Knowledge

Astrophysical jet

Source 📝

500: 484: 445: 465: 31: 414: 402:). X-ray observations have been obtained, but there is no detected radio signature nor accretion disk. Initially, this pulsar was presumed to be rapidly spinning, but later measurements indicate the spin rate is only 15.9 Hz. Such a slow spin rate and lack of accretion material suggest the jet is neither rotation nor accretion powered, though it appears aligned with the pulsar rotation axis and perpendicular to the pulsar's true motion. 430: 383: 245: 348:. However, the frequency of high-energy astrophysical sources with jets suggests combinations of different mechanisms indirectly identified with the energy within the associated accretion disk and X-ray emissions from the generating source. Two early theories have been used to explain how energy can be transferred from a black hole into an astrophysical jet: 336:, while others are consistent with jets composed of positron–electron plasma. Trace nuclei swept up in a relativistic positron–electron jet would be expected to have extremely high energy, as these heavier nuclei should attain velocity equal to the positron and electron velocity. 355:. This theory explains the extraction of energy from magnetic fields around an accretion disk, which are dragged and twisted by the spin of the black hole. Relativistic material is then feasibly launched by the tightening of the field lines. 499: 483: 444: 1039:
Georganopoulos, M.; Kazanas, D.; Perlman, E.; Stecker, F. W. (2005). "Bulk Comptonization of the Cosmic Microwave Background by Extragalactic Jets as a Probe of Their Matter Content".
369:
to be able to extract relativistic particle energy and momentum, and subsequently shown to be a possible mechanism for jet formation. This effect includes using general relativistic
282:. Beam lengths may extend between several thousand, hundreds of thousands or millions of parsecs. Jet velocities when approaching the speed of light show significant effects of the 258:
Relativistic jets are beams of ionised matter accelerated close to the speed of light. Most have been observationally associated with central black holes of some
680: 324:
Mechanisms behind the composition of jets remain uncertain, though some studies favour models where jets are composed of an electrically neutral mixture of
464: 1185: 293:
Massive central black holes in galaxies have the most powerful jets, but their structure and behaviours are similar to those of smaller galactic
1347:
Williams, R. K. (2004). "Collimated Escaping Vortical Polar e−e+Jets Intrinsically Produced by Rotating Black Holes and Penrose Processes".
1601:
Blandford, Roger; Agol, Eric; Broderick, Avery; Heyl, Jeremy; Koopmans, Leon; Lee, Hee-Won (2001). "Compact Objects and Accretion Disks".
1094:
Hirotani, K.; Iguchi, S.; Kimura, M.; Wajima, K. (2000). "Pair Plasma Dominance in the Parsec-Scale Relativistic Jet of 3C 345".
829: 1650: 1619: 1302:(1995). "Extracting X-rays, Ύ-rays, and relativistic ee pairs from supermassive Kerr black holes using the Penrose mechanism". 413: 344:
Because of the enormous amount of energy needed to launch a relativistic jet, some jets are possibly powered by spinning
1256: 155:
are organised to aim two diametrically opposing beams away from the central source by angles only several degrees wide
429: 131:
The formation and powering of astrophysical jets are highly complex phenomena that are associated with many types of
833: 548:, elliptical galaxy located 600 million light-years from Earth, known for having the longest galactic jet discovered 17: 964:
Dereli-Bégué, Hüsne; Pe’er, Asaf; Ryde, Felix; Oates, Samantha R.; Zhang, Bing; Dainotti, Maria G. (2022-09-24).
493:, an extragalactic jet of material moving at nearly the speed of light can be seen at the three o'clock position. 1161: 1645: 1532:
Halpern, J. P.; et al. (2014). "Discovery of X-ray Pulsations from the INTEGRAL Source IGR J11014-6103".
61: 530: 352: 1478: 788: 916:"Jet Velocity in SS 433: Its Anticorrelation with Precession-Cone Angle and Dependence on Orbital Phase" 631: 1534: 1349: 1234: 1096: 1041: 191: 69: 577: 1595: 1590: 318: 259: 175: 171: 57: 46: 1635: 639: 585: 535: 252: 207: 202:(GRB). Jets on a much smaller scale (~parsecs) may be found in star forming regions, including 1470: 1254:
Penrose, R. (2002). ""Golden Oldie": Gravitational Collapse: The Role of General Relativity".
248: 132: 1501: 1439: 1640: 1553: 1497: 1435: 1368: 1313: 1265: 1243: 1204: 1115: 1060: 987: 872: 760: 705: 644: 590: 287: 8: 211: 1557: 1372: 1317: 1269: 1247: 1208: 1119: 1064: 991: 876: 764: 709: 648: 594: 1602: 1569: 1543: 1513: 1487: 1451: 1425: 1384: 1358: 1281: 1194: 1131: 1105: 1076: 1050: 1016: 977: 966:"A wind environment and Lorentz factors of tens explain gamma-ray bursts X-ray plateau" 965: 927: 896: 862: 729: 695: 283: 271: 160: 125: 1565: 1573: 1517: 1329: 1285: 1021: 1003: 915: 888: 853: 733: 721: 681:"A rapidly changing jet orientation in the stellar-mass black-hole system V404 Cygni" 366: 139:, whose active processes are commonly connected with compact central objects such as 81: 1455: 1135: 1080: 1561: 1505: 1443: 1402: 1388: 1376: 1321: 1273: 1212: 1123: 1068: 1011: 995: 937: 900: 880: 768: 713: 652: 598: 451: 370: 227: 35: 1509: 1447: 1304: 1148: 551: 540: 525: 455: 391: 358: 314: 215: 199: 1416:
Pavan, L.; et al. (2015). "A closer view of the IGR J11014-6103 outflows".
815: 999: 520: 362: 325: 310: 231: 164: 152: 136: 117: 27:
Beam of ionized matter flowing along the axis of a rotating astronomical object
1615: 1277: 1232:
Penrose, R. (1969). "Gravitational Collapse: The Role of General Relativity".
1217: 1180: 773: 748: 717: 1629: 1325: 1299: 1007: 294: 884: 509:, which contains the highest concentration of jets known anywhere in the sky 390:
Jets may also be observed from spinning neutron stars. An example is pulsar
1607: 1403:"Chandra :: Photo Album :: IGR J11014-6103 :: June 28, 2012" 1333: 1025: 892: 725: 545: 275: 263: 203: 195: 183: 144: 49: 832:. Yale University – Office of Public Affairs. 20 June 2006. Archived from 458:(the viewing field is larger and rotated with respect to the above image.) 1363: 1199: 1110: 1055: 932: 867: 471: 435: 302: 210:; these objects are partially formed by the interaction of jets with the 38: 30: 657: 603: 386:
The pulsar IGR J11014-6103 with supernova remnant origin, nebula and jet
345: 298: 140: 109: 42: 556: 395: 219: 105: 93: 848: 382: 1430: 1380: 1127: 1072: 1038: 982: 942: 700: 506: 490: 333: 329: 223: 113: 1548: 1492: 116:. When this greatly accelerated matter in the beam approaches the 420: 1471:"The long helical jet of the Lighthouse nebula, IGR J11014-6103" 398:, and whose velocity is estimated at 80% the speed of light (0.8 190:
in length. Other astronomical objects that contain jets include
830:"Evidence for Ultra-Energetic Particles in Jet from Black Hole" 475: 306: 279: 267: 187: 179: 148: 85: 77: 65: 53: 1181:"Electromagnetic extraction of energy from Kerr black holes" 186:
or within galaxy clusters. Such jets can exceed millions of
1165: 89: 73: 1600: 1093: 963: 244: 84:(WFI) on the MPG/ESO 2.2 m telescope located at La Silla, 361:. Here energy is extracted from a rotating black hole by 1616:
Hubble Video Shows Shock Collision inside Black Hole Jet
170:
Most of the largest and most active jets are created by
846: 816:"Hubble Detects Faster-Than-Light Motion in Galaxy M87" 377: 313:. Relativistic jet formation may also explain observed 1596:
SPACE.com – Twisted Physics: How Black Holes Spout Off
1591:
NASA – Ask an Astrophysicist: Black Hole Bipolar Jets
632:"A Uniform Description of All the Astrophysical Jets" 339: 317:, which have the most relativistic jets known, being 135:. They likely arise from dynamic interactions within 1149:
Electron–positron Jets Associated with Quasar 3C 279
849:"Simulations of Jets Driven by Black Hole Rotation" 394:, which has the largest jet so far observed in the 1186:Monthly Notices of the Royal Astronomical Society 1162:"Vast Cloud of Antimatter Traced to Binary Stars" 1627: 847:Semenov, V.; Dyadechkin, S.; Punsly, B. (2004). 41:, with its plasma jets extending over a million 1178: 112:matter are emitted as extended beams along the 309:jet, for example, has a mean velocity of 0.26 1522:Long helical jet of Lighthouse nebula page 7 1142: 678: 251:emitting a relativistic jet, as seen by the 290:that changes the apparent beam brightness. 1159: 365:, which was later theoretically proven by 1606: 1547: 1491: 1429: 1362: 1216: 1198: 1109: 1054: 1015: 981: 941: 931: 866: 772: 699: 656: 602: 1346: 1298: 1179:Blandford, R. D.; Znajek, R. L. (1977). 913: 381: 243: 29: 1531: 1253: 1231: 813: 625: 623: 621: 14: 1628: 438:in x-rays showing the relativistic jet 305:and show a large range of velocities. 301:. These SMBH systems are often called 1468: 1415: 914:Blundell, Katherine (December 2008). 746: 629: 575: 1153: 618: 378:Relativistic jets from neutron stars 237: 1160:Naeye, R.; Gutro, R. (2008-01-09). 24: 1257:General Relativity and Gravitation 789:"Star sheds via reverse whirlpool" 679:Miller-Jones, James (April 2019). 419:Illustration of the dynamics of a 340:Rotation as possible energy source 151:. One explanation is that tangled 25: 1662: 1584: 753:Acta Polytechnica CTU Proceedings 474:image of the relativistic jet in 159:Jets may also be influenced by a 749:"A review of Astrophysical Jets" 578:"A Review of Astrophysical Jets" 498: 482: 463: 443: 428: 412: 133:high-energy astronomical sources 92:and the galaxy's characteristic 1525: 1469:Pavan, L.; et al. (2014). 1462: 1409: 1395: 1340: 1292: 1225: 1172: 1087: 1032: 957: 405: 45:, is considered as the closest 907: 840: 822: 807: 781: 740: 672: 569: 64:on APEX, are shown in orange. 13: 1: 1651:Stellar astrophysics concepts 562: 108:phenomenon where outflows of 1479:Astronomy & Astrophysics 1418:Astronomy & Astrophysics 284:special theory of relativity 218:may also be associated with 120:, astrophysical jets become 7: 1566:10.1088/2041-8205/795/2/L27 1510:10.1051/0004-6361/201322588 1448:10.1051/0004-6361/201527703 514: 470:Hubble Legacy Archive Near- 10: 1667: 1000:10.1038/s41467-022-32881-1 814:Biretta, J. (6 Jan 1999). 192:cataclysmic variable stars 124:as they show effects from 96:in close to "true colour". 1535:The Astrophysical Journal 1350:The Astrophysical Journal 1235:Rivista del Nuovo Cimento 1097:The Astrophysical Journal 1042:The Astrophysical Journal 920:The Astrophysical Journal 774:10.14311/APP.2014.01.0259 718:10.1038/s41586-019-1152-0 70:Chandra X-ray Observatory 1326:10.1103/PhysRevD.51.5387 531:Blandford–Znajek process 450:The M87 jet seen by the 353:Blandford–Znajek process 174:(SMBH) in the centre of 172:supermassive black holes 1502:2014A&A...562A.122P 1440:2016A&A...591A..91P 1278:10.1023/A:1016578408204 1218:10.1093/mnras/179.3.433 885:10.1126/science.1100638 270:, and also by galactic 640:Proceedings of Science 586:Proceedings of Science 387: 255: 253:Hubble Space Telescope 97: 88:, show the background 1646:Concepts in astronomy 970:Nature Communications 576:Beall, J. H. (2015). 385: 249:Elliptical galaxy M87 247: 33: 747:Beall, J. H (2014). 505:Some of the jets in 288:relativistic beaming 1558:2014ApJ...795L..27H 1373:2004ApJ...611..952W 1318:1995PhRvD..51.5387W 1270:2002GReGr..34.1141P 1248:1969NCimR...1..252P 1209:1977MNRAS.179..433B 1120:2000ApJ...545..100H 1065:2005ApJ...625..656G 992:2022NatCo..13.5611D 877:2004Sci...305..978S 765:2014mbhe.conf..259B 710:2019Natur.569..374M 658:10.22323/1.246.0058 649:2015mbhe.confE..58B 604:10.22323/1.246.0058 595:2015mbhe.confE..58B 272:stellar black holes 212:interstellar medium 208:Herbig–Haro objects 1608:astro-ph/0107228v1 795:. 27 December 2007 630:Kundt, W. (2014). 536:Herbig–Haro object 388: 256: 222:, or with evolved 161:general relativity 126:special relativity 98: 1312:(10): 5387–5427. 861:(5686): 978–980. 694:(7756): 374–377. 423:, including a jet 367:Reva Kay Williams 359:Penrose mechanism 319:ultrarelativistic 238:Relativistic jets 228:planetary nebulae 122:relativistic jets 102:astrophysical jet 82:Wide Field Imager 56:. The 870-micron 16:(Redirected from 1658: 1612: 1610: 1578: 1577: 1551: 1529: 1523: 1521: 1495: 1475: 1466: 1460: 1459: 1433: 1413: 1407: 1406: 1399: 1393: 1392: 1366: 1364:astro-ph/0404135 1344: 1338: 1337: 1296: 1290: 1289: 1264:(7): 1141–1165. 1251: 1229: 1223: 1222: 1220: 1202: 1200:astro-ph/0506302 1176: 1170: 1169: 1157: 1151: 1146: 1140: 1139: 1113: 1111:astro-ph/0005394 1091: 1085: 1084: 1058: 1056:astro-ph/0502201 1036: 1030: 1029: 1019: 985: 961: 955: 954: 952: 950: 945: 935: 933:astro-ph/0410457 911: 905: 904: 870: 868:astro-ph/0408371 844: 838: 837: 826: 820: 819: 811: 805: 804: 802: 800: 785: 779: 778: 776: 744: 738: 737: 703: 685: 676: 670: 669: 667: 665: 660: 636: 627: 616: 615: 613: 611: 606: 582: 573: 502: 486: 467: 452:Very Large Array 447: 432: 416: 371:gravitomagnetism 315:gamma-ray bursts 216:Bipolar outflows 200:gamma-ray bursts 163:effect known as 158: 114:axis of rotation 36:starburst galaxy 21: 18:Relativistic jet 1666: 1665: 1661: 1660: 1659: 1657: 1656: 1655: 1626: 1625: 1587: 1582: 1581: 1530: 1526: 1473: 1467: 1463: 1414: 1410: 1401: 1400: 1396: 1345: 1341: 1305:Physical Review 1300:Williams, R. K. 1297: 1293: 1230: 1226: 1177: 1173: 1158: 1154: 1147: 1143: 1092: 1088: 1037: 1033: 962: 958: 948: 946: 912: 908: 845: 841: 828: 827: 823: 812: 808: 798: 796: 787: 786: 782: 745: 741: 683: 677: 673: 663: 661: 634: 628: 619: 609: 607: 580: 574: 570: 565: 552:Gamma-ray burst 541:Penrose process 526:Bipolar outflow 517: 510: 503: 494: 487: 478: 468: 459: 456:radio frequency 448: 439: 433: 424: 417: 408: 392:IGR J11014-6103 380: 342: 286:; for example, 260:active galaxies 240: 232:bipolar nebulae 176:active galaxies 156: 153:magnetic fields 137:accretion disks 28: 23: 22: 15: 12: 11: 5: 1664: 1654: 1653: 1648: 1643: 1638: 1624: 1623: 1613: 1598: 1593: 1586: 1585:External links 1583: 1580: 1579: 1524: 1461: 1408: 1394: 1381:10.1086/422304 1357:(2): 952–963. 1339: 1291: 1252:Reprinted in: 1224: 1171: 1152: 1141: 1128:10.1086/317769 1104:(1): 100–106. 1086: 1073:10.1086/429558 1049:(2): 656–666. 1031: 956: 943:10.1086/429663 906: 839: 836:on 2008-05-13. 821: 806: 780: 759:(1): 259–264. 739: 671: 617: 567: 566: 564: 561: 560: 559: 554: 549: 543: 538: 533: 528: 523: 521:Accretion disk 516: 513: 512: 511: 504: 497: 495: 488: 481: 479: 469: 462: 460: 449: 442: 440: 434: 427: 425: 418: 411: 407: 404: 379: 376: 375: 374: 363:frame dragging 356: 341: 338: 264:radio galaxies 239: 236: 196:X-ray binaries 184:radio galaxies 165:frame-dragging 118:speed of light 80:data from the 68:data from the 26: 9: 6: 4: 3: 2: 1663: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1636:Space plasmas 1634: 1633: 1631: 1621: 1617: 1614: 1609: 1604: 1599: 1597: 1594: 1592: 1589: 1588: 1575: 1571: 1567: 1563: 1559: 1555: 1550: 1545: 1541: 1537: 1536: 1528: 1519: 1515: 1511: 1507: 1503: 1499: 1494: 1489: 1486:(562): A122. 1485: 1481: 1480: 1472: 1465: 1457: 1453: 1449: 1445: 1441: 1437: 1432: 1427: 1423: 1419: 1412: 1404: 1398: 1390: 1386: 1382: 1378: 1374: 1370: 1365: 1360: 1356: 1352: 1351: 1343: 1335: 1331: 1327: 1323: 1319: 1315: 1311: 1307: 1306: 1301: 1295: 1287: 1283: 1279: 1275: 1271: 1267: 1263: 1259: 1258: 1249: 1245: 1241: 1237: 1236: 1228: 1219: 1214: 1210: 1206: 1201: 1196: 1192: 1188: 1187: 1182: 1175: 1167: 1163: 1156: 1150: 1145: 1137: 1133: 1129: 1125: 1121: 1117: 1112: 1107: 1103: 1099: 1098: 1090: 1082: 1078: 1074: 1070: 1066: 1062: 1057: 1052: 1048: 1044: 1043: 1035: 1027: 1023: 1018: 1013: 1009: 1005: 1001: 997: 993: 989: 984: 979: 975: 971: 967: 960: 944: 939: 934: 929: 925: 921: 917: 910: 902: 898: 894: 890: 886: 882: 878: 874: 869: 864: 860: 856: 855: 850: 843: 835: 831: 825: 817: 810: 794: 793:Astronomy.com 790: 784: 775: 770: 766: 762: 758: 754: 750: 743: 735: 731: 727: 723: 719: 715: 711: 707: 702: 697: 693: 689: 682: 675: 659: 654: 650: 646: 642: 641: 633: 626: 624: 622: 605: 600: 596: 592: 588: 587: 579: 572: 568: 558: 555: 553: 550: 547: 544: 542: 539: 537: 534: 532: 529: 527: 524: 522: 519: 518: 508: 501: 496: 492: 485: 480: 477: 473: 466: 461: 457: 453: 446: 441: 437: 431: 426: 422: 415: 410: 409: 403: 401: 397: 393: 384: 372: 368: 364: 360: 357: 354: 351: 350: 349: 347: 337: 335: 331: 327: 322: 320: 316: 312: 308: 304: 300: 296: 295:neutron stars 291: 289: 285: 281: 277: 276:neutron stars 273: 269: 265: 261: 254: 250: 246: 242: 235: 233: 229: 225: 221: 217: 213: 209: 205: 204:T Tauri stars 201: 197: 193: 189: 185: 181: 177: 173: 168: 166: 162: 157:(c. > 1%). 154: 150: 146: 145:neutron stars 142: 138: 134: 129: 127: 123: 119: 115: 111: 107: 103: 95: 91: 87: 83: 79: 78:Visible light 75: 72:are shown in 71: 67: 63: 59: 58:submillimetre 55: 51: 48: 44: 40: 37: 32: 19: 1539: 1533: 1527: 1483: 1477: 1464: 1421: 1417: 1411: 1397: 1354: 1348: 1342: 1309: 1303: 1294: 1261: 1255: 1239: 1233: 1227: 1190: 1184: 1174: 1155: 1144: 1101: 1095: 1089: 1046: 1040: 1034: 973: 969: 959: 947:. Retrieved 923: 919: 909: 858: 852: 842: 834:the original 824: 809: 797:. Retrieved 792: 783: 756: 752: 742: 691: 687: 674: 662:. Retrieved 638: 608:. Retrieved 584: 571: 546:CGCG 049-033 406:Other images 399: 389: 343: 323: 303:microquasars 292: 257: 241: 169: 130: 121: 106:astronomical 101: 99: 50:radio galaxy 1641:Black holes 1242:: 252–276. 976:(1): 5611. 664:19 February 610:19 February 436:Centaurus A 346:black holes 299:black holes 141:black holes 60:data, from 43:light years 39:Centaurus A 1630:Categories 1542:(2): L27. 1431:1511.01944 1193:(3): 433. 983:2207.11066 949:15 January 926:(2): 129. 701:1906.05400 563:References 220:protostars 1574:118637856 1549:1410.2332 1518:118845324 1493:1309.6792 1286:117459073 1008:2041-1723 734:139106116 557:Solar jet 396:Milky Way 334:positrons 330:electrons 94:dust lane 1456:59522014 1334:10018300 1136:17274015 1081:39743397 1026:36153328 893:15310894 726:31036949 515:See also 507:HH 24-26 491:NGC 3862 224:post-AGB 178:such as 1620:Article 1554:Bibcode 1498:Bibcode 1436:Bibcode 1424:: A91. 1389:1350543 1369:Bibcode 1314:Bibcode 1266:Bibcode 1244:Bibcode 1205:Bibcode 1116:Bibcode 1061:Bibcode 1017:9509382 988:Bibcode 901:1590734 873:Bibcode 854:Science 761:Bibcode 706:Bibcode 645:Bibcode 591:Bibcode 489:Galaxy 421:proplyd 280:pulsars 268:quasars 226:stars, 188:parsecs 180:quasars 149:pulsars 110:ionised 1572:  1516:  1454:  1387:  1332:  1284:  1134:  1079:  1024:  1014:  1006:  899:  891:  799:26 May 732:  724:  688:Nature 643:: 58. 589:: 58. 476:3C 66B 332:, and 326:nuclei 307:SS 433 104:is an 62:LABOCA 47:active 1603:arXiv 1570:S2CID 1544:arXiv 1514:S2CID 1488:arXiv 1474:(PDF) 1452:S2CID 1426:arXiv 1385:S2CID 1359:arXiv 1282:S2CID 1195:arXiv 1132:S2CID 1106:arXiv 1077:S2CID 1051:arXiv 978:arXiv 928:arXiv 897:S2CID 863:arXiv 730:S2CID 696:arXiv 684:(PDF) 635:(PDF) 581:(PDF) 90:stars 86:Chile 66:X-ray 54:Earth 1330:PMID 1166:NASA 1022:PMID 1004:ISSN 951:2021 889:PMID 801:2015 722:PMID 666:2017 612:2017 297:and 230:and 206:and 198:and 182:and 74:blue 34:The 1562:doi 1540:795 1506:doi 1484:562 1444:doi 1422:591 1377:doi 1355:611 1322:doi 1274:doi 1213:doi 1191:179 1124:doi 1102:545 1069:doi 1047:625 1012:PMC 996:doi 938:doi 924:622 881:doi 859:305 769:doi 714:doi 692:569 653:doi 599:doi 454:in 278:or 266:or 147:or 100:An 52:to 1632:: 1568:. 1560:. 1552:. 1538:. 1512:. 1504:. 1496:. 1482:. 1476:. 1450:. 1442:. 1434:. 1420:. 1383:. 1375:. 1367:. 1353:. 1328:. 1320:. 1310:51 1308:. 1280:. 1272:. 1262:34 1260:. 1238:. 1211:. 1203:. 1189:. 1183:. 1164:. 1130:. 1122:. 1114:. 1100:. 1075:. 1067:. 1059:. 1045:. 1020:. 1010:. 1002:. 994:. 986:. 974:13 972:. 968:. 936:. 922:. 918:. 895:. 887:. 879:. 871:. 857:. 851:. 791:. 767:. 755:. 751:. 728:. 720:. 712:. 704:. 690:. 686:. 651:. 637:. 620:^ 597:. 583:. 472:UV 328:, 321:. 274:, 262:, 234:. 214:. 194:, 167:. 143:, 128:. 76:. 1622:) 1618:( 1611:. 1605:: 1576:. 1564:: 1556:: 1546:: 1520:. 1508:: 1500:: 1490:: 1458:. 1446:: 1438:: 1428:: 1405:. 1391:. 1379:: 1371:: 1361:: 1336:. 1324:: 1316:: 1288:. 1276:: 1268:: 1250:. 1246:: 1240:1 1221:. 1215:: 1207:: 1197:: 1168:. 1138:. 1126:: 1118:: 1108:: 1083:. 1071:: 1063:: 1053:: 1028:. 998:: 990:: 980:: 953:. 940:: 930:: 903:. 883:: 875:: 865:: 818:. 803:. 777:. 771:: 763:: 757:1 736:. 716:: 708:: 698:: 668:. 655:: 647:: 614:. 601:: 593:: 400:c 373:. 311:c 20:)

Index

Relativistic jet

starburst galaxy
Centaurus A
light years
active
radio galaxy
Earth
submillimetre
LABOCA
X-ray
Chandra X-ray Observatory
blue
Visible light
Wide Field Imager
Chile
stars
dust lane
astronomical
ionised
axis of rotation
speed of light
special relativity
high-energy astronomical sources
accretion disks
black holes
neutron stars
pulsars
magnetic fields
general relativity

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.