided that a suitable guide RNA is provided. The flexibility and ease of use of these enzymes make them promising for future genetic engineering applications. 1142:
Artificial restriction enzymes created by linking the FokI DNA cleavage domain with an array of DNA binding proteins or zinc finger arrays, denoted zinc finger nucleases (ZFN), are a powerful tool for host genome editing due to their enhanced sequence specificity. ZFN work in pairs, their
1022:
Since their discovery in the 1970s, many restriction enzymes have been identified; for example, more than 3500 different Type II restriction enzymes have been characterized. Each enzyme is named after the bacterium from which it was isolated, using a naming system based on bacterial
752:, are able to recognize and cut methylated DNA. Type IIS restriction endonucleases (e.g. FokI) cleave DNA at a defined distance from their non-palindromic asymmetric recognition sites; this characteristic is widely used to perform in-vitro cloning techniques such as 3481:
Gigorescu A, Morvath M, Wilkosz PA, Chandrasekhar K, Rosenberg JM (2004). "The integration of recognition and cleavage: X-ray structures of pre-transition state complex, post-reactive complex, and the DNA-free endonuclease". In Alfred M. Pingoud (ed.).
519:
DNA sequences and carry out the endonucleolytic cleavage of DNA to give specific fragments with terminal 5'-phosphates. They differ in their recognition sequence, subunit composition, cleavage position, and cofactor requirements, as summarised below:
1107:
by restriction digest can also be generated that can give the relative positions of the genes. The different lengths of DNA generated by restriction digest also produce a specific pattern of bands after gel electrophoresis, and can be used for
815:
only one strand of the DNA, at the N-6 position of adenine residues, so newly replicated DNA will have only one strand methylated, which is sufficient to protect against restriction digestion. Type III enzymes belong to the beta-subfamily of
620:
groups to host DNA (methyltransferase activity), and HsdS is important for specificity of the recognition (DNA-binding) site in addition to both restriction digestion (DNA cleavage) and modification (DNA methyltransferase) activity.
4807:
Wayengera M, Kajumbula H, Byarugaba W (2007). "Frequency and site mapping of HIV-1/SIVcpz, HIV-2/SIVsmm and Other SIV gene sequence cleavage by various bacteria restriction enzymes: Precursors for a novel HIV inhibitory product".
569:) cleave at sites a short distance from a recognition site; require ATP (but do not hydrolyse it); S-adenosyl-L-methionine stimulates the reaction but is not required; exist as part of a complex with a modification methylase ( 428:
often the site will appear by chance in any given genome, e.g., a 4-base pair sequence would theoretically occur once every 4^4 or 256bp, 6 bases, 4^6 or 4,096bp, and 8 bases would be 4^8 or 65,536bp. Many of them are
440:
palindrome is also a sequence that reads the same forward and backward, but the forward and backward sequences are found in complementary DNA strands (i.e., of double-stranded DNA), as in GTATAC (GTATAC being
1103:. In general, alleles with correct restriction sites will generate two visible bands of DNA on the gel, and those with altered restriction sites will not be cut and will generate only a single band. A 351:. Restriction enzymes of this type are more useful for laboratory work as they cleave DNA at the site of their recognition sequence and are the most commonly used as a molecular biology tool. Later, 616:, are required for their full activity. Type I restriction enzymes possess three subunits called HsdR, HsdM, and HsdS; HsdR is required for restriction digestion; HsdM is necessary for adding 760:. Similarly, Type IIT restriction enzymes (e.g., Bpu10I and BslI) are composed of two different subunits. Some recognize palindromic sequences while others have asymmetric recognition sites. 903:
In 2013, a new technology CRISPR-Cas9, based on a prokaryotic viral defense system, was engineered for editing the genome, and it was quickly adopted in laboratories. For more detail, read
811:
to leave short, single-stranded 5' protrusions. They require the presence of two inversely oriented unmethylated recognition sites for restriction digestion to occur. These enzymes
736:
was developed to divide this large family into subcategories based on deviations from typical characteristics of type II enzymes. These subgroups are defined using a letter suffix.
4039:
Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, et al. (May 2009). "Precise genome modification in the crop species Zea mays using zinc-finger nucleases".
226:
at their recognition site, or if the recognition and cleavage sites are separate from one another. To cut DNA, all restriction enzymes make two incisions, once through each
5278: 5961: 5907: 3768:
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. (March 2007). "CRISPR provides acquired resistance against viruses in prokaryotes".
1463: 803:; as such, it is functionally equivalent to the M and S subunits of type I restriction endonuclease. Res is required for restriction digestion, although it has no 2920:
Jeltsch A, Pingoud A (February 1996). "Horizontal gene transfer contributes to the wide distribution and evolution of type II restriction-modification systems".
363:, thus showing that restriction enzymes can also be used for mapping DNA. For their work in the discovery and characterization of restriction enzymes, the 1978 171: 436:
palindrome is similar to those found in ordinary text, in which a sequence reads the same forward and backward on a single strand of DNA, as in GTAATG. The
432:, meaning the base sequence reads the same backwards and forwards. In theory, there are two types of palindromic sequences that can be possible in DNA. The 3679:
Meisel A, Bickle TA, KrĂĽger DH, Schroeder C (January 1992). "Type III restriction enzymes need two inversely oriented recognition sites for DNA cleavage".
333:
The restriction enzymes studied by Arber and Meselson were type I restriction enzymes, which cleave DNA randomly away from the recognition site. In 1970,
1319: 2495:
Dussoix D, Arber W (July 1962). "Host specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage lambda".
1091:(SNPs). This is however only possible if a SNP alters the restriction site present in the allele. In this method, the restriction enzyme can be used to 3318: 748:
single subunit, like classical Type II restriction enzymes, but require the cofactor AdoMet to be active. Type IIM restriction endonucleases, such as
4471:
Smith HO, Nathans D (December 1973). "Letter: A suggested nomenclature for bacterial host modification and restriction systems and their enzymes".
5569: 1068:
experiments. For optimal use, plasmids that are commonly used for gene cloning are modified to include a short polylinker sequence (called the
423:
A palindromic recognition site reads the same on the reverse strand as it does on the forward strand when both are read in the same orientation
222:
group of enzymes. Restriction enzymes are commonly classified into five types, which differ in their structure and whether they cut their DNA
5730: 4378: 330:
that the restriction is caused by an enzymatic cleavage of the phage DNA, and the enzyme involved was therefore termed a restriction enzyme.
514:
Naturally occurring restriction endonucleases are categorized into five groups (Types I, II, III, IV, and V) based on their composition and
5387: 4608:"Combining allele-specific fluorescent probes and restriction assay in real-time PCR to achieve SNP scoring beyond allele ratios of 1:1000" 1933:
Kessler C, Manta V (August 1990). "Specificity of restriction endonucleases and DNA modification methyltransferases a review (Edition 3)".
1099:. The sample is first digested with the restriction enzyme to generate DNA fragments, and then the different sized fragments separated by 663:) are shown as magenta spheres and are adjacent to the cleaved sites in the DNA made by the enzyme (depicted as gaps in the DNA backbone). 5826: 502:. These often cleave in different locales of the sequence. Different enzymes that recognize and cleave in the same location are known as 884:). Such artificial restriction enzymes can target large DNA sites (up to 36 bp) and can be engineered to bind to desired DNA sequences. 483:
Recognition sequences in DNA differ for each restriction enzyme, producing differences in the length, sequence and strand orientation (
1856: 1529: 1439: 164: 17: 5537: 4196:
Tovkach A, Zeevi V, Tzfira T (January 2011). "Expression, purification and characterization of cloning-grade zinc finger nuclease".
1861: 1361: 1168: 1136: 342: 5554: 2885:
Jeltsch A, Kröger M, Pingoud A (July 1995). "Evidence for an evolutionary relationship among type-II restriction endonucleases".
1385: 1337: 844:
Type IV enzymes recognize modified, typically methylated DNA and are exemplified by the McrBC and Mrr systems of 
5801: 1738: 1714: 1690: 1665: 1641: 1569: 1481: 1457: 1409: 466: 364: 293:, a virus that infects bacteria, and the phenomenon of host-controlled restriction and modification of such bacterial phage or 3939:
Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (September 2010). "Genome editing with engineered zinc finger nucleases".
594:
Type I restriction enzymes were the first to be identified and were first identified in two different strains (K-12 and B) of
5282: 3516: 707: 445:
to CATATG). Inverted repeat palindromes are more common and have greater biological importance than mirror-like palindromes.
2624:
Smith HO, Wilcox KW (July 1970). "A restriction enzyme from Hemophilus influenzae. I. Purification and general properties".
5715: 4556: 157: 5180:
Shimotsu H, Takahashi H, Saito H (November 1980). "A new site-specific endonuclease StuI from Streptomyces tubercidicus".
5816: 5810: 5611: 5361: 764: 442: 3023: 5659: 2033:"Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts" 360: 305:
and Giuseppe Bertani in the early 1950s. It was found that, for a bacteriophage λ that can grow well in one strain of
3534:"Crystal structure and mechanism of action of the N6-methyladenine-dependent type IIM restriction endonuclease R.DpnI" 317:
K, its yields can drop significantly, by as much as three to five orders of magnitude. The host cell, in this example
6199: 5770: 5559: 5143: 4723: 4590: 4455: 3491: 3126: 2327: 2298: 2273: 2248: 1977: 5236: 383:
technology that has many applications, for example, allowing the large scale production of proteins such as human
6493: 5877: 5765: 5217: 270: 783:
that protect the organism against invading foreign DNA. Type III enzymes are hetero-oligomeric, multifunctional
5686: 5596: 5549: 2530:
Lederberg S, Meselson M (May 1964). "Degradation of non-replicating bacteriophage dna in non-accepting cells".
1088: 807:
activity on its own. Type III enzymes recognise short 5–6 bp-long asymmetric DNA sequences and cleave 25–27 bp
2082:"Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution" 6355: 6108: 6049: 1720: 808: 6478: 6153: 5720: 5710: 1866: 579:
Type IV enzymes target modified DNA, e.g. methylated, hydroxymethylated and glucosyl-hydroxymethylated DNA
6113: 6005: 5630: 338: 3581:
Mierzejewska K, Siwek W, Czapinska H, Kaus-Drobek M, Radlinska M, Skowronek K, et al. (July 2014).
2971:
Naito T, Kusano K, Kobayashi I (February 1995). "Selfish behavior of restriction-modification systems".
98:
Used by restriction enzymes to locate specific sequences of DNA on which to bind and subsequently cleave
6498: 5699: 5695: 5691: 5607: 5440: 5258: 5159: 2826:
Villa-Komaroff L, Efstratiadis A, Broome S, Lomedico P, Tizard R, Naber SP, et al. (August 1978).
1247: 223: 4508:"A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes" 4409:
Murtola M, Wenska M, Strömberg R (July 2010). "PNAzymes that are artificial RNA restriction enzymes".
3730:
Bourniquel AA, Bickle TA (November 2002). "Complex restriction enzymes: NTP-driven molecular motors".
728:
Typical type II restriction enzymes differ from type I restriction enzymes in several ways. They form
6456: 6443: 6430: 6417: 6404: 6391: 6378: 6340: 5867: 5423: 3376:
Williams RJ (March 2003). "Restriction endonucleases: classification, properties, and applications".
1745: 1623: 720: 5317: 2266:
Laboratory DNA science: an introduction to recombinant DNA techniques and methods of genome analysis
6350: 6304: 6247: 5615: 5464: 5378: 5250: 5246: 1672: 570: 563: 549: 539: 524: 400: 379:. The discovery of restriction enzymes allows DNA to be manipulated, leading to the development of 6252: 5484: 5354: 3143: 829: 5132:
Krieger M, Scott MP, Matsudaira PT, Lodish HF, Darnell JE, Zipursky L, Kaiser C, Berk A (2004).
4788:
Wayengera M (2003). "HIV and Gene Therapy: The proposed model for a gene therapy against HIV".
3829:
Horvath P, Barrangou R (January 2010). "CRISPR/Cas, the immune system of bacteria and archaea".
2814:
for the discovery of restriction enzymes and their application to problems of molecular genetics
6483: 6040: 5679: 5231: 4506:
Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, et al. (April 2003).
4282:"TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain" 3424:"Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle)" 2745:"Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae" 1343: 1271: 1132: 1053:
Isolated restriction enzymes are used to manipulate DNA for different scientific applications.
605: 531: 347: 2802: 6273: 6192: 5975: 5872: 5664: 5625: 5489: 5411: 1575: 1367: 1069: 927:
Artificial ribonucleases that act as restriction enzymes for RNA have also been developed. A
817: 799:). The Mod subunit recognises the DNA sequence specific for the system and is a modification 744: 601: 535: 492: 470: 452: 92: 4579: 4445: 459: 6345: 6158: 5993: 5988: 5921: 5581: 5406: 4231:
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, et al. (October 2010).
4152: 4048: 3995: 3893: 3838: 3777: 3688: 2980: 2929: 2839: 2756: 2578: 2453: 2142: 1968:
Pingoud A, Alves J, Geiger R (1993). "Chapter 8: Restriction Enzymes". In Burrell M (ed.).
1599: 1148: 1073: 928: 885: 477: 429: 140: 108: 1972:. Methods of Molecular Biology. Vol. 16. Totowa, NJ: Humana Press. pp. 107–200. 896:
applications. Other artificial restriction enzymes are based on the DNA binding domain of
8: 6309: 6013: 5983: 5787: 5782: 5706: 5642: 5428: 1851: 1696: 1487: 1415: 1100: 916: 889: 780: 753: 4696: 4396: 4156: 4139:
Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. (July 2009).
4052: 3999: 3897: 3842: 3781: 3692: 3294: 3259: 2984: 2933: 2843: 2760: 2582: 2457: 2146: 2009: 359:(SV40) DNA by restriction enzymes yields specific fragments that can be separated using 6242: 6146: 5479: 5469: 5347: 5002: 4977: 4953: 4928: 4904: 4877: 4853: 4828: 4765: 4740: 4673: 4648: 4355: 4330: 4306: 4281: 4257: 4232: 4173: 4140: 4116: 4091: 4072: 4016: 3983: 3964: 3862: 3811: 3712: 3607: 3582: 3558: 3533: 3401: 3358: 3281:
Yuan R (1981). "Structure and mechanism of multifunctional restriction endonucleases".
3176: 3004: 2953: 2720: 2695: 2659:
Kelly TJ, Smith HO (July 1970). "A restriction enzyme from Hemophilus influenzae. II".
2601: 2566: 2477: 2315: 2214: 2189: 2165: 2130: 1769: 1647: 1109: 1065: 1048: 873: 5096: 5075: 5051: 5026: 4532: 4507: 3743: 3223: 3198: 2862: 2827: 2779: 2744: 2543: 2508: 2421: 2396: 2372: 2347: 2057: 2032: 5947: 5892: 5860: 5735: 5454: 5197: 5193: 5139: 5133: 5101: 5056: 5007: 4958: 4909: 4858: 4770: 4719: 4678: 4629: 4586: 4537: 4488: 4484: 4451: 4426: 4360: 4311: 4262: 4213: 4178: 4121: 4064: 4021: 3982:
Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (May 2009).
3968: 3956: 3921: 3916: 3881: 3854: 3803: 3747: 3704: 3661: 3656: 3631: 3612: 3563: 3512: 3487: 3471: 3453: 3448: 3423: 3393: 3350: 3298: 3263: 3228: 3180: 3168: 3122: 3099: 3094: 3069: 2996: 2945: 2902: 2898: 2867: 2784: 2725: 2676: 2672: 2641: 2637: 2606: 2547: 2512: 2469: 2426: 2377: 2323: 2294: 2269: 2244: 2238: 2219: 2170: 2111: 2106: 2081: 2062: 2013: 1973: 1950: 1946: 1912: 1871: 1825: 1295: 800: 712: 555:) cleave within or at short specific distances from a recognition site; most require 376: 334: 278: 262: 80: 3866: 3405: 3008: 2957: 888:
are the most commonly used artificial restriction enzymes and are generally used in
538:
to function; multifunctional protein with both restriction digestion and methylase (
399:
Restriction enzymes likely evolved from a common ancestor and became widespread via
6288: 6283: 6257: 6185: 6023: 5603: 5508: 5503: 5459: 5189: 5091: 5083: 5046: 5038: 4997: 4989: 4948: 4940: 4899: 4889: 4848: 4840: 4760: 4752: 4668: 4660: 4619: 4527: 4519: 4480: 4418: 4350: 4342: 4301: 4293: 4252: 4244: 4205: 4168: 4160: 4111: 4103: 4076: 4056: 4011: 4003: 3984:"High-frequency modification of plant genes using engineered zinc-finger nucleases" 3948: 3911: 3901: 3846: 3815: 3793: 3785: 3739: 3716: 3696: 3651: 3643: 3602: 3594: 3553: 3545: 3443: 3439: 3435: 3385: 3362: 3342: 3290: 3255: 3218: 3214: 3210: 3158: 3089: 3081: 2988: 2937: 2894: 2857: 2847: 2774: 2764: 2715: 2707: 2668: 2633: 2596: 2586: 2539: 2504: 2481: 2461: 2416: 2408: 2367: 2359: 2209: 2201: 2160: 2150: 2101: 2093: 2052: 2048: 2044: 2005: 1942: 1904: 1535: 1511: 1391: 1223: 1199: 1032: 596: 327: 231: 215: 124: 4209: 3333:
Sistla S, Rao DN (2004). "S-Adenosyl-L-methionine-dependent restriction enzymes".
872:
Artificial restriction enzymes can be generated by fusing a natural or engineered
688: 6488: 6335: 6319: 6232: 6125: 5939: 5855: 5850: 5845: 5758: 5753: 5513: 5391: 4993: 4827:
Schiffer JT, Aubert M, Weber ND, Mintzer E, Stone D, Jerome KR (September 2012).
4280:
Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (January 2011).
2412: 2363: 1104: 812: 700: 515: 380: 356: 341:
and Kent Wilcox isolated and characterized the first type II restriction enzyme,
266: 146:
A DNA fragment resulting from the cutting of a DNA strand by a restriction enzyme
5339: 5087: 4248: 269:
the prokaryotic DNA and blocks cleavage. Together, these two processes form the
6373: 6314: 6098: 6093: 6088: 5474: 5449: 5445: 5418: 5401: 4944: 4346: 3886:
Proceedings of the National Academy of Sciences of the United States of America
3163: 2832:
Proceedings of the National Academy of Sciences of the United States of America
2749:
Proceedings of the National Academy of Sciences of the United States of America
2571:
Proceedings of the National Academy of Sciences of the United States of America
2135:
Proceedings of the National Academy of Sciences of the United States of America
1811: 1096: 1057: 825: 372: 352: 298: 227: 214:
into fragments at or near specific recognition sites within molecules known as
4739:
Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. (March 2014).
3798: 3389: 3346: 1908: 6472: 6278: 6237: 5839: 5748: 5498: 4741:"Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV" 3647: 3085: 2316:"Chapter 2: Isolation, Identification, and Characterisation of DNA fragments" 2097: 1876: 1120: 821: 757: 644: 419: 294: 5299:"Restriction Endonucleases: Molecular Scissors for Specifically Cutting DNA" 5042: 4164: 3850: 3789: 3246:
Boyer HW (1971). "DNA restriction and modification mechanisms in bacteria".
2992: 2769: 2591: 2155: 498:
Different restriction enzymes that recognize the same sequence are known as
6227: 5966: 5897: 5620: 5541: 5011: 4962: 4913: 4862: 4774: 4682: 4633: 4541: 4430: 4364: 4315: 4266: 4217: 4182: 4125: 4068: 4025: 3960: 3906: 3858: 3807: 3751: 3665: 3616: 3567: 3457: 3397: 3354: 3172: 3103: 2852: 2729: 2696:"Highlights of the DNA cutters: a short history of the restriction enzymes" 2610: 2551: 2516: 2430: 2381: 2223: 2174: 2115: 1061: 897: 893: 733: 559:; single function (restriction digestion) enzymes independent of methylase. 503: 499: 404: 368: 323: 290: 219: 5201: 5105: 5060: 4756: 4492: 4107: 3925: 3882:"Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain" 3708: 3532:
Siwek W, Czapinska H, Bochtler M, Bujnicki JM, Skowronek K (August 2012).
3484:
Restriction Endonucleases (Nucleic Acids and Molecular Biology, Volume 14)
3302: 3267: 3232: 3000: 2949: 2906: 2788: 2680: 2645: 2473: 2066: 2017: 1954: 1127:) of a gene are present in the genome of one individual, or how many gene 716: 297:. The phenomenon was first identified in work done in the laboratories of 130:
The site of the DNA sequence where it is cleaved by the restriction enzyme
6451: 6386: 6222: 6141: 5912: 5806: 5669: 5635: 5573: 4844: 4664: 4523: 4297: 3598: 3549: 2871: 2711: 2205: 1916: 932: 795: 789: 408: 302: 4647:
Zhang R, Zhu Z, Zhu H, Nguyen T, Yao F, Xia K, et al. (July 2005).
4060: 4007: 2825: 2444:
Meselson M, Yuan R (March 1968). "DNA restriction enzyme from E. coli".
573: 566: 552: 542: 527: 6118: 2941: 2694:
Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE (January 2014).
2240:
Principles of gene manipulation: an introduction to genetic engineering
1077: 776: 250: 5027:"Restriction and modification enzymes and their recognition sequences" 4624: 4607: 4422: 3475: 2465: 6425: 6399: 6031: 5830: 5743: 5370: 4894: 3700: 3580: 1124: 911: 880:
domain (often the cleavage domain of the type IIS restriction enzyme
833: 729: 656: 609: 583: 556: 488: 484: 76: 34: 4548: 4331:"Development and applications of CRISPR-Cas9 for genome engineering" 3952: 3509:
Fundamental Laboratory Approaches for Biochemistry and Biotechnology
3480: 2567:"How restriction enzymes became the workhorses of molecular biology" 2131:"How restriction enzymes became the workhorses of molecular biology" 1123:. This technique allows researchers to identify how many copies (or 6076: 6071: 6066: 5887: 5522: 5374: 4829:"Targeted DNA mutagenesis for the cure of chronic viral infections" 4379:"Revolutionizing Biotechnology with Artificial Restriction Enzymes" 1805: 1128: 1092: 877: 740: 695: 388: 238: 4141:"Knockout rats via embryo microinjection of zinc-finger nucleases" 1819: 1135:) have occurred within a population. The latter example is called 6083: 6061: 6056: 5674: 1845: 1265: 1116: 1028: 784: 660: 384: 242: 72: 4649:"SNP Cutter: a comprehensive tool for SNP PCR-RFLP assay design" 4233:"Targeting DNA double-strand breaks with TAL effector nucleases" 2190:"REBASE--enzymes and genes for DNA restriction and modification" 1087:
by specifically recognizing single base changes in DNA known as
775:
and restriction digestion, respectively. They are components of
6438: 6208: 6103: 6036: 5929: 5527: 5435: 5298: 5281:. Molecule of the Month. RCSB Protein Data Bank. Archived from 4447:
Restriction Endonucleases (Nucleic Acids and Molecular Biology)
1433: 1217: 1084: 910:
In 2017, a group from University of Illinois reported using an
904: 861: 804: 617: 530:) cleave at sites remote from a recognition site; require both 261:; meanwhile, host DNA is protected by a modification enzyme (a 207: 65: 3767: 3531: 2348:"A nonhereditary, host-induced variation of bacterial viruses" 6412: 6045: 5796: 5792: 3070:"Structure and function of type II restriction endonucleases" 1839: 1833: 1505: 1241: 1193: 1156: 1036: 1024: 907:(Clustered regularly interspaced short palindromic repeats). 648: 448: 246: 5131: 4718:(Fifth ed.). San Francisco: W.H. Freeman. p. 122. 1996:
Arber W, Linn S (1969). "DNA modification and restriction".
1115:
In a similar manner, restriction enzymes are used to digest
5777: 5654: 5647: 5591: 5586: 5262: 4806: 4505: 4230: 3678: 3583:"Structural basis of the methylation specificity of R.DpnI" 1763: 1617: 1593: 1313: 1289: 881: 857: 749: 682: 403:. In addition, there is mounting evidence that restriction 289:
The term restriction enzyme originated from the studies of
6177: 4929:"Trex1 prevents cell-intrinsic initiation of autoimmunity" 4927:
Stetson DB, Ko JS, Heidmann T, Medzhitov R (August 2008).
4926: 4826: 4585:. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory. 2188:
Roberts RJ, Vincze T, Posfai J, Macelis D (January 2007).
2187: 651:(cyan and green cartoon diagram) bound to double stranded 4878:"Newer gene editing technologies toward HIV gene therapy" 4138: 4038: 2693: 1895:
Roberts RJ (November 1976). "Restriction endonucleases".
1152: 1083:
Restriction enzymes can also be used to distinguish gene
652: 613: 211: 52: 5321: 4975: 4092:"Zinc finger-based knockout punches for zebrafish genes" 3981: 3632:"Nucleoside triphosphate-dependent restriction enzymes" 2291:
Recombinant DNA and Biotechnology: A Guide for Students
739:
Type IIB restriction enzymes (e.g., BcgI and BplI) are
638: 5179: 4876:
Manjunath N, Yi G, Dang Y, Shankar P (November 2013).
4875: 4408: 4397:
Programmable DNA-Guided Artificial Restriction Enzymes
3335:
Critical Reviews in Biochemistry and Molecular Biology
3144:"The molecular perspective: restriction endonucleases" 3938: 892:
applications, but can also be used for more standard
218:. Restriction enzymes are one class of the broader 5138:(5th ed.). New York: W.H. Freeman and Company. 5127: 5125: 5123: 5121: 5119: 5117: 5115: 3879: 2970: 2884: 1801: 1039:
restriction enzyme was derived as shown in the box.
4976:Gasior SL, Roy-Engel AM, Deininger PL (June 2008). 4738: 3511:. Hoboken, NJ: John Wiley & Sons. p. 341. 2341: 2339: 4713: 4578: 4279: 4195: 2263: 1967: 114:The DNA sequence to which restriction enzymes bind 5665:Fructose 6-P,2-kinase:fructose 2,6-bisphosphatase 5369: 5112: 4707: 4646: 4570: 4559:. European Molecular Biology Laboratory - Hamburg 3880:Kim YG, Cha J, Chandrasegaran S (February 1996). 3110: 2529: 2282: 2257: 867: 245:and provide a defense mechanism against invading 6470: 5315: 3828: 3729: 3506: 2795: 2397:"Host controlled variation in bacterial viruses" 2336: 2268:. Menlo Park, Calif: Benjamin/Cummings Pub. Co. 2230: 1961: 1056:They are used to assist insertion of genes into 4576: 3630:Dryden DT, Murray NE, Rao DN (September 2001). 3629: 3417: 3415: 3328: 3326: 3063: 3061: 3059: 3057: 3055: 3053: 3051: 3049: 3047: 3045: 4328: 3192: 3190: 3067: 2919: 931:-based system, called a PNAzyme, has a Cu(II)- 6193: 5355: 5076:"Restriction enzymes and their isoschizomers" 2394: 2313: 2288: 1991: 1989: 1928: 1926: 604:(AdoMet), hydrolyzed adenosine triphosphate ( 313:C, when grown in another strain, for example 253:, the restriction enzymes selectively cut up 165: 5316:Roberts RJ, Vincze T, Posfai, J, Macelis D. 4640: 4605: 4599: 4499: 4470: 4273: 4224: 4189: 4132: 4083: 4032: 3975: 3932: 3822: 3723: 3623: 3412: 3323: 3196: 3135: 3042: 2913: 2878: 2742: 2558: 2523: 2494: 2488: 2443: 2388: 2030: 1932: 1331:5'---GC GGCCGC---3' 3'---CGCCGG CG---5' 1283:5'---A AGCTT---3' 3'---TTCGA A---5' 1259:5'---G GATCC---3' 3'---CCTAG G---5' 1211:5'---G AATTC---3' 3'---CTTAA G---5' 1095:a DNA sample without the need for expensive 632:Type II site-specific deoxyribonuclease-like 5296: 5276: 5173: 5152: 5067: 5018: 4787: 4464: 3672: 3369: 3274: 3239: 3187: 2828:"A bacterial clone synthesizing proinsulin" 2803:"The Nobel Prize in Physiology or Medicine" 2736: 2652: 2623: 2617: 2437: 2236: 2181: 2073: 355:and Kathleen Danna showed that cleavage of 6200: 6186: 5362: 5348: 5261:. University of Portsmouth. Archived from 4443: 4383:Genetic Engineering and Biotechnology News 3428:Microbiology and Molecular Biology Reviews 2964: 2819: 2658: 2345: 2024: 1986: 1923: 1235:5'--- CCWGG---3' 3'---GGWCC ---5' 832:binding pocket (FXGXG), and motif IV, the 637: 172: 158: 5249:at the U.S. National Library of Medicine 5095: 5050: 5001: 4952: 4903: 4893: 4852: 4764: 4672: 4623: 4531: 4354: 4305: 4256: 4172: 4115: 4015: 3915: 3905: 3797: 3655: 3606: 3557: 3447: 3332: 3222: 3162: 3093: 2861: 2851: 2778: 2768: 2719: 2600: 2590: 2420: 2371: 2213: 2164: 2154: 2105: 2079: 2056: 1995: 1888: 1857:List of homing endonuclease cutting sites 1173:Examples of restriction enzymes include: 920:(PfAgo) along with guide DNA to edit DNA 824:that characterise this family, including 5256: 4978:"ERCC1/XPF limits L1 retrotransposition" 4411:Journal of the American Chemical Society 4329:Hsu PD, Lander ES, Zhang F (June 2014). 3464: 3375: 3319:Types of Restriction Endonucleases | NEB 3141: 3116: 2264:Micklos DA, Bloom MV, Freyer GA (1996). 1862:List of restriction enzyme cutting sites 1379:5'--- GATC---3' 3'---CTAG ---5' 1169:List of restriction enzyme cutting sites 1137:restriction fragment length polymorphism 418: 5555:Ubiquitin carboxy-terminal hydrolase L1 5073: 5024: 4714:Stryer L, Berg JM, Tymoczko JL (2002). 4322: 3873: 3068:Pingoud A, Jeltsch A (September 2001). 2564: 2128: 2031:KrĂĽger DH, Bickle TA (September 1983). 1894: 14: 6471: 5160:"Stu I from Streptomyces tubercidicus" 4606:Wolff JN, Gemmell NJ (February 2008). 4581:Molecular cloning: a laboratory manual 3486:. Berlin: Springer. pp. 137–178. 3421: 3314: 3312: 3121:. Amsterdam: Elsevier Academic Press. 3021: 2395:Bertani G, Weigle JJ (February 1953). 1781:5'---T CTAGA---3' 3'---AGATC T---5' 1757:5'---AGG CCT---3' 3'---TCC GGA---5' 1732:5'---GCATG C---3' 3'---C GTACG---5' 1708:5'---A CTAGT---3' 3'---TGATC A---5' 1684:5'---AGT ACT---3' 3'---TCA TGA---5' 1659:5'---G TCGAC---3' 3'---CAGCT G---5' 1635:5'---GAGCT C---3' 3'---C TCGAG---5' 1611:5'---CTGCA G---3' 3'---G ACGTC---5' 1587:5'---GGTAC C---3' 3'---C CATGG---5' 1523:5'---GAT ATC---3' 3'---CTA TAG---5' 1427:5'---CCC GGG---3' 3'---GGG CCC---5' 1403:5'---CAG CTG---3' 3'---GTC GAC---5' 1355:5'---G ANTC---3' 3'---CTNA G---5' 856:Type V restriction enzymes (e.g., the 365:Nobel Prize for Physiology or Medicine 6181: 6135:either deoxy- or ribo-     5343: 4554: 4089: 3763: 3761: 3507:Ninfa JP, Balou DP, Benore M (2010). 3245: 495:"overhang" of an enzyme restriction. 469:restriction enzyme cleavage produces 5716:Protein serine/threonine phosphatase 3280: 2743:Danna K, Nathans D (December 1971). 1897:CRC Critical Reviews in Biochemistry 1307:5'---T CGA---3' 3'---AGC T---5' 5817:Cyclic nucleotide phosphodiesterase 5811:Clostridium perfringens alpha toxin 5612:Tartrate-resistant acid phosphatase 4745:The New England Journal of Medicine 4557:"Cloning using restriction enzymes" 3309: 3295:10.1146/annurev.bi.50.070181.001441 3260:10.1146/annurev.mi.25.100171.001101 2346:Luria SE, Human ML (October 1952). 2010:10.1146/annurev.bi.38.070169.002343 924:as artificial restriction enzymes. 765:BsuBI/PstI restriction endonuclease 414: 24: 5660:Pyruvate dehydrogenase phosphatase 3758: 3197:Bickle TA, KrĂĽger DH (June 1993). 1499:5'---AG CT---3' 3'---TC GA---5' 1475:5'---NN NN---3' 3'---NN NN---5' 1451:5'---GG CC---3' 3'---CC GG---5' 361:polyacrylamide gel electrophoresis 33: 25: 6510: 5560:4-hydroxybenzoyl-CoA thioesterase 5259:"Type I Restriction-Modification" 5211: 1147:various human viruses, including 5297:Simmer M, Secko D (2003-08-01). 2243:. Oxford: Blackwell Scientific. 1818: 1804: 756:. These enzymes may function as 476: 458: 27:Class of enzymes that divide DNA 5878:N-acetylglucosamine-6-sulfatase 5766:Sphingomyelin phosphodiesterase 4969: 4920: 4869: 4820: 4800: 4781: 4732: 4689: 4577:Russell DW, Sambrook J (2001). 4437: 4402: 4371: 3574: 3525: 3500: 3015: 2687: 2307: 2293:. Washington, D.C.: ASM Press. 1089:single-nucleotide polymorphisms 1042: 1035:. For example, the name of the 939: 787:composed of two subunits, Res ( 271:restriction modification system 5687:Inositol-phosphate phosphatase 5550:Palmitoyl protein thioesterase 5303:The Science Creative Quarterly 5082:. 16 Suppl (Suppl): r271-313. 3440:10.1128/MMBR.64.2.412-434.2000 3215:10.1128/MMBR.57.2.434-450.1993 2922:Journal of Molecular Evolution 2122: 2080:Kobayashi I (September 2001). 2049:10.1128/MMBR.47.3.345-360.1983 1072:, or MCS) rich in restriction 868:Artificial restriction enzymes 13: 1: 6050:RNA-induced silencing complex 4659:(Web Server issue): W489-92. 4210:10.1016/j.jbiotec.2010.10.071 3744:10.1016/S0300-9084(02)00020-2 3283:Annual Review of Biochemistry 3248:Annual Review of Microbiology 2544:10.1016/S0022-2836(64)80112-1 2509:10.1016/S0022-2836(62)80059-X 1998:Annual Review of Biochemistry 1882: 1721:Streptomyces phaeochromogenes 947:Derivation of the EcoRI name 936:two possible cleavage sites. 818:N6 adenine methyltransferases 779:DNA restriction-modification 655:(brown tubes). Two catalytic 6154:Serratia marcescens nuclease 5721:Dual-specificity phosphatase 5711:Protein tyrosine phosphatase 5237:Resources in other libraries 5194:10.1016/0378-1119(80)90062-1 4994:10.1016/j.dnarep.2008.02.006 4485:10.1016/0022-2836(73)90152-6 4473:Journal of Molecular Biology 3199:"Biology of DNA restriction" 2899:10.1016/0378-1119(95)00181-5 2805:. The Nobel Foundation. 1978 2673:10.1016/0022-2836(70)90150-6 2661:Journal of Molecular Biology 2638:10.1016/0022-2836(70)90149-X 2626:Journal of Molecular Biology 2532:Journal of Molecular Biology 2497:Journal of Molecular Biology 2413:10.1128/JB.65.2.113-121.1953 2364:10.1128/JB.64.4.557-569.1952 2289:Massey A, Kreuzer H (2001). 2237:Primrose SB, Old RW (1994). 1970:Enzymes of Molecular Biology 1947:10.1016/0378-1119(90)90486-B 1867:Molecular-weight size marker 7: 6207: 5631:Fructose 1,6-bisphosphatase 5333:Restriction Enzyme Database 5025:Roberts RJ (January 1980). 4249:10.1534/genetics.110.120717 2200:(Database issue): D269-70. 1797: 1162: 769: 237:These enzymes are found in 40:Restriction enzyme glossary 10: 6515: 5277:Goodsell DS (2000-08-01). 4945:10.1016/j.cell.2008.06.032 4347:10.1016/j.cell.2014.05.010 3164:10.1634/stemcells.20-2-190 1248:Bacillus amyloliquefaciens 1166: 1046: 933:2,9-dimethylphenanthroline 839: 762: 624: 394: 284: 230:(i.e. each strand) of the 6364: 6356:Michaelis–Menten kinetics 6328: 6297: 6266: 6215: 6134: 6022: 5974: 5960: 5938: 5920: 5906: 5886: 5868:Galactosamine-6 sulfatase 5825: 5729: 5568: 5536: 5424:6-phosphogluconolactonase 5386: 5232:Resources in your library 5088:10.1093/nar/16.suppl.r271 3347:10.1080/10409230490440532 3030:. University of Wisconsin 2565:Roberts RJ (April 2005). 2129:Roberts RJ (April 2005). 1909:10.3109/10409237609105456 1746:Streptomyces tubercidicus 1624:Streptomyces achromogenes 1119:DNA for gene analysis by 946: 851: 836:region (S/D/N (PP) Y/F). 706: 694: 681: 673: 668: 636: 631: 589: 18:Restriction endonucleases 6248:Diffusion-limited enzyme 5616:Purple acid phosphatases 5251:Medical Subject Headings 4198:Journal of Biotechnology 3941:Nature Reviews. Genetics 1673:Streptomyces caespitosus 509: 401:horizontal gene transfer 257:DNA in a process called 228:sugar-phosphate backbone 190:restriction endonuclease 5257:Firman K (2007-11-24). 5247:DNA Restriction Enzymes 4450:. Springer. p. 3. 4165:10.1126/science.1172447 3851:10.1126/science.1179555 3790:10.1126/science.1138140 3422:Murray NE (June 2000). 3378:Molecular Biotechnology 3203:Microbiological Reviews 2993:10.1126/science.7846533 2770:10.1073/pnas.68.12.2913 2592:10.1073/pnas.0500923102 2401:Journal of Bacteriology 2352:Journal of Bacteriology 2156:10.1073/pnas.0500923102 2037:Microbiological Reviews 1014:order of identification 677:Restrct_endonuc-II-like 582:Type V enzymes utilize 536:S-adenosyl-L-methionine 6494:Life sciences industry 6041:Microprocessor complex 5680:Beta-propeller phytase 5135:Molecular Cell Biology 5080:Nucleic Acids Research 5031:Nucleic Acids Research 4653:Nucleic Acids Research 4618:(2): 193–4, 196, 199. 4512:Nucleic Acids Research 4286:Nucleic Acids Research 3907:10.1073/pnas.93.3.1156 3648:10.1093/nar/29.18.3728 3636:Nucleic Acids Research 3587:Nucleic Acids Research 3538:Nucleic Acids Research 3086:10.1093/nar/29.18.3705 3074:Nucleic Acids Research 2853:10.1073/pnas.75.8.3727 2700:Nucleic Acids Research 2314:Winnacker E-L (1987). 2194:Nucleic Acids Research 2098:10.1093/nar/29.18.3742 2086:Nucleic Acids Research 1848:– A restriction enzyme 1842:– A restriction enzyme 1836:– A restriction enzyme 1464:Haemophilus gallinarum 1344:Haemophilus influenzae 1326:5'GCGGCCGC 3'CGCCGGCG 1272:Haemophilus influenzae 820:, containing the nine 424: 348:Haemophilus influenzae 38: 6341:Eadie–Hofstee diagram 6274:Allosteric regulation 5976:Endodeoxyribonuclease 5873:Iduronate-2-sulfatase 5626:Glucose 6-phosphatase 5412:Butyrylcholinesterase 5279:"Restriction Enzymes" 5043:10.1093/nar/8.1.197-d 4757:10.1056/NEJMoa1300662 4108:10.1089/zeb.2008.9988 1576:Klebsiella pneumoniae 1440:Haemophilus aegyptius 1368:Staphylococcus aureus 1074:recognition sequences 1070:multiple cloning site 886:Zinc finger nucleases 763:Further information: 602:S-Adenosyl methionine 422: 345:, from the bacterium 259:restriction digestion 93:Molecular recognition 37: 6351:Lineweaver–Burk plot 6159:Micrococcal nuclease 5994:Deoxyribonuclease IV 5989:Deoxyribonuclease II 5922:Exodeoxyribonuclease 5582:Alkaline phosphatase 5407:Acetylcholinesterase 4845:10.1128/JVI.00052-12 3142:Goodsell DS (2002). 2320:From Genes to Clones 1792:N = C or G or T or A 1600:Providencia stuartii 1559:NN---3' 3'---GTCGTCN 1185:Recognition Sequence 659:ions (one from each 141:Restriction fragment 109:Recognition sequence 6479:Restriction enzymes 6014:UvrABC endonuclease 5984:Deoxyribonuclease I 5707:Protein phosphatase 5643:Protein phosphatase 5441:Bile salt-dependent 5429:PAF acetylhydrolase 5223:Restriction enzymes 5074:Roberts RJ (1988). 4833:Journal of Virology 4444:A. Pingoud (2004). 4157:2009Sci...325..433G 4061:10.1038/nature07992 4053:2009Natur.459..437S 4008:10.1038/nature07845 4000:2009Natur.459..442T 3898:1996PNAS...93.1156K 3843:2010Sci...327..167H 3782:2007Sci...315.1709B 3693:1992Natur.355..467M 3390:10.1385/MB:23:3:225 2985:1995Sci...267..897N 2934:1996JMolE..42...91J 2844:1978PNAS...75.3727V 2761:1971PNAS...68.2913D 2583:2005PNAS..102.5905R 2458:1968Natur.217.1110M 2147:2005PNAS..102.5905R 1852:Homing endonuclease 1697:Sphaerotilus natans 1488:Arthrobacter luteus 1416:Serratia marcescens 1101:gel electrophoresis 917:Pyrococcus furiosus 914:protein taken from 890:genetic engineering 860:-gRNA complex from 754:Golden Gate cloning 745:allosteric effector 647:restriction enzyme 451:digestion produces 6310:Enzyme superfamily 6243:Enzyme promiscuity 6147:Mung bean nuclease 6006:Restriction enzyme 5999:Restriction enzyme 4665:10.1093/nar/gki358 4524:10.1093/nar/gkg274 4385:. 10 February 2017 4298:10.1093/nar/gkq704 3799:20.500.11794/38902 3599:10.1093/nar/gku546 3550:10.1093/nar/gks428 2942:10.1007/BF02198833 2712:10.1093/nar/gkt990 2206:10.1093/nar/gkl891 1776:5'TCTAGA 3'AGATCT 1770:Xanthomonas badrii 1752:5'AGGCCT 3'TCCGGA 1727:5'GCATGC 3'CGTACG 1703:5'ACTAGT 3'TGATCA 1679:5'AGTACT 3'TCATGA 1654:5'GTCGAC 3'CAGCTG 1648:Streptomyces albus 1630:5'GAGCTC 3'CTCGAG 1606:5'CTGCAG 3'GACGTC 1582:5'GGTACC 3'CCATGG 1518:5'GATATC 3'CTATAG 1422:5'CCCGGG 3'GGGCCC 1398:5'CAGCTG 3'GTCGAC 1278:5'AAGCTT 3'TTCGAA 1254:5'GGATCC 3'CCTAGG 1206:5'GAATTC 3'CTTAAG 1110:DNA fingerprinting 1066:protein production 1049:Restriction digest 874:DNA-binding domain 584:guide RNAs (gRNAs) 562:Type III enzymes ( 425: 186:restriction enzyme 39: 6499:Molecular biology 6466: 6465: 6175: 6174: 6171: 6170: 6167: 6166: 5956: 5955: 5948:Oligonucleotidase 5893:deoxyribonuclease 5861:Steroid sulfatase 5736:Phosphodiesterase 5465:Hormone-sensitive 5218:Library resources 4625:10.2144/000112719 4423:10.1021/ja1008739 4090:Ekker SC (2008). 3776:(5819): 1709–12. 3518:978-0-470-08766-4 3119:Molecular biology 3117:Clark DP (2005). 3024:"Restriction Map" 3022:Cooper S (2003). 2466:10.1038/2171110a0 1872:REBASE (database) 1826:Technology portal 1786: 1785: 1320:Nocardia otitidis 1296:Thermus aquaticus 1020: 1019: 1016:in the bacterium 988:specific species 801:methyltransferase 726: 725: 643:Structure of the 548:Type II enzymes ( 411:genetic element. 377:Hamilton O. Smith 335:Hamilton O. Smith 279:molecular cloning 263:methyltransferase 216:restriction sites 182: 181: 81:chemical reaction 55:at specific sites 16:(Redirected from 6506: 6346:Hanes–Woolf plot 6289:Enzyme activator 6284:Enzyme inhibitor 6258:Enzyme catalysis 6202: 6195: 6188: 6179: 6178: 6024:Endoribonuclease 6010: 6004: 5972: 5971: 5918: 5917: 5904: 5903: 5604:Acid phosphatase 5485:Monoacylglycerol 5395:ester hydrolases 5364: 5357: 5350: 5341: 5340: 5335: 5330: 5329: 5320:. Archived from 5312: 5310: 5309: 5293: 5291: 5290: 5273: 5271: 5270: 5206: 5205: 5177: 5171: 5170: 5168: 5167: 5156: 5150: 5149: 5129: 5110: 5109: 5099: 5071: 5065: 5064: 5054: 5022: 5016: 5015: 5005: 4973: 4967: 4966: 4956: 4924: 4918: 4917: 4907: 4897: 4895:10.3390/v5112748 4873: 4867: 4866: 4856: 4824: 4818: 4817: 4816:(10): 1225–1232. 4810:Afr J Biotechnol 4804: 4798: 4797: 4785: 4779: 4778: 4768: 4736: 4730: 4729: 4711: 4705: 4704: 4693: 4687: 4686: 4676: 4644: 4638: 4637: 4627: 4603: 4597: 4596: 4584: 4574: 4568: 4567: 4565: 4564: 4552: 4546: 4545: 4535: 4503: 4497: 4496: 4468: 4462: 4461: 4441: 4435: 4434: 4406: 4400: 4394: 4392: 4390: 4375: 4369: 4368: 4358: 4326: 4320: 4319: 4309: 4277: 4271: 4270: 4260: 4228: 4222: 4221: 4193: 4187: 4186: 4176: 4136: 4130: 4129: 4119: 4087: 4081: 4080: 4047:(7245): 437–41. 4036: 4030: 4029: 4019: 3979: 3973: 3972: 3936: 3930: 3929: 3919: 3909: 3877: 3871: 3870: 3837:(5962): 167–70. 3826: 3820: 3819: 3801: 3765: 3756: 3755: 3727: 3721: 3720: 3701:10.1038/355467a0 3676: 3670: 3669: 3659: 3627: 3621: 3620: 3610: 3578: 3572: 3571: 3561: 3529: 3523: 3522: 3504: 3498: 3497: 3478: 3468: 3462: 3461: 3451: 3419: 3410: 3409: 3373: 3367: 3366: 3330: 3321: 3316: 3307: 3306: 3278: 3272: 3271: 3243: 3237: 3236: 3226: 3194: 3185: 3184: 3166: 3148: 3139: 3133: 3132: 3114: 3108: 3107: 3097: 3065: 3040: 3039: 3037: 3035: 3028:bioweb.uwlax.edu 3019: 3013: 3012: 2968: 2962: 2961: 2917: 2911: 2910: 2882: 2876: 2875: 2865: 2855: 2823: 2817: 2816: 2811: 2810: 2799: 2793: 2792: 2782: 2772: 2740: 2734: 2733: 2723: 2691: 2685: 2684: 2656: 2650: 2649: 2621: 2615: 2614: 2604: 2594: 2562: 2556: 2555: 2527: 2521: 2520: 2492: 2486: 2485: 2452:(5134): 1110–4. 2441: 2435: 2434: 2424: 2392: 2386: 2385: 2375: 2343: 2334: 2333: 2311: 2305: 2304: 2286: 2280: 2279: 2261: 2255: 2254: 2234: 2228: 2227: 2217: 2185: 2179: 2178: 2168: 2158: 2126: 2120: 2119: 2109: 2077: 2071: 2070: 2060: 2028: 2022: 2021: 1993: 1984: 1983: 1965: 1959: 1958: 1930: 1921: 1920: 1892: 1828: 1823: 1822: 1814: 1809: 1808: 1536:Escherichia coli 1512:Escherichia coli 1470:5'GACGC 3'CTGCG 1392:Proteus vulgaris 1350:5'GANTC 3'CTNAG 1230:5'CCWGG 3'GGWCC 1224:Escherichia coli 1200:Escherichia coli 1176: 1175: 1011:First identified 944: 943: 798: 792: 641: 629: 628: 523:Type I enzymes ( 480: 462: 415:Recognition site 328:Matthew Meselson 307:Escherichia coli 232:DNA double helix 174: 167: 160: 147: 131: 125:Restriction site 115: 99: 83: 56: 30: 29: 21: 6514: 6513: 6509: 6508: 6507: 6505: 6504: 6503: 6469: 6468: 6467: 6462: 6374:Oxidoreductases 6360: 6336:Enzyme kinetics 6324: 6320:List of enzymes 6293: 6262: 6233:Catalytic triad 6211: 6206: 6176: 6163: 6130: 6018: 6008: 6002: 5965: 5952: 5940:Exoribonuclease 5934: 5911: 5895: 5891: 5882: 5856:Arylsulfatase L 5851:Arylsulfatase B 5846:Arylsulfatase A 5821: 5734: 5725: 5564: 5532: 5394: 5382: 5368: 5327: 5325: 5307: 5305: 5288: 5286: 5268: 5266: 5243: 5242: 5241: 5226: 5225: 5221: 5214: 5209: 5188:(3–4): 219–25. 5178: 5174: 5165: 5163: 5162:. Sigma-Aldrich 5158: 5157: 5153: 5146: 5130: 5113: 5072: 5068: 5023: 5019: 4974: 4970: 4925: 4921: 4888:(11): 2748–66. 4874: 4870: 4839:(17): 8920–36. 4825: 4821: 4805: 4801: 4786: 4782: 4737: 4733: 4726: 4712: 4708: 4695: 4694: 4690: 4645: 4641: 4604: 4600: 4593: 4575: 4571: 4562: 4560: 4553: 4549: 4504: 4500: 4469: 4465: 4458: 4442: 4438: 4417:(26): 8984–90. 4407: 4403: 4388: 4386: 4377: 4376: 4372: 4327: 4323: 4278: 4274: 4229: 4225: 4194: 4190: 4137: 4133: 4088: 4084: 4037: 4033: 3994:(7245): 442–5. 3980: 3976: 3953:10.1038/nrg2842 3937: 3933: 3878: 3874: 3827: 3823: 3766: 3759: 3738:(11): 1047–59. 3728: 3724: 3687:(6359): 467–9. 3677: 3673: 3642:(18): 3728–41. 3628: 3624: 3593:(13): 8745–54. 3579: 3575: 3544:(15): 7563–72. 3530: 3526: 3519: 3505: 3501: 3494: 3470: 3469: 3465: 3420: 3413: 3374: 3370: 3331: 3324: 3317: 3310: 3279: 3275: 3244: 3240: 3195: 3188: 3146: 3140: 3136: 3129: 3115: 3111: 3080:(18): 3705–27. 3066: 3043: 3033: 3031: 3020: 3016: 2979:(5199): 897–9. 2969: 2965: 2918: 2914: 2883: 2879: 2824: 2820: 2808: 2806: 2801: 2800: 2796: 2741: 2737: 2692: 2688: 2657: 2653: 2622: 2618: 2563: 2559: 2528: 2524: 2493: 2489: 2442: 2438: 2393: 2389: 2344: 2337: 2330: 2312: 2308: 2301: 2287: 2283: 2276: 2262: 2258: 2251: 2235: 2231: 2186: 2182: 2127: 2123: 2092:(18): 3742–56. 2078: 2074: 2029: 2025: 1994: 1987: 1980: 1966: 1962: 1931: 1924: 1893: 1889: 1885: 1824: 1817: 1810: 1803: 1800: 1793: 1791: 1789: 1782: 1777: 1758: 1753: 1733: 1728: 1709: 1704: 1685: 1680: 1660: 1655: 1636: 1631: 1612: 1607: 1588: 1583: 1564: 1562: 1558: 1551: 1549: 1545: 1524: 1519: 1500: 1495: 1476: 1471: 1452: 1447: 1428: 1423: 1404: 1399: 1380: 1375: 1356: 1351: 1332: 1327: 1308: 1303: 1284: 1279: 1260: 1255: 1236: 1231: 1212: 1207: 1171: 1165: 1097:gene sequencing 1058:plasmid vectors 1051: 1045: 1015: 942: 870: 854: 842: 794: 788: 772: 767: 664: 627: 592: 516:enzyme cofactor 512: 438:inverted repeat 417: 397: 381:recombinant DNA 367:was awarded to 357:simian virus 40 287: 178: 149: 148: 145: 143: 133: 132: 129: 127: 117: 116: 113: 111: 101: 100: 97: 95: 85: 84: 70: 68: 58: 57: 51:The cutting of 50: 48: 28: 23: 22: 15: 12: 11: 5: 6512: 6502: 6501: 6496: 6491: 6486: 6481: 6464: 6463: 6461: 6460: 6447: 6434: 6421: 6408: 6395: 6382: 6368: 6366: 6362: 6361: 6359: 6358: 6353: 6348: 6343: 6338: 6332: 6330: 6326: 6325: 6323: 6322: 6317: 6312: 6307: 6301: 6299: 6298:Classification 6295: 6294: 6292: 6291: 6286: 6281: 6276: 6270: 6268: 6264: 6263: 6261: 6260: 6255: 6250: 6245: 6240: 6235: 6230: 6225: 6219: 6217: 6213: 6212: 6205: 6204: 6197: 6190: 6182: 6173: 6172: 6169: 6168: 6165: 6164: 6162: 6161: 6156: 6151: 6150: 6149: 6138: 6136: 6132: 6131: 6129: 6128: 6123: 6122: 6121: 6116: 6111: 6106: 6096: 6091: 6086: 6081: 6080: 6079: 6074: 6069: 6064: 6054: 6053: 6052: 6043: 6028: 6026: 6020: 6019: 6017: 6016: 6011: 5996: 5991: 5986: 5980: 5978: 5969: 5958: 5957: 5954: 5953: 5951: 5950: 5944: 5942: 5936: 5935: 5933: 5932: 5926: 5924: 5915: 5901: 5884: 5883: 5881: 5880: 5875: 5870: 5865: 5864: 5863: 5858: 5853: 5848: 5835: 5833: 5823: 5822: 5820: 5819: 5814: 5804: 5799: 5790: 5785: 5780: 5775: 5774: 5773: 5763: 5762: 5761: 5756: 5746: 5740: 5738: 5727: 5726: 5724: 5723: 5718: 5713: 5704: 5703: 5702: 5684: 5683: 5682: 5672: 5667: 5662: 5657: 5652: 5651: 5650: 5640: 5639: 5638: 5628: 5623: 5618: 5601: 5600: 5599: 5594: 5589: 5578: 5576: 5566: 5565: 5563: 5562: 5557: 5552: 5546: 5544: 5534: 5533: 5531: 5530: 5525: 5519: 5518: 5517: 5516: 5511: 5506: 5495: 5494: 5493: 5492: 5490:Diacylglycerol 5487: 5482: 5477: 5472: 5467: 5462: 5457: 5452: 5443: 5432: 5431: 5426: 5421: 5419:Pectinesterase 5416: 5415: 5414: 5409: 5402:Cholinesterase 5398: 5396: 5384: 5383: 5367: 5366: 5359: 5352: 5344: 5338: 5337: 5313: 5294: 5274: 5254: 5240: 5239: 5234: 5228: 5227: 5216: 5215: 5213: 5212:External links 5210: 5208: 5207: 5172: 5151: 5144: 5111: 5066: 5037:(1): r63–r80. 5017: 4968: 4919: 4868: 4819: 4799: 4790:Makerere Med J 4780: 4751:(10): 901–10. 4731: 4724: 4706: 4688: 4639: 4598: 4591: 4569: 4547: 4518:(7): 1805–12. 4498: 4463: 4456: 4436: 4401: 4395:(reporting on 4370: 4341:(6): 1262–78. 4321: 4272: 4223: 4188: 4131: 4082: 4031: 3974: 3931: 3892:(3): 1156–60. 3872: 3821: 3757: 3722: 3671: 3622: 3573: 3524: 3517: 3499: 3492: 3463: 3411: 3368: 3322: 3308: 3273: 3238: 3186: 3134: 3127: 3109: 3041: 3014: 2963: 2912: 2877: 2838:(8): 3727–31. 2818: 2794: 2755:(12): 2913–7. 2735: 2686: 2667:(2): 393–409. 2651: 2616: 2577:(17): 5905–8. 2557: 2522: 2487: 2436: 2387: 2335: 2328: 2306: 2299: 2281: 2274: 2256: 2249: 2229: 2180: 2141:(17): 5905–8. 2121: 2072: 2023: 1985: 1978: 1960: 1941:(1–2): 1–248. 1922: 1886: 1884: 1881: 1880: 1879: 1874: 1869: 1864: 1859: 1854: 1849: 1843: 1837: 1830: 1829: 1815: 1812:Biology portal 1799: 1796: 1790:* = blunt ends 1784: 1783: 1780: 1778: 1775: 1773: 1766: 1760: 1759: 1756: 1754: 1751: 1749: 1742: 1735: 1734: 1731: 1729: 1726: 1724: 1717: 1711: 1710: 1707: 1705: 1702: 1700: 1693: 1687: 1686: 1683: 1681: 1678: 1676: 1669: 1662: 1661: 1658: 1656: 1653: 1651: 1644: 1638: 1637: 1634: 1632: 1629: 1627: 1620: 1614: 1613: 1610: 1608: 1605: 1603: 1596: 1590: 1589: 1586: 1584: 1581: 1579: 1572: 1566: 1565: 1560: 1556: 1554: 1552: 1547: 1543: 1541: 1539: 1532: 1526: 1525: 1522: 1520: 1517: 1515: 1508: 1502: 1501: 1498: 1496: 1494:5'AGCT 3'TCGA 1493: 1491: 1484: 1478: 1477: 1474: 1472: 1469: 1467: 1460: 1454: 1453: 1450: 1448: 1446:5'GGCC 3'CCGG 1445: 1443: 1436: 1430: 1429: 1426: 1424: 1421: 1419: 1412: 1406: 1405: 1402: 1400: 1397: 1395: 1388: 1382: 1381: 1378: 1376: 1374:5'GATC 3'CTAG 1373: 1371: 1364: 1358: 1357: 1354: 1352: 1349: 1347: 1340: 1334: 1333: 1330: 1328: 1325: 1323: 1316: 1310: 1309: 1306: 1304: 1302:5'TCGA 3'AGCT 1301: 1299: 1292: 1286: 1285: 1282: 1280: 1277: 1275: 1268: 1262: 1261: 1258: 1256: 1253: 1251: 1244: 1238: 1237: 1234: 1232: 1229: 1227: 1220: 1214: 1213: 1210: 1208: 1205: 1203: 1196: 1190: 1189: 1186: 1183: 1180: 1164: 1161: 1047:Main article: 1044: 1041: 1018: 1017: 1012: 1009: 1003: 1002: 999: 996: 990: 989: 986: 981: 975: 974: 971: 966: 960: 959: 956: 953: 949: 948: 941: 938: 869: 866: 853: 850: 841: 838: 771: 768: 724: 723: 710: 704: 703: 698: 692: 691: 686: 679: 678: 675: 671: 670: 666: 665: 642: 634: 633: 626: 623: 591: 588: 587: 586: 580: 577: 560: 546: 511: 508: 416: 413: 396: 393: 373:Daniel Nathans 353:Daniel Nathans 309:, for example 299:Salvador Luria 286: 283: 180: 179: 177: 176: 169: 162: 154: 151: 150: 144: 139: 138: 135: 134: 128: 123: 122: 119: 118: 112: 107: 106: 103: 102: 96: 91: 90: 87: 86: 69: 64: 63: 60: 59: 49: 46: 45: 42: 41: 26: 9: 6: 4: 3: 2: 6511: 6500: 6497: 6495: 6492: 6490: 6487: 6485: 6484:Biotechnology 6482: 6480: 6477: 6476: 6474: 6458: 6454: 6453: 6448: 6445: 6441: 6440: 6435: 6432: 6428: 6427: 6422: 6419: 6415: 6414: 6409: 6406: 6402: 6401: 6396: 6393: 6389: 6388: 6383: 6380: 6376: 6375: 6370: 6369: 6367: 6363: 6357: 6354: 6352: 6349: 6347: 6344: 6342: 6339: 6337: 6334: 6333: 6331: 6327: 6321: 6318: 6316: 6315:Enzyme family 6313: 6311: 6308: 6306: 6303: 6302: 6300: 6296: 6290: 6287: 6285: 6282: 6280: 6279:Cooperativity 6277: 6275: 6272: 6271: 6269: 6265: 6259: 6256: 6254: 6251: 6249: 6246: 6244: 6241: 6239: 6238:Oxyanion hole 6236: 6234: 6231: 6229: 6226: 6224: 6221: 6220: 6218: 6214: 6210: 6203: 6198: 6196: 6191: 6189: 6184: 6183: 6180: 6160: 6157: 6155: 6152: 6148: 6145: 6144: 6143: 6140: 6139: 6137: 6133: 6127: 6124: 6120: 6117: 6115: 6112: 6110: 6107: 6105: 6102: 6101: 6100: 6097: 6095: 6092: 6090: 6087: 6085: 6082: 6078: 6075: 6073: 6070: 6068: 6065: 6063: 6060: 6059: 6058: 6055: 6051: 6047: 6044: 6042: 6038: 6035: 6034: 6033: 6030: 6029: 6027: 6025: 6021: 6015: 6012: 6007: 6000: 5997: 5995: 5992: 5990: 5987: 5985: 5982: 5981: 5979: 5977: 5973: 5970: 5968: 5963: 5959: 5949: 5946: 5945: 5943: 5941: 5937: 5931: 5928: 5927: 5925: 5923: 5919: 5916: 5914: 5909: 5905: 5902: 5899: 5894: 5889: 5885: 5879: 5876: 5874: 5871: 5869: 5866: 5862: 5859: 5857: 5854: 5852: 5849: 5847: 5844: 5843: 5842: 5841: 5840:arylsulfatase 5837: 5836: 5834: 5832: 5828: 5824: 5818: 5815: 5812: 5808: 5805: 5803: 5800: 5798: 5794: 5791: 5789: 5786: 5784: 5781: 5779: 5776: 5772: 5769: 5768: 5767: 5764: 5760: 5757: 5755: 5752: 5751: 5750: 5749:Phospholipase 5747: 5745: 5742: 5741: 5739: 5737: 5732: 5728: 5722: 5719: 5717: 5714: 5712: 5708: 5705: 5701: 5697: 5693: 5690: 5689: 5688: 5685: 5681: 5678: 5677: 5676: 5673: 5671: 5668: 5666: 5663: 5661: 5658: 5656: 5653: 5649: 5646: 5645: 5644: 5641: 5637: 5634: 5633: 5632: 5629: 5627: 5624: 5622: 5619: 5617: 5613: 5609: 5605: 5602: 5598: 5595: 5593: 5590: 5588: 5585: 5584: 5583: 5580: 5579: 5577: 5575: 5571: 5567: 5561: 5558: 5556: 5553: 5551: 5548: 5547: 5545: 5543: 5539: 5535: 5529: 5526: 5524: 5521: 5520: 5515: 5512: 5510: 5507: 5505: 5502: 5501: 5500: 5499:Phospholipase 5497: 5496: 5491: 5488: 5486: 5483: 5481: 5478: 5476: 5473: 5471: 5468: 5466: 5463: 5461: 5458: 5456: 5453: 5451: 5447: 5444: 5442: 5439: 5438: 5437: 5434: 5433: 5430: 5427: 5425: 5422: 5420: 5417: 5413: 5410: 5408: 5405: 5404: 5403: 5400: 5399: 5397: 5393: 5389: 5385: 5380: 5376: 5372: 5365: 5360: 5358: 5353: 5351: 5346: 5345: 5342: 5334: 5324:on 2015-02-16 5323: 5319: 5314: 5304: 5300: 5295: 5285:on 2008-05-31 5284: 5280: 5275: 5265:on 2008-07-06 5264: 5260: 5255: 5252: 5248: 5245: 5244: 5238: 5235: 5233: 5230: 5229: 5224: 5219: 5203: 5199: 5195: 5191: 5187: 5183: 5176: 5161: 5155: 5147: 5145:0-7167-4366-3 5141: 5137: 5136: 5128: 5126: 5124: 5122: 5120: 5118: 5116: 5107: 5103: 5098: 5093: 5089: 5085: 5081: 5077: 5070: 5062: 5058: 5053: 5048: 5044: 5040: 5036: 5032: 5028: 5021: 5013: 5009: 5004: 4999: 4995: 4991: 4987: 4983: 4979: 4972: 4964: 4960: 4955: 4950: 4946: 4942: 4939:(4): 587–98. 4938: 4934: 4930: 4923: 4915: 4911: 4906: 4901: 4896: 4891: 4887: 4883: 4879: 4872: 4864: 4860: 4855: 4850: 4846: 4842: 4838: 4834: 4830: 4823: 4815: 4811: 4803: 4795: 4791: 4784: 4776: 4772: 4767: 4762: 4758: 4754: 4750: 4746: 4742: 4735: 4727: 4725:0-7167-4684-0 4721: 4717: 4710: 4702: 4698: 4692: 4684: 4680: 4675: 4670: 4666: 4662: 4658: 4654: 4650: 4643: 4635: 4631: 4626: 4621: 4617: 4613: 4612:BioTechniques 4609: 4602: 4594: 4592:0-87969-576-5 4588: 4583: 4582: 4573: 4558: 4551: 4543: 4539: 4534: 4529: 4525: 4521: 4517: 4513: 4509: 4502: 4494: 4490: 4486: 4482: 4479:(3): 419–23. 4478: 4474: 4467: 4459: 4457:9783642188510 4453: 4449: 4448: 4440: 4432: 4428: 4424: 4420: 4416: 4412: 4405: 4398: 4384: 4380: 4374: 4366: 4362: 4357: 4352: 4348: 4344: 4340: 4336: 4332: 4325: 4317: 4313: 4308: 4303: 4299: 4295: 4292:(1): 359–72. 4291: 4287: 4283: 4276: 4268: 4264: 4259: 4254: 4250: 4246: 4243:(2): 757–61. 4242: 4238: 4234: 4227: 4219: 4215: 4211: 4207: 4203: 4199: 4192: 4184: 4180: 4175: 4170: 4166: 4162: 4158: 4154: 4151:(5939): 433. 4150: 4146: 4142: 4135: 4127: 4123: 4118: 4113: 4109: 4105: 4101: 4097: 4093: 4086: 4078: 4074: 4070: 4066: 4062: 4058: 4054: 4050: 4046: 4042: 4035: 4027: 4023: 4018: 4013: 4009: 4005: 4001: 3997: 3993: 3989: 3985: 3978: 3970: 3966: 3962: 3958: 3954: 3950: 3947:(9): 636–46. 3946: 3942: 3935: 3927: 3923: 3918: 3913: 3908: 3903: 3899: 3895: 3891: 3887: 3883: 3876: 3868: 3864: 3860: 3856: 3852: 3848: 3844: 3840: 3836: 3832: 3825: 3817: 3813: 3809: 3805: 3800: 3795: 3791: 3787: 3783: 3779: 3775: 3771: 3764: 3762: 3753: 3749: 3745: 3741: 3737: 3733: 3726: 3718: 3714: 3710: 3706: 3702: 3698: 3694: 3690: 3686: 3682: 3675: 3667: 3663: 3658: 3653: 3649: 3645: 3641: 3637: 3633: 3626: 3618: 3614: 3609: 3604: 3600: 3596: 3592: 3588: 3584: 3577: 3569: 3565: 3560: 3555: 3551: 3547: 3543: 3539: 3535: 3528: 3520: 3514: 3510: 3503: 3495: 3493:3-540-20502-0 3489: 3485: 3477: 3473: 3467: 3459: 3455: 3450: 3445: 3441: 3437: 3434:(2): 412–34. 3433: 3429: 3425: 3418: 3416: 3407: 3403: 3399: 3395: 3391: 3387: 3384:(3): 225–43. 3383: 3379: 3372: 3364: 3360: 3356: 3352: 3348: 3344: 3340: 3336: 3329: 3327: 3320: 3315: 3313: 3304: 3300: 3296: 3292: 3288: 3284: 3277: 3269: 3265: 3261: 3257: 3253: 3249: 3242: 3234: 3230: 3225: 3220: 3216: 3212: 3209:(2): 434–50. 3208: 3204: 3200: 3193: 3191: 3182: 3178: 3174: 3170: 3165: 3160: 3156: 3152: 3145: 3138: 3130: 3128:0-12-175551-7 3124: 3120: 3113: 3105: 3101: 3096: 3091: 3087: 3083: 3079: 3075: 3071: 3064: 3062: 3060: 3058: 3056: 3054: 3052: 3050: 3048: 3046: 3029: 3025: 3018: 3010: 3006: 3002: 2998: 2994: 2990: 2986: 2982: 2978: 2974: 2967: 2959: 2955: 2951: 2947: 2943: 2939: 2935: 2931: 2927: 2923: 2916: 2908: 2904: 2900: 2896: 2892: 2888: 2881: 2873: 2869: 2864: 2859: 2854: 2849: 2845: 2841: 2837: 2833: 2829: 2822: 2815: 2804: 2798: 2790: 2786: 2781: 2776: 2771: 2766: 2762: 2758: 2754: 2750: 2746: 2739: 2731: 2727: 2722: 2717: 2713: 2709: 2705: 2701: 2697: 2690: 2682: 2678: 2674: 2670: 2666: 2662: 2655: 2647: 2643: 2639: 2635: 2632:(2): 379–91. 2631: 2627: 2620: 2612: 2608: 2603: 2598: 2593: 2588: 2584: 2580: 2576: 2572: 2568: 2561: 2553: 2549: 2545: 2541: 2537: 2533: 2526: 2518: 2514: 2510: 2506: 2502: 2498: 2491: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2451: 2447: 2440: 2432: 2428: 2423: 2418: 2414: 2410: 2407:(2): 113–21. 2406: 2402: 2398: 2391: 2383: 2379: 2374: 2369: 2365: 2361: 2358:(4): 557–69. 2357: 2353: 2349: 2342: 2340: 2331: 2329:0-89573-614-4 2325: 2321: 2317: 2310: 2302: 2300:1-55581-176-0 2296: 2292: 2285: 2277: 2275:0-8053-3040-2 2271: 2267: 2260: 2252: 2250:0-632-03712-1 2246: 2242: 2241: 2233: 2225: 2221: 2216: 2211: 2207: 2203: 2199: 2195: 2191: 2184: 2176: 2172: 2167: 2162: 2157: 2152: 2148: 2144: 2140: 2136: 2132: 2125: 2117: 2113: 2108: 2103: 2099: 2095: 2091: 2087: 2083: 2076: 2068: 2064: 2059: 2054: 2050: 2046: 2043:(3): 345–60. 2042: 2038: 2034: 2027: 2019: 2015: 2011: 2007: 2003: 1999: 1992: 1990: 1981: 1979:0-89603-234-5 1975: 1971: 1964: 1956: 1952: 1948: 1944: 1940: 1936: 1929: 1927: 1918: 1914: 1910: 1906: 1903:(2): 123–64. 1902: 1898: 1891: 1887: 1878: 1877:Star activity 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1847: 1844: 1841: 1838: 1835: 1832: 1831: 1827: 1821: 1816: 1813: 1807: 1802: 1795: 1779: 1774: 1772: 1771: 1767: 1765: 1762: 1761: 1755: 1750: 1748: 1747: 1743: 1740: 1737: 1736: 1730: 1725: 1723: 1722: 1718: 1716: 1713: 1712: 1706: 1701: 1699: 1698: 1694: 1692: 1689: 1688: 1682: 1677: 1675: 1674: 1670: 1667: 1664: 1663: 1657: 1652: 1650: 1649: 1645: 1643: 1640: 1639: 1633: 1628: 1626: 1625: 1621: 1619: 1616: 1615: 1609: 1604: 1602: 1601: 1597: 1595: 1592: 1591: 1585: 1580: 1578: 1577: 1573: 1571: 1568: 1567: 1553: 1540: 1538: 1537: 1533: 1531: 1528: 1527: 1521: 1516: 1514: 1513: 1509: 1507: 1504: 1503: 1497: 1492: 1490: 1489: 1485: 1483: 1480: 1479: 1473: 1468: 1466: 1465: 1461: 1459: 1456: 1455: 1449: 1444: 1442: 1441: 1437: 1435: 1432: 1431: 1425: 1420: 1418: 1417: 1413: 1411: 1408: 1407: 1401: 1396: 1394: 1393: 1389: 1387: 1384: 1383: 1377: 1372: 1370: 1369: 1365: 1363: 1360: 1359: 1353: 1348: 1346: 1345: 1341: 1339: 1336: 1335: 1329: 1324: 1322: 1321: 1317: 1315: 1312: 1311: 1305: 1300: 1298: 1297: 1293: 1291: 1288: 1287: 1281: 1276: 1274: 1273: 1269: 1267: 1264: 1263: 1257: 1252: 1250: 1249: 1245: 1243: 1240: 1239: 1233: 1228: 1226: 1225: 1221: 1219: 1216: 1215: 1209: 1204: 1202: 1201: 1197: 1195: 1192: 1191: 1187: 1184: 1181: 1178: 1177: 1174: 1170: 1160: 1158: 1154: 1150: 1144: 1140: 1138: 1134: 1133:polymorphisms 1130: 1126: 1122: 1121:Southern blot 1118: 1113: 1111: 1106: 1102: 1098: 1094: 1090: 1086: 1081: 1079: 1075: 1071: 1067: 1063: 1059: 1054: 1050: 1040: 1038: 1034: 1030: 1026: 1013: 1010: 1008: 1005: 1004: 1000: 997: 995: 992: 991: 987: 985: 982: 980: 977: 976: 972: 970: 967: 965: 962: 961: 957: 954: 952:Abbreviation 951: 950: 945: 937: 934: 930: 925: 923: 919: 918: 913: 908: 906: 901: 899: 898:TAL effectors 895: 891: 887: 883: 879: 875: 865: 863: 859: 849: 847: 837: 835: 831: 827: 823: 819: 814: 810: 806: 802: 797: 791: 786: 782: 778: 766: 761: 759: 755: 751: 746: 742: 737: 735: 731: 722: 718: 714: 711: 709: 705: 702: 699: 697: 693: 690: 687: 684: 680: 676: 672: 667: 662: 658: 654: 650: 646: 640: 635: 630: 622: 619: 615: 611: 607: 603: 599: 598: 585: 581: 578: 575: 572: 568: 565: 561: 558: 554: 551: 547: 545:) activities. 544: 541: 537: 533: 529: 526: 522: 521: 520: 517: 507: 505: 504:isoschizomers 501: 500:neoschizomers 496: 494: 490: 486: 481: 479: 474: 472: 468: 463: 461: 456: 454: 453:"sticky" ends 450: 446: 444: 443:complementary 439: 435: 431: 421: 412: 410: 407:evolved as a 406: 405:endonucleases 402: 392: 390: 386: 382: 378: 374: 370: 366: 362: 358: 354: 350: 349: 344: 340: 336: 331: 329: 325: 320: 316: 312: 308: 304: 300: 296: 295:bacteriophage 292: 282: 280: 274: 272: 268: 264: 260: 256: 252: 248: 244: 240: 235: 233: 229: 225: 221: 217: 213: 210:that cleaves 209: 205: 204: 199: 195: 191: 187: 175: 170: 168: 163: 161: 156: 155: 153: 152: 142: 137: 136: 126: 121: 120: 110: 105: 104: 94: 89: 88: 82: 78: 74: 67: 62: 61: 54: 44: 43: 36: 32: 31: 19: 6452:Translocases 6449: 6436: 6423: 6410: 6397: 6387:Transferases 6384: 6371: 6228:Binding site 6009:}} 6003:{{ 5998: 5967:Endonuclease 5898:ribonuclease 5838: 5621:Nucleotidase 5542:Thioesterase 5332: 5326:. Retrieved 5322:the original 5306:. Retrieved 5302: 5287:. Retrieved 5283:the original 5267:. Retrieved 5263:the original 5222: 5185: 5181: 5175: 5164:. Retrieved 5154: 5134: 5079: 5069: 5034: 5030: 5020: 4988:(6): 983–9. 4985: 4981: 4971: 4936: 4932: 4922: 4885: 4881: 4871: 4836: 4832: 4822: 4813: 4809: 4802: 4793: 4789: 4783: 4748: 4744: 4734: 4716:Biochemistry 4715: 4709: 4700: 4691: 4656: 4652: 4642: 4615: 4611: 4601: 4580: 4572: 4561:. Retrieved 4550: 4515: 4511: 4501: 4476: 4472: 4466: 4446: 4439: 4414: 4410: 4404: 4387:. Retrieved 4382: 4373: 4338: 4334: 4324: 4289: 4285: 4275: 4240: 4236: 4226: 4201: 4197: 4191: 4148: 4144: 4134: 4102:(2): 121–3. 4099: 4095: 4085: 4044: 4040: 4034: 3991: 3987: 3977: 3944: 3940: 3934: 3889: 3885: 3875: 3834: 3830: 3824: 3773: 3769: 3735: 3731: 3725: 3684: 3680: 3674: 3639: 3635: 3625: 3590: 3586: 3576: 3541: 3537: 3527: 3508: 3502: 3483: 3466: 3431: 3427: 3381: 3377: 3371: 3338: 3334: 3286: 3282: 3276: 3251: 3247: 3241: 3206: 3202: 3157:(2): 190–1. 3154: 3150: 3137: 3118: 3112: 3077: 3073: 3032:. Retrieved 3027: 3017: 2976: 2972: 2966: 2925: 2921: 2915: 2890: 2886: 2880: 2835: 2831: 2821: 2813: 2807:. Retrieved 2797: 2752: 2748: 2738: 2703: 2699: 2689: 2664: 2660: 2654: 2629: 2625: 2619: 2574: 2570: 2560: 2538:(5): 623–8. 2535: 2531: 2525: 2503:(1): 37–49. 2500: 2496: 2490: 2449: 2445: 2439: 2404: 2400: 2390: 2355: 2351: 2319: 2309: 2290: 2284: 2265: 2259: 2239: 2232: 2197: 2193: 2183: 2138: 2134: 2124: 2089: 2085: 2075: 2040: 2036: 2026: 2001: 1997: 1969: 1963: 1938: 1934: 1900: 1896: 1890: 1787: 1768: 1744: 1719: 1695: 1671: 1646: 1622: 1598: 1574: 1555:5'---CAGCAGN 1546:NN 3'GTCGTCN 1534: 1510: 1486: 1462: 1438: 1414: 1390: 1366: 1342: 1318: 1294: 1270: 1246: 1222: 1198: 1172: 1151:, high-risk 1145: 1141: 1114: 1082: 1062:gene cloning 1055: 1052: 1043:Applications 1021: 1006: 993: 983: 978: 968: 963: 958:Description 940:Nomenclature 926: 921: 915: 909: 902: 894:gene cloning 871: 855: 845: 843: 773: 738: 734:nomenclature 727: 595: 593: 513: 497: 482: 475: 471:"blunt" ends 464: 457: 447: 437: 433: 426: 398: 369:Werner Arber 346: 339:Thomas Kelly 332: 324:Werner Arber 318: 314: 310: 306: 288: 275: 258: 254: 236: 220:endonuclease 202: 201: 197: 193: 189: 185: 183: 6223:Active site 6142:Nuclease S1 5913:Exonuclease 5807:Lecithinase 5636:Calcineurin 5574:Phosphatase 5480:Lipoprotein 5470:Endothelial 4555:Geerlof A. 3341:(1): 1–19. 3289:: 285–319. 2928:(2): 91–6. 2893:(1): 7–16. 2706:(1): 3–19. 2004:: 467–500. 1794:W = A or T 1563:NN ---5' 969:Escherichia 793:) and Mod ( 777:prokaryotic 669:Identifiers 645:homodimeric 434:mirror-like 430:palindromic 303:Jean Weigle 249:. Inside a 203:restrictase 47:Restriction 6473:Categories 6426:Isomerases 6400:Hydrolases 6267:Regulation 5455:Pancreatic 5392:Carboxylic 5328:2008-06-06 5308:2008-06-06 5289:2008-06-06 5269:2008-06-06 5166:2008-06-07 4982:DNA Repair 4563:2008-06-07 4204:(1): 1–8. 3254:: 153–76. 3151:Stem Cells 2809:2008-06-07 1883:References 1167:See also: 1125:paralogues 1078:DNA ligase 809:downstream 781:mechanisms 730:homodimers 493:sticky-end 391:patients. 251:prokaryote 6305:EC number 6032:RNase III 5890:(includes 5831:Sulfatase 5744:Autotaxin 5608:Prostatic 5460:Lysosomal 5375:esterases 5371:Hydrolase 4697:"Mapping" 4096:Zebrafish 3969:205484701 3732:Biochimie 3181:222199041 1542:5'CAGCAGN 1129:mutations 912:Argonaute 834:catalytic 813:methylate 805:enzymatic 741:multimers 701:IPR011335 657:magnesium 610:magnesium 557:magnesium 224:substrate 77:catalyzes 6329:Kinetics 6253:Cofactor 6216:Activity 6126:RNase T1 5888:Nuclease 5523:Cutinase 5318:"REBASE" 5012:18396111 4963:18724932 4914:24284874 4863:22718830 4796:: 28–30. 4775:24597865 4683:15980518 4634:18330346 4542:12654995 4431:20545354 4365:24906146 4316:20699274 4267:20660643 4237:Genetics 4218:21029755 4183:19628861 4126:18554175 4069:19404259 4026:19404258 3961:20717154 3867:17960960 3859:20056882 3808:17379808 3752:12595133 3666:11557806 3617:24966351 3568:22610857 3479:​ 3458:10839821 3406:29672999 3398:12665693 3355:15121719 3173:11897876 3104:11557805 3009:31128438 2958:19989648 2730:24141096 2611:15840723 2552:14187389 2517:13888713 2431:13034700 2382:12999684 2224:17202163 2175:15840723 2116:11557807 1798:See also 1163:Examples 1139:(RFLP). 1093:genotype 955:Meaning 922:in vitro 878:nuclease 785:proteins 770:Type III 696:InterPro 574:2.1.1.72 567:3.1.21.5 553:3.1.21.4 543:2.1.1.72 528:3.1.21.3 465:whereas 389:diabetic 387:used by 277:tool in 267:modifies 239:bacteria 6439:Ligases 6209:Enzymes 6099:RNase E 6094:RNase Z 6089:RNase A 6084:RNase P 6057:RNase H 5675:Phytase 5475:Hepatic 5450:Lingual 5446:Gastric 5202:6260571 5106:2835753 5061:6243774 5003:2483505 4954:2626626 4905:3856413 4882:Viruses 4854:3416169 4766:4084652 4674:1160119 4493:4588280 4356:4343198 4307:3017587 4258:2942870 4174:2831805 4153:Bibcode 4145:Science 4117:2849655 4077:4323298 4049:Bibcode 4017:2743854 3996:Bibcode 3926:8577732 3894:Bibcode 3839:Bibcode 3831:Science 3816:3888761 3778:Bibcode 3770:Science 3717:4354056 3709:1734285 3689:Bibcode 3608:4117772 3559:3424567 3363:1929381 3303:6267988 3268:4949033 3233:8336674 3001:7846533 2981:Bibcode 2973:Science 2950:8919860 2930:Bibcode 2907:7628720 2840:Bibcode 2789:4332003 2757:Bibcode 2721:3874209 2681:5312501 2646:5312500 2602:1087929 2579:Bibcode 2482:4172829 2474:4868368 2454:Bibcode 2322:. VCH. 2215:1899104 2166:1087929 2143:Bibcode 2067:6314109 2018:4897066 1955:2172084 1846:HindIII 1530:EcoP15I 1434:HaeIII* 1266:HindIII 1117:genomic 1105:DNA map 1085:alleles 1060:during 1029:species 1001:strain 862:CRISPRs 846:E. coli 840:Type IV 828:I, the 661:monomer 625:Type II 608:), and 597:E. coli 491:) of a 409:selfish 395:Origins 385:insulin 319:E. coli 315:E. coli 311:E. coli 291:phage λ 285:History 265:) that 255:foreign 247:viruses 243:archaea 73:protein 6489:EC 3.1 6413:Lyases 6037:Drosha 5962:3.1.21 5930:RecBCD 5908:3.1.11 5528:PETase 5436:Lipase 5253:(MeSH) 5220:about 5200:  5142:  5104:  5097:340913 5094:  5059:  5052:327257 5049:  5010:  5000:  4961:  4951:  4912:  4902:  4861:  4851:  4773:  4763:  4722:  4701:Nature 4681:  4671:  4632:  4589:  4540:  4533:152790 4530:  4491:  4454:  4429:  4389:27 May 4363:  4353:  4314:  4304:  4265:  4255:  4216:  4181:  4171:  4124:  4114:  4075:  4067:  4041:Nature 4024:  4014:  3988:Nature 3967:  3959:  3924:  3914:  3865:  3857:  3814:  3806:  3750:  3715:  3707:  3681:Nature 3664:  3654:  3615:  3605:  3566:  3556:  3515:  3490:  3456:  3446:  3404:  3396:  3361:  3353:  3301:  3266:  3231:  3224:372918 3221:  3179:  3171:  3125:  3102:  3092:  3034:10 May 3007:  2999:  2956:  2948:  2905:  2872:358198 2870:  2863:392859 2860:  2787:  2780:389558 2777:  2728:  2718:  2679:  2644:  2609:  2599:  2550:  2515:  2480:  2472:  2446:Nature 2429:  2422:169650 2419:  2380:  2373:169391 2370:  2326:  2297:  2272:  2247:  2222:  2212:  2173:  2163:  2114:  2104:  2065:  2058:281580 2055:  2016:  1976:  1953:  1917:795607 1915:  1506:EcoRV* 1386:PvuII* 1362:Sau3AI 1218:EcoRII 1182:Source 1179:Enzyme 1033:strain 973:genus 905:CRISPR 852:Type V 830:AdoMet 822:motifs 796:P08763 790:P08764 758:dimers 721:SUPFAM 689:CL0236 674:Symbol 618:methyl 590:Type l 489:3' end 485:5' end 375:, and 343:HindII 208:enzyme 206:is an 66:Enzyme 6365:Types 6046:Dicer 6001:;see 5827:3.1.6 5797:PDE4B 5793:PDE4A 5731:3.1.4 5700:IMPA3 5696:IMPA2 5692:IMPA1 5570:3.1.3 5538:3.1.2 5388:3.1.1 4073:S2CID 3965:S2CID 3917:40048 3863:S2CID 3812:S2CID 3713:S2CID 3657:55918 3449:98998 3402:S2CID 3359:S2CID 3177:S2CID 3147:(PDF) 3095:55916 3005:S2CID 2954:S2CID 2478:S2CID 2107:55917 1840:EcoRI 1834:BglII 1482:AluI* 1410:SmaI* 1338:HinFI 1242:BamHI 1194:EcoRI 1157:HIV-1 1149:HSV-2 1037:EcoRI 1025:genus 876:to a 826:motif 717:SCOPe 708:SCOP2 649:EcoRI 612:(Mg) 510:Types 449:EcoRI 198:ENase 194:REase 75:that 6457:list 6450:EC7 6444:list 6437:EC6 6431:list 6424:EC5 6418:list 6411:EC4 6405:list 6398:EC3 6392:list 6385:EC2 6379:list 6372:EC1 5964:-31: 5910:-16: 5896:and 5802:PDE5 5788:PDE3 5783:PDE2 5778:PDE1 5670:PTEN 5655:OCRL 5648:PP2A 5597:ALPP 5592:ALPL 5587:ALPI 5381:3.1) 5198:PMID 5182:Gene 5140:ISBN 5102:PMID 5057:PMID 5008:PMID 4959:PMID 4933:Cell 4910:PMID 4859:PMID 4771:PMID 4720:ISBN 4679:PMID 4630:PMID 4587:ISBN 4538:PMID 4489:PMID 4452:ISBN 4427:PMID 4391:2021 4361:PMID 4335:Cell 4312:PMID 4263:PMID 4214:PMID 4179:PMID 4122:PMID 4065:PMID 4022:PMID 3957:PMID 3922:PMID 3855:PMID 3804:PMID 3748:PMID 3705:PMID 3662:PMID 3613:PMID 3564:PMID 3513:ISBN 3488:ISBN 3476:1qps 3454:PMID 3394:PMID 3351:PMID 3299:PMID 3264:PMID 3229:PMID 3169:PMID 3123:ISBN 3100:PMID 3036:2021 2997:PMID 2946:PMID 2903:PMID 2887:Gene 2868:PMID 2785:PMID 2726:PMID 2677:PMID 2642:PMID 2607:PMID 2548:PMID 2513:PMID 2470:PMID 2427:PMID 2378:PMID 2324:ISBN 2295:ISBN 2270:ISBN 2245:ISBN 2220:PMID 2171:PMID 2112:PMID 2063:PMID 2014:PMID 1974:ISBN 1951:PMID 1935:Gene 1913:PMID 1788:Key: 1764:XbaI 1739:StuI 1715:SphI 1691:SpeI 1666:ScaI 1642:SalI 1618:SacI 1594:PstI 1570:KpnI 1458:HgaI 1314:NotI 1290:TaqI 1188:Cut 1155:and 1153:HPVs 1064:and 1031:and 998:RY13 984:coli 882:FokI 858:cas9 750:DpnI 713:1wte 685:clan 683:Pfam 614:ions 534:and 467:SmaI 326:and 241:and 6119:4/5 5190:doi 5092:PMC 5084:doi 5047:PMC 5039:doi 4998:PMC 4990:doi 4949:PMC 4941:doi 4937:134 4900:PMC 4890:doi 4849:PMC 4841:doi 4761:PMC 4753:doi 4749:370 4669:PMC 4661:doi 4620:doi 4528:PMC 4520:doi 4481:doi 4419:doi 4415:132 4351:PMC 4343:doi 4339:157 4302:PMC 4294:doi 4253:PMC 4245:doi 4241:186 4206:doi 4202:151 4169:PMC 4161:doi 4149:325 4112:PMC 4104:doi 4057:doi 4045:459 4012:PMC 4004:doi 3992:459 3949:doi 3912:PMC 3902:doi 3847:doi 3835:327 3794:hdl 3786:doi 3774:315 3740:doi 3697:doi 3685:355 3652:PMC 3644:doi 3603:PMC 3595:doi 3554:PMC 3546:doi 3472:PDB 3444:PMC 3436:doi 3386:doi 3343:doi 3291:doi 3256:doi 3219:PMC 3211:doi 3159:doi 3090:PMC 3082:doi 2989:doi 2977:267 2938:doi 2895:doi 2891:160 2858:PMC 2848:doi 2775:PMC 2765:doi 2716:PMC 2708:doi 2669:doi 2634:doi 2597:PMC 2587:doi 2575:102 2540:doi 2505:doi 2462:doi 2450:217 2417:PMC 2409:doi 2368:PMC 2360:doi 2210:PMC 2202:doi 2161:PMC 2151:doi 2139:102 2102:PMC 2094:doi 2053:PMC 2045:doi 2006:doi 1943:doi 1905:doi 1550:NN 929:PNA 653:DNA 606:ATP 532:ATP 487:or 322:of 212:DNA 53:DNA 6475:: 6077:2C 6072:2B 6067:2A 6048:: 6039:: 5829:: 5709:: 5698:, 5694:, 5610:)/ 5572:: 5540:: 5509:A2 5504:A1 5390:: 5379:EC 5373:: 5331:. 5301:. 5196:. 5186:11 5184:. 5114:^ 5100:. 5090:. 5078:. 5055:. 5045:. 5033:. 5029:. 5006:. 4996:. 4984:. 4980:. 4957:. 4947:. 4935:. 4931:. 4908:. 4898:. 4884:. 4880:. 4857:. 4847:. 4837:86 4835:. 4831:. 4812:. 4794:38 4792:. 4769:. 4759:. 4747:. 4743:. 4699:. 4677:. 4667:. 4657:33 4655:. 4651:. 4628:. 4616:44 4614:. 4610:. 4536:. 4526:. 4516:31 4514:. 4510:. 4487:. 4477:81 4475:. 4425:. 4413:. 4381:. 4359:. 4349:. 4337:. 4333:. 4310:. 4300:. 4290:39 4288:. 4284:. 4261:. 4251:. 4239:. 4235:. 4212:. 4200:. 4177:. 4167:. 4159:. 4147:. 4143:. 4120:. 4110:. 4098:. 4094:. 4071:. 4063:. 4055:. 4043:. 4020:. 4010:. 4002:. 3990:. 3986:. 3963:. 3955:. 3945:11 3943:. 3920:. 3910:. 3900:. 3890:93 3888:. 3884:. 3861:. 3853:. 3845:. 3833:. 3810:. 3802:. 3792:. 3784:. 3772:. 3760:^ 3746:. 3736:84 3734:. 3711:. 3703:. 3695:. 3683:. 3660:. 3650:. 3640:29 3638:. 3634:. 3611:. 3601:. 3591:42 3589:. 3585:. 3562:. 3552:. 3542:40 3540:. 3536:. 3474:: 3452:. 3442:. 3432:64 3430:. 3426:. 3414:^ 3400:. 3392:. 3382:23 3380:. 3357:. 3349:. 3339:39 3337:. 3325:^ 3311:^ 3297:. 3287:50 3285:. 3262:. 3252:25 3250:. 3227:. 3217:. 3207:57 3205:. 3201:. 3189:^ 3175:. 3167:. 3155:20 3153:. 3149:. 3098:. 3088:. 3078:29 3076:. 3072:. 3044:^ 3026:. 3003:. 2995:. 2987:. 2975:. 2952:. 2944:. 2936:. 2926:42 2924:. 2901:. 2889:. 2866:. 2856:. 2846:. 2836:75 2834:. 2830:. 2812:. 2783:. 2773:. 2763:. 2753:68 2751:. 2747:. 2724:. 2714:. 2704:42 2702:. 2698:. 2675:. 2665:51 2663:. 2640:. 2630:51 2628:. 2605:. 2595:. 2585:. 2573:. 2569:. 2546:. 2534:. 2511:. 2499:. 2476:. 2468:. 2460:. 2448:. 2425:. 2415:. 2405:65 2403:. 2399:. 2376:. 2366:. 2356:64 2354:. 2350:. 2338:^ 2318:. 2218:. 2208:. 2198:35 2196:. 2192:. 2169:. 2159:. 2149:. 2137:. 2133:. 2110:. 2100:. 2090:29 2088:. 2084:. 2061:. 2051:. 2041:47 2039:. 2035:. 2012:. 2002:38 2000:. 1988:^ 1949:. 1939:92 1937:. 1925:^ 1911:. 1899:. 1561:25 1557:25 1548:25 1544:25 1112:. 1080:. 1027:, 979:co 900:. 848:. 719:/ 715:/ 576:). 571:EC 564:EC 550:EC 540:EC 525:EC 506:. 473:: 455:, 371:, 337:, 301:, 281:. 273:. 234:. 200:or 196:, 192:, 188:, 184:A 79:a 71:A 6459:) 6455:( 6446:) 6442:( 6433:) 6429:( 6420:) 6416:( 6407:) 6403:( 6394:) 6390:( 6381:) 6377:( 6201:e 6194:t 6187:v 6114:3 6109:2 6104:1 6062:1 5900:) 5813:) 5809:( 5795:/ 5771:1 5759:D 5754:C 5733:: 5614:/ 5606:( 5514:B 5448:/ 5377:( 5363:e 5356:t 5349:v 5336:. 5311:. 5292:. 5272:. 5204:. 5192:: 5169:. 5148:. 5108:. 5086:: 5063:. 5041:: 5035:8 5014:. 4992:: 4986:7 4965:. 4943:: 4916:. 4892:: 4886:5 4865:. 4843:: 4814:6 4777:. 4755:: 4728:. 4703:. 4685:. 4663:: 4636:. 4622:: 4595:. 4566:. 4544:. 4522:: 4495:. 4483:: 4460:. 4433:. 4421:: 4399:) 4393:. 4367:. 4345:: 4318:. 4296:: 4269:. 4247:: 4220:. 4208:: 4185:. 4163:: 4155:: 4128:. 4106:: 4100:5 4079:. 4059:: 4051:: 4028:. 4006:: 3998:: 3971:. 3951:: 3928:. 3904:: 3896:: 3869:. 3849:: 3841:: 3818:. 3796:: 3788:: 3780:: 3754:. 3742:: 3719:. 3699:: 3691:: 3668:. 3646:: 3619:. 3597:: 3570:. 3548:: 3521:. 3496:. 3460:. 3438:: 3408:. 3388:: 3365:. 3345:: 3305:. 3293:: 3270:. 3258:: 3235:. 3213:: 3183:. 3161:: 3131:. 3106:. 3084:: 3038:. 3011:. 2991:: 2983:: 2960:. 2940:: 2932:: 2909:. 2897:: 2874:. 2850:: 2842:: 2791:. 2767:: 2759:: 2732:. 2710:: 2683:. 2671:: 2648:. 2636:: 2613:. 2589:: 2581:: 2554:. 2542:: 2536:8 2519:. 2507:: 2501:5 2484:. 2464:: 2456:: 2433:. 2411:: 2384:. 2362:: 2332:. 2303:. 2278:. 2253:. 2226:. 2204:: 2177:. 2153:: 2145:: 2118:. 2096:: 2069:. 2047:: 2020:. 2008:: 1982:. 1957:. 1945:: 1919:. 1907:: 1901:4 1741:* 1668:* 1131:( 1007:I 994:R 964:E 173:e 166:t 159:v 20:)

Index

Restriction endonucleases

DNA
Enzyme
protein
catalyzes
chemical reaction
Molecular recognition
Recognition sequence
Restriction site
Restriction fragment
v
t
e
enzyme
DNA
restriction sites
endonuclease
substrate
sugar-phosphate backbone
DNA double helix
bacteria
archaea
viruses
prokaryote
methyltransferase
modifies
restriction modification system
molecular cloning
phage λ

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑