Knowledge

Regular moon

Source 📝

2949: 22: 403: 553: 290: 2943: 2955: 2757: 200:. Multiple generations of regular satellite systems may have formed around the giant planets before interactions with the circumplanetary disc and with each other resulted in inward spiralling into the parent planet. As gas inflow into the parent planet begins to end, the effects of gas-induced migration decrease, allowing for a final generation of moons to survive. 443:
is unusual as, in contrast to most other regular moons of the giant planets, Io is rocky in composition with extremely little water. Io's high levels of volcanism instead erupt large basaltic flows which continuously resurfaces the moon, whilst also ejecting large volumes of sulfur and sulfur dioxide
584:
are responsible for Jupiter's unusually extensive magnetosphere, generating an internal pressure which inflates it from within. Jupiter's intense magnetic field also couples an intense flux tube with Io's atmosphere and its associated neutral cloud to Jupiter's polar upper atmosphere, generating an
452:
Significant atmospheres on regular moons are rare, likely due to the comparatively small sizes of most regular moons leading to high rates of atmospheric escape. Thinner atmospheres have been detected on several regular moons; the Galilean moons all have known atmospheres. The sparse atmospheres of
572:
raised by the Moon on the Earth. Just as Earth raises tidal bulges on the Moon which results in tidal locking, the Moon raises tidal bulges on the Earth which manifest most noticeably as the rising and falling of the local sea level roughly diurnally (though local coastal topography can result in
219:
are thought to have originated from giant impacts between two protoplanets early in the Solar System's history. These impacts ejected a dense disc of debris into orbit whence satellites can accrete. The giant impact model has also been applied to explain the origin of other dwarf planet satellite
317:
relative to their parent body. These traits are largely constrained by their origins and subsequent tidal interactions with the parent body. In the case of the giant planet satellite systems, much like protoplanetary discs, infalling material surrounding a forming planet flattens out into a disc
346:
which can sustain geological activity. A particularly apparent example of this is the 1:2:4 mean-motion resonance (MMR) chain Io, Europa, and Ganymede participate in, contributing to Io's volcanism and Europa's liquid subsurface ocean. Orbital resonances and near-resonances can also act as a
597:
Due to their ability to support large internal volumes of liquid water, regular moons of the outer Solar System are of particular interest to scientists as targets in the search for extraterrestrial life. Subsurface oceans are believed to be capable of hosting complex organic chemistry, an
516:
due to Titan's gravitational influence on its irregular shape; Hyperion's chaotic rotation may be further facilitated by its 3:4 orbital resonance with Titan. The four small circumbinary moons of Pluto, which are similarly elongated, also rotate chaotically under the influence of
322:. As a consequence, any moons formed from the circumplanetary disc will orbit roughly coplanar with the planet's equator; even if future perturbations increase a moon's inclination, tidal effects work to eventually decrease it back to a coplanar state. Likewise, 484:). As Io's surface temperature is below the deposition point of sulfur dioxide, most of the outgassed material quickly freezes onto its surface, though it remains uncertain whether volcanic outgassing or sublimation is the dominant supporter of Io's atmosphere. 220:
systems, including Eris's moon Dysnomia, Orcus's moon Vanth, and Haumea's ring and two moons. In contrast to regular moon systems of the giant planets, giant impacts can give rise to unusually massive satellites; Charon's mass ratio to Pluto is roughly 0.12.
231:—would have severely disrupted the existing primordial moon system. Once Triton was tidally dampened into a lower-eccentricity orbit, the debris resulting from the disruption of the primordial moons re-accreted into the current regular moons of Neptune. 598:
expectation which was supported after the potential indirect detection of various salts in Europa's ocean and the detection of organic compounds and hydrogen cyanide in Enceladus's plumes. As a result, dedicated missions to investigate the nature and
347:
stabilizing and shepherding mechanism, allowing for moons to be closely packed whilst still remaining stable, as is thought to be the case with Pluto's small outer moons. A small handful of regular moons have been discovered to participate in various
495:
on its surface. The complex interactions between Titan's thick, hazy atmosphere, its surface, and its 'hydrocarbon cycle' have led to the creation of many unusual features, including canyons and floodplains eroded by rivers, possible
280:
formation of Phobos and Deimos have been proposed to better explain their origins and current configuration, including a giant impact scenario similar to the one which formed the Moon and a 'recycling' model for Phobos.
2246:
SzakĂĄts, R.; Kiss, Cs.; Ortiz, J. L.; Morales, N.; PĂĄl, A.; MĂŒller, T. G.; et al. (2023). "Tidally locked rotation of the dwarf planet (136199) Eris discovered from long-term ground based and space photometry".
820:
Young, Edward D.; Kohl, Issaku E.; Warren, Paul H.; Rubie, David C.; Jacobson, Seth A.; Morbidelli, Alessandro (29 January 2016). "Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact".
341:
are a common feature in regular moon systems and are a crucial aspect in their evolution and structure. Such resonances can excite the eccentricity and inclination of participating moons, leading to appreciable
444:
into its tenuous atmosphere. Analogous to the subsurface oceans of liquid water on icy moons such as Europa, Io may have a subsurface ocean of silicate magma beneath its crust, fuelling Io's volcanic activity.
529:, the larger outer moon of Haumea, was revealed to have a very rapid rotational period of approximately 9.8 hours via lightcurve data, approximately 120 times faster than its orbital period. Results for 326:
acts to decrease the eccentricity of the regular moons by dissipating energy towards a circular orbit, which is a minimum-energy state. Several regular moons do depart from these orbital traits, such as
663:. The probe intends to launch in 2026, arriving at Mars by 2027 and collecting data about Phobos before collecting a surface sample from the moon and returning to Earth by 2031. A major goal of 417:
Of the nineteen regular moons large enough to be gravitationally rounded, several of them show geological activity, and many more exhibit signs of past activity. Several regular moons, such as
106:, although only one regular moon—Titan—hosts a significant atmosphere capable of supporting weather and climate. As a result of their complexity, the rounded regular moons are often considered 536:
Uniquely, Charon is large enough to have also tidally locked Pluto, creating a mutual tidally locked state where Charon is only visible from one hemisphere of Pluto and vice versa. Similarly,
1206: 580:
in a roughly toroidal region surrounding Io's orbit as well as a neutral cloud of sulfur, oxygen, sodium, and potassium atoms which immediately surround the moon. Escaping ions from the
1616:
Iess, L.; Jacobson, R. A.; Ducci, M.; Stevenson, D. J.; Lunine, Jonathan I.; Armstrong, J. W.; Asmar, S. W.; Racioppa, P.; Rappaport, N. J.; Tortora, P. (2012). "The Tides of Titan".
2657:
Weiss, P.; Yung, K. L.; Kömle, N.; Ko, S. M.; Kaufmann, E.; Kargl, G. (2011). "Thermal drill sampling system onboard high-velocity impactors for exploring the subsurface of Europa".
385:'. Shepherd moons may also act as a direct source of ring material ejected from impacts. The material may then be corralled by the moon in its orbital path, as is the case with the 335:
unusually inclined orbit, but in these cases, orbital eccentricity and inclination are often increased and subsequently maintained by resonant interactions with neighboring moons.
110:
in their own right by planetary scientists. In contrast, the smallest regular moons lack active geology. Most are heavily cratered and irregular in shape, often resembling small
896:
Stern, SA; Weaver, HA; Steffl, AJ; Mutchler, MJ; et al. (2006). "A giant impact origin for Pluto's small natural satellites and satellite multiplicity in the Kuiper belt".
223:
Regular moons may also originate from secondary disruption events, being fragments of other regular moons following collisions or due to tidal disruption. The regular moons of
196:
are generally believed to have formed from accreting material within circumplanetary discs, growing progressively from smaller moonlets in a manner similar to the formation of
2713: 3550: 2149: 433:
of liquid water, maintained by tidal heating from their respective parent planets. These subsurface oceans can drive a variety of geological processes, including widespread
266:
However, the capture model may be inconsistent with the small, low-eccentricity, low-inclination orbits of the two moons, which are more typical of regular satellites. The
675:
is a mission under development by NASA to send a robotic rotorcraft to the surface of Titan with the goal of researching Titan's complex atmospheric and ground chemistry.
1791:
Keszthelyi, L.; et al. (2001). "Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission".
1734: 87: 2171:
Hastings, Danielle M.; Ragozzine, Darin; Fabrycky, Daniel C.; Burkhart, Luke D.; Fuentes, Cesar; Margot, Jean-Luc; Brown, Michael E.; Holman, Matthew (December 2016).
533:
were less clear, potentially pointing towards a slower rotational period or a pole-on configuration, with a significant axial tilt relative to its orbital plane.
751: 2813:
E. P. Turtle, J. W. Barnes, M. G. Trainer, R. D. Lorenz, S. M. MacKenzie, K. E. Hibbard, D. Adams, P. Bedini, J. W. Langelaan, K. Zacny, and the Dragonfly Team
2635: 2875: 381:
can gravitationally interact with nearby material, either confining material into narrow ringlets or clearing out gaps within a ring in a process known as '
568:
Due to their close nature and long, shared histories, regular moons can have a significant influence on their primary. A familiar example of this are the
276:
orbiter have revealed that the moon's surface is basaltic in composition, more consistent with an origin around Mars. As a result, various models for the
832: 2405:
Hao, Jihua; Glein, Christopher R.; Huang, Fang; Yee, Nathan; Catling, David C.; Postberg, Frank; Hillier, Jon K.; Hazen, Robert M. (27 September 2022).
1390: 647:, intending to conduct 44 flybys of Europa to better investigate Europa's interior and plume activity. The spacecraft intends to launch on October 2024. 1553:"Turbulent Drag at the Ice-Ocean Interface of Europa in Simulations of Rotating Convection: Implications for Nonsynchronous Rotation of the Ice Shell" 2551: 2300: 2057: 1859: 1517: 2304: 2835: 1996: 1198: 2806: 1230: 1147:
Madeira, Gustavo; Charnoz, SĂ©bastian; Zhang, Yun; Hyodo, Ryuki; Michel, Patrick; Genda, Hidenori; Giuliatti Winter, Silvia (April 2023).
2868: 2702: 2141: 3352: 2118: 1677:
Thomas, P. C.; Tajeddine, R.; et al. (2016). "Enceladus's measured physical libration requires a global subsurface ocean".
1756:
Figueredo, Patricio H.; Greeley, Ronald (February 2004). "Resurfacing history of Europa from pole-to-pole geological mapping".
2742: 2861: 2338: 1835: 804: 1529: 1474:
Murray, C. D.; Cooper, N. J.; Evans, M. W.; Beurle, K. (December 2005). "S/2004 S 5: A new co-orbital companion for Dione".
2521: 86:
Regular moons are extremely diverse in their physical characteristics. The largest regular moons are massive enough to be
1881: 76: 1122: 950:
Arakawa, Sota; et al. (2019). "Early formation of moons around large trans-Neptunian objects via giant impacts".
755: 2631: 1315:
Michele Moons and Jacques Henrard (June 1994). "Surfaces of Section in the Miranda-Umbriel 3:1 Inclination Problem".
512:
to their parent planet, though several exceptions are known. One such exception is Saturn's Hyperion, which exhibits
319: 1826:
Geissler, P. E.; Goldstein, D. B. (2007). "Plumes and their deposits". In Lopes, R. M. C.; Spencer, J. R. (eds.).
577: 2021:
Walker, A. C.; et al. (2010). "A Comprehensive Numerical Simulation of Io's Sublimation-Driven Atmosphere".
3590: 75:. Young regular moons then begin to accumulate material within the circumplanetary disc in a process similar to 2325:
Schneider, N. M.; Bagenal, F. (2007). "Io's neutral clouds, plasma torus, and magnetospheric interactions". In
725:
and all rounded moons excluding Triton. For simplicity, Mars's two moons are included, while Saturn's spurious
624:(ESA) which plans to study Europa, Ganymede, and Callisto and investigate their respective subsurface oceans. 589:. Similar, albeit much weaker flux tubes were also discovered to be associated with the other Galilean moons. 437:, resurfacing, and tectonics, acting as reservoirs of 'cryomagma' which can be erupted onto a moon's surface. 1359: 671: 561: 462: 458: 270:
nature of Phobos has further pointed against a captured origin, and infrared observations of Deimos by the
2543: 2308: 2053: 3565: 2963: 2896: 612: 386: 149:—hosting the most extensive and complex regular satellite systems. At least four of the nine likeliest 126: 2782: 2827: 1032:
Banfield, Don; Murray, Norm (October 1992). "A dynamical history of the inner Neptunian satellites".
651: 1953: 1730: 1292: 426: 3358: 348: 2948: 473:
is endogenously produced by volcanic outgassing, creating a thin atmosphere composed primarily of
1851: 187: 115: 68: 422: 1287: 599: 430: 2803: 418: 621: 323: 272: 2270: 1243: 1018: 3319: 2666: 2586: 2497: 2418: 2369: 2266: 2194: 2094: 2026: 1980: 1924: 1800: 1765: 1696: 1625: 1564: 1483: 1438: 1374: 1324: 1279: 1239: 1170: 1076: 1041: 1014: 969: 905: 846: 792: 314: 183: 64: 59:
following a relatively close, stable, and circular orbit which is generally aligned to its
8: 3570: 3119: 3068: 2853: 537: 488: 310: 102:. Large regular moons also support varied and complex geology. Several are known to have 72: 60: 2670: 2590: 2501: 2422: 2373: 2198: 2098: 2030: 1984: 1928: 1804: 1769: 1700: 1629: 1568: 1487: 1442: 1417:"A Pluto-Charon Sonata: The Dynamical Architecture of the Circumbinary Satellite System" 1378: 1328: 1283: 1251: 1174: 1080: 1045: 973: 909: 850: 796: 726: 454: 406: 3367: 3261: 2607: 2574: 2513: 2487: 2449: 2406: 2282: 2256: 2228: 2184: 2110: 1712: 1686: 1659: 1598: 1585: 1552: 1525: 1499: 1456: 1428: 1340: 1160: 1100: 1005: 985: 959: 929: 878: 836: 782: 2207: 2172: 1067:
Goldreich, P.; Murray, N.; Longaretti, P. Y.; Banfield, D. (1989). "Neptune's story".
576:
Io's volcanic activity results in extreme interactions with Jupiter, constructing the
3310: 3052: 3014: 2994: 2884: 2612: 2517: 2473: 2454: 2436: 2387: 2334: 2286: 2220: 2212: 2114: 2080: 1831: 1716: 1651: 1602: 1590: 1503: 1460: 1344: 1301: 1092: 1053: 989: 921: 870: 862: 823: 800: 701: 526: 338: 56: 3519: 2738: 2232: 1663: 1104: 301:, demonstrating the organized, low-eccentricity orbits typical of regular satellites 192:
Regular moons have several different formation mechanisms. The regular moons of the
21: 3247: 3230: 3061: 2932: 2917: 2682: 2674: 2602: 2594: 2505: 2478: 2444: 2426: 2377: 2360: 2274: 2202: 2102: 2085: 2034: 1988: 1932: 1808: 1773: 1704: 1641: 1633: 1580: 1572: 1491: 1446: 1382: 1332: 1297: 1270: 1247: 1178: 1084: 1049: 977: 933: 913: 882: 854: 513: 497: 470: 466: 410: 260: 255:
were originally proposed to be captured asteroids originating from the neighboring
99: 2278: 1268:
Wisdom, J.; Peale, S. J.; Mignard, F. (1984). "The chaotic rotation of Hyperion".
83:, which formed independently before being captured into orbit around the primary. 3575: 3529: 3479: 3409: 3389: 3212: 3004: 2999: 2984: 2927: 2922: 2810: 2038: 1992: 1777: 1708: 1495: 1088: 541: 328: 162: 158: 91: 1066: 289: 259:, and thus would not be classified as regular satellites. Their similarities to 3611: 3560: 3499: 3489: 3459: 3449: 3434: 3324: 3294: 3269: 3133: 2979: 2509: 2106: 1451: 1416: 1183: 1148: 689: 639: 492: 474: 332: 306: 216: 154: 80: 3301: 2678: 2216: 981: 704: â€“ Regular and periodic mutual gravitational influence of orbiting bodies 402: 3605: 3534: 3524: 3514: 3474: 3454: 3444: 3429: 3424: 3330: 3241: 3198: 3175: 3096: 3032: 3027: 2912: 2761: 2440: 1889: 866: 530: 518: 509: 382: 372: 356: 343: 298: 256: 252: 248: 244: 228: 193: 130: 2431: 1637: 1360:"Tidal Evolution into the Laplace Resonance and the Resurfacing of Ganymede" 1118: 858: 465:
are composed largely of oxygen sputtered off from their icy surfaces due to
3580: 3494: 3469: 3464: 3404: 3338: 3275: 3140: 3088: 3046: 2974: 2888: 2616: 2598: 2458: 2391: 2326: 1655: 1594: 1386: 1149:"Exploring the Recycling Model of Phobos Formation: Rubble-pile Satellites" 1096: 925: 874: 602:
of several regular moons' internal oceans have been proposed and launched.
360: 263:
with respect to spectra, density, and albedo further supported this model.
166: 150: 122: 95: 25: 3439: 3288: 3220: 3170: 3165: 3082: 2804:
Dragonfly: Exploring Titan's Prebiotic Organic Chemistry and Habitability
1937: 1912: 1812: 1576: 552: 434: 378: 352: 267: 33: 2474:"Detection of HCN and diverse redox chemistry in the plume of Enceladus" 1646: 917: 3555: 3255: 3225: 3206: 3148: 3113: 2687: 2573:
Trumbo, Samantha K.; Brown, Michael E.; Hand, Kevin P. (12 June 2019).
2224: 1336: 722: 695: 522: 103: 227:
are likely examples of this, as the capture of Neptune's largest moon—
3484: 3414: 3127: 3101: 3038: 2407:"Abundant phosphorus expected for possible life in Enceladus's ocean" 581: 440: 3509: 3344: 2382: 2355: 698: â€“ Natural satellite orbiting inside the orbit of a larger moon 2492: 2261: 2189: 1691: 1433: 1165: 964: 841: 111: 2173:"The Short Rotation Period of HiÊ»iaka, Haumea's Largest Satellite" 1954:"Mid-infrared detection of large longitudinal asymmetries in Io's 1911:
Liang, M. C.; Lane, B. F.; Pappalardo, R. T.; et al. (2005).
787: 3192: 2942: 2760:
This article incorporates text from this source, which is in the
2307:(NOAA) National Ocean Service (Education section). Archived from 2170: 1910: 1314: 294: 224: 146: 134: 107: 2989: 2954: 1199:"EMM unveils new Deimos observations at EGU23, extends mission" 776: 667:
is to better constrain the origins and history of Mars's moons.
586: 557: 197: 142: 138: 67:
that once surrounded their primary, usually the aftermath of a
41: 2774: 2142:"NASA's Hubble Finds Pluto's Moons Tumbling in Absolute Chaos" 2054:"River networks on Titan point to a puzzling geologic history" 3504: 544:, which may indicate an unusually high density for the moon. 212: 204: 3419: 2907: 660: 644: 569: 240: 208: 2883: 1852:"Hubble Finds Oxygen Atmosphere on Jupiter's Moon, Europa" 1615: 1550: 1415:
Kenyon, Scott J.; Bromley, Benjamin C. (28 January 2019).
2709: 2544:"Cassini Tastes Organic Material at Saturn's Geyser Moon" 1228:
Pringle, J.E. (1981). "Accretion discs in astrophysics".
895: 1146: 540:
has been observed to be tidally locked to its satellite
2245: 1473: 692: â€“ Captured satellite following an irregular orbit 2081:"Conditions for aeolian transport in the Solar System" 1518:"NASA Finds Saturn's Moons May Be Creating New Rings" 172: 2305:
U.S. National Oceanic and Atmospheric Administration
1731:"Cassini Spots Potential Ice Volcano on Saturn Moon" 819: 2079:Gunn, Andrew; Jerolmack, Douglas J. (19 May 2022). 1003:Naeye, R. (September 2006). "Triton Kidnap Caper". 833:
American Association for the Advancement of Science
752:"Should Large Moons Be Called 'Satellite Planets'?" 2819: 1267: 413:, fed by a global subsurface ocean of liquid water 2472:Peter, Jonah S.; et al. (14 December 2023). 2045: 1882:"Hubble Finds Thin Oxygen Atmosphere on Ganymede" 1825: 949: 16:Satellites that formed around their parent planet 3603: 2656: 2404: 2324: 1844: 1755: 659:) is a sample-return mission being developed by 547: 2572: 2471: 2411:Proceedings of the National Academy of Sciences 2356:"A nebula of gases from Io surrounding Jupiter" 2320: 2318: 1723: 1676: 1357: 2828:"NASA postpones Dragonfly review, launch date" 2632:"Life in Our Solar System? Meet the Neighbors" 1784: 1263: 1261: 1142: 1140: 1031: 743: 2869: 2078: 1874: 1749: 1414: 1227: 1025: 945: 943: 620:) is a mission developed and launched by the 2347: 2315: 2164: 1819: 1351: 1060: 779:Origin of Europa and the Galilean Satellites 643:is a mission currently under development by 2815:Lunar and Planetary Science Conference 2017 2731: 2629: 2239: 1945: 1510: 1317:Celestial Mechanics and Dynamical Astronomy 1258: 1231:Annual Review of Astronomy and Astrophysics 1221: 1137: 1111: 781:. University of Arizona Press. p. 59. 392: 377:Regular moons which orbit near or within a 2876: 2862: 2575:"Sodium chloride on the surface of Europa" 2566: 2014: 1904: 1790: 1670: 1467: 1408: 940: 777:Canup, Robin M.; Ward, William R. (2008). 632: 284: 71:or leftover material accumulated from the 2797: 2686: 2650: 2606: 2491: 2465: 2448: 2430: 2381: 2293: 2260: 2206: 2188: 1936: 1690: 1645: 1584: 1450: 1432: 1358:Showman, Adam P.; Malhotra, Renu (1997). 1308: 1291: 1191: 1182: 1164: 963: 840: 786: 318:aligned with the planet's equator due to 2623: 2536: 2353: 2133: 2072: 1917:Journal of Geophysical Research: Planets 1793:Journal of Geophysical Research: Planets 1609: 1557:Journal of Geophysical Research: Planets 996: 889: 813: 770: 551: 500:, and extensive equatorial dune fields. 401: 288: 20: 2767: 2398: 2139: 1951: 1888:. NASA. 23 October 1996. Archived from 1544: 749: 679:currently plans to launch on July 2028. 247:remains the subject of ongoing debate. 3604: 2020: 1551:Hay, H. C. F. C.; et al. (2023). 2857: 2825: 2785:from the original on 22 February 2020 2695: 2524:from the original on 15 December 2023 2354:Krimigis, S. M.; et al. (2002). 2333:. Springer-Praxis. pp. 265–286. 1830:. Springer-Praxis. pp. 163–192. 1209:from the original on 14 February 2024 1125:from the original on 14 November 2011 1002: 239:Despite the extensive exploration of 2719:from the original on 16 October 2015 2121:from the original on 25 January 2024 2060:from the original on 30 October 2012 1952:Spencer, A. C.; et al. (2005). 2051: 1252:10.1146/annurev.aa.19.090181.001033 564:, contributed by the Galilean moons 409:on the south pole of Saturn's moon 305:Regular moons are characterized by 13: 2745:from the original on 23 March 2021 2638:from the original on 30 March 2023 2301:"Types and causes of tidal cycles" 2002:from the original on 17 March 2023 1862:from the original on 16 April 2023 605: 573:semidiurnal or complex patterns). 508:The majority of regular moons are 173:Origin and orbital characteristics 14: 3623: 2838:from the original on 3 April 2024 2775:"MMX - Martian Moons eXploration" 2703:"ESA—Selection of the L1 mission" 2554:from the original on 20 July 2021 1528:. 11 October 2006. Archived from 628:is currently en route to Jupiter. 491:dominated by nitrogen as well as 487:One regular moon, Titan, hosts a 366: 2953: 2947: 2941: 2826:Foust, Jeff (28 November 2023). 2755: 2630:Pat Brennan (10 November 2020). 2152:from the original on 4 June 2015 1737:from the original on 14 May 2023 1396:from the original on 14 May 2011 754:. Discovery News. Archived from 320:conservation of angular momentum 234: 153:also host regular moon systems: 121:Six of the eight planets of the 2140:Northon, Karen (3 June 2015). 715: 592: 447: 331:unusually eccentric orbit and 98:—being larger than the planet 1: 736: 548:Parent-satellite interactions 521:and generally have very high 363:within the Saturnian system. 63:'s equator. They form within 2249:Astronomy & Astrophysics 2039:10.1016/j.icarus.2010.01.012 1993:10.1016/j.icarus.2005.01.019 1778:10.1016/j.icarus.2003.09.016 1709:10.1016/j.icarus.2015.08.037 1496:10.1016/j.icarus.2005.06.009 1302:10.1016/0019-1035(84)90032-0 1119:"New Views of Martian Moons" 1089:10.1126/science.245.4917.500 1054:10.1016/0019-1035(92)90155-Z 750:Villard, Ray (14 May 2010). 721:Count derived by adding all 177: 7: 2279:10.1051/0004-6361/202245234 2208:10.3847/0004-6256/152/6/195 2052:Chu, Jennifer (July 2012). 683: 503: 10: 3628: 2659:Advances in Space Research 2510:10.1038/s41550-023-02160-0 2107:10.1038/s41550-022-01669-0 2025:. in. press (1): 409–432. 613:Jupiter Icy Moons Explorer 397: 370: 181: 3546: 3380: 3013: 2962: 2939: 2895: 2679:10.1016/j.asr.2010.01.015 2329:; Spencer, J. R. (eds.). 1886:Jet Propulsion Laboratory 1421:The Astrophysical Journal 982:10.1038/s41550-019-0797-9 652:Martian Moons eXploration 429:are known to host global 349:co-orbital configurations 90:, with two regular moons— 3398:: 5268 km / 0.413 Earths 2177:The Astronomical Journal 1913:"Atmosphere of Callisto" 1522:Cassini Legacy 1997–2007 1452:10.3847/1538-3881/aafa72 1184:10.3847/1538-3881/acbf53 1153:The Astronomical Journal 708: 493:stable hydrocarbon lakes 393:Physical characteristics 129:combined, with the four 40:), two regular moons of 2432:10.1073/pnas.2201388119 2271:2023A&A...669L...3S 1638:10.1126/science.1219631 1244:1981ARA&A..19..137P 1019:2006S&T...112c..18N 859:10.1126/science.aad0525 831:(6272). Washington DC: 633:Missions in development 285:Orbital characteristics 188:Giant-impact hypothesis 88:gravitationally rounded 65:discs of debris and gas 2599:10.1126/sciadv.aaw7123 1387:10.1006/icar.1996.5669 600:potential habitability 565: 414: 309:, usually with little 302: 44: 622:European Space Agency 555: 498:karst-like topography 405: 387:Janus-Epimetheus ring 324:tidal circularization 292: 182:Further information: 127:60 regular satellites 24: 3571:Planetary-mass moons 2781:. 26 December 2023. 1938:10.1029/2004JE002322 1813:10.1029/2000JE001383 1799:(E12): 33025–33052. 1577:10.1029/2022JE007648 184:Circumplanetary disk 2671:2011AdSpR..48..743W 2591:2019SciA....5.7123T 2502:2024NatAs...8..164P 2423:2022PNAS..11901388H 2417:(39): e2201388119. 2374:2002Natur.415..994K 2311:on 1 February 2012. 2199:2016AJ....152..195H 2099:2022NatAs...6..923G 2031:2010Icar..207..409W 1985:2005Icar..176..283S 1929:2005JGRE..110.2003L 1805:2001JGR...10633025K 1770:2004Icar..167..287F 1701:2016Icar..264...37T 1630:2012Sci...337..457I 1569:2023JGRE..12807648H 1488:2005Icar..179..222M 1443:2019AJ....157...79K 1379:1997Icar..127...93S 1329:1994CeMDA..59..129M 1284:1984Icar...58..137W 1175:2023AJ....165..161M 1081:1989Sci...245..500G 1046:1992Icar...99..390B 1006:Sky & Telescope 974:2019NatAs...3..802A 918:10.1038/nature04548 910:2006Natur.439..946S 851:2016Sci...351..493Y 797:2009euro.book...59C 351:, such as the four 311:orbital inclination 77:planetary accretion 73:protoplanetary disc 3551:Discovery timeline 2885:Natural satellites 2809:2018-04-05 at the 1532:on 16 October 2006 1526:Jet Propulsion Lab 1337:10.1007/bf00692129 585:intense region of 566: 415: 339:Orbital resonances 303: 45: 3599: 3598: 3399: 2712:. 17 April 2012. 2550:. 26 March 2008. 2368:(6875): 994–996. 2340:978-3-540-34681-4 1837:978-3-540-34681-4 1205:. 24 April 2023. 1075:(4917): 500–504. 806:978-0-8165-2844-8 702:Orbital resonance 560:within Jupiter's 431:subsurface oceans 108:planetary objects 57:natural satellite 53:regular satellite 3619: 3394: 3373: 3361: 3347: 3333: 3316: 3304: 3297: 3278: 3264: 3250: 3215: 3201: 3187: 3182: 3160: 3155: 3143: 3136: 3122: 3108: 3091: 3074: 3064: 3055: 3041: 2957: 2951: 2945: 2878: 2871: 2864: 2855: 2854: 2848: 2847: 2845: 2843: 2823: 2817: 2801: 2795: 2794: 2792: 2790: 2771: 2765: 2759: 2758: 2754: 2752: 2750: 2739:"Europa Clipper" 2735: 2729: 2728: 2726: 2724: 2718: 2707: 2699: 2693: 2692: 2690: 2654: 2648: 2647: 2645: 2643: 2627: 2621: 2620: 2610: 2579:Science Advances 2570: 2564: 2563: 2561: 2559: 2540: 2534: 2533: 2531: 2529: 2495: 2479:Nature Astronomy 2469: 2463: 2462: 2452: 2434: 2402: 2396: 2395: 2385: 2351: 2345: 2344: 2331:Io after Galileo 2322: 2313: 2312: 2297: 2291: 2290: 2264: 2243: 2237: 2236: 2210: 2192: 2168: 2162: 2161: 2159: 2157: 2137: 2131: 2130: 2128: 2126: 2086:Nature Astronomy 2076: 2070: 2069: 2067: 2065: 2056:. MIT Research. 2049: 2043: 2042: 2018: 2012: 2011: 2009: 2007: 2001: 1970: 1965: 1964: 1963: 1949: 1943: 1942: 1940: 1908: 1902: 1901: 1899: 1897: 1878: 1872: 1871: 1869: 1867: 1848: 1842: 1841: 1828:Io after Galileo 1823: 1817: 1816: 1788: 1782: 1781: 1753: 1747: 1746: 1744: 1742: 1727: 1721: 1720: 1694: 1674: 1668: 1667: 1649: 1613: 1607: 1606: 1588: 1548: 1542: 1541: 1539: 1537: 1514: 1508: 1507: 1471: 1465: 1464: 1454: 1436: 1412: 1406: 1405: 1403: 1401: 1395: 1364: 1355: 1349: 1348: 1312: 1306: 1305: 1295: 1265: 1256: 1255: 1225: 1219: 1218: 1216: 1214: 1195: 1189: 1188: 1186: 1168: 1144: 1135: 1134: 1132: 1130: 1115: 1109: 1108: 1064: 1058: 1057: 1029: 1023: 1022: 1000: 994: 993: 967: 947: 938: 937: 904:(7079): 946–49. 893: 887: 886: 844: 817: 811: 810: 790: 774: 768: 767: 765: 763: 747: 730: 719: 562:northern aurorae 514:chaotic rotation 489:dense atmosphere 483: 471:atmosphere of Io 467:space weathering 261:C-type asteroids 245:Mars's two moons 243:, the origin of 79:, as opposed to 47:In astronomy, a 38:smaller crescent 3627: 3626: 3622: 3621: 3620: 3618: 3617: 3616: 3602: 3601: 3600: 3595: 3561:Irregular moons 3542: 3382: 3376: 3371: 3366: 3357: 3343: 3329: 3314: 3309: 3300: 3293: 3274: 3260: 3246: 3238:Jupiter trojans 3211: 3197: 3185: 3180: 3158: 3153: 3139: 3132: 3118: 3106: 3087: 3072: 3067: 3060: 3051: 3037: 3016: 3009: 2965: 2958: 2952: 2946: 2937: 2898: 2891: 2882: 2852: 2851: 2841: 2839: 2824: 2820: 2811:Wayback Machine 2802: 2798: 2788: 2786: 2773: 2772: 2768: 2756: 2748: 2746: 2737: 2736: 2732: 2722: 2720: 2716: 2705: 2701: 2700: 2696: 2655: 2651: 2641: 2639: 2628: 2624: 2585:(6): eaaw7123. 2571: 2567: 2557: 2555: 2542: 2541: 2537: 2527: 2525: 2470: 2466: 2403: 2399: 2383:10.1038/415994a 2352: 2348: 2341: 2327:Lopes, R. M. C. 2323: 2316: 2299: 2298: 2294: 2244: 2240: 2169: 2165: 2155: 2153: 2138: 2134: 2124: 2122: 2077: 2073: 2063: 2061: 2050: 2046: 2019: 2015: 2005: 2003: 1999: 1968: 1962: 1959: 1958: 1957: 1955: 1950: 1946: 1909: 1905: 1895: 1893: 1880: 1879: 1875: 1865: 1863: 1850: 1849: 1845: 1838: 1824: 1820: 1789: 1785: 1754: 1750: 1740: 1738: 1729: 1728: 1724: 1675: 1671: 1624:(6093): 457–9. 1614: 1610: 1549: 1545: 1535: 1533: 1516: 1515: 1511: 1472: 1468: 1413: 1409: 1399: 1397: 1393: 1362: 1356: 1352: 1313: 1309: 1293:10.1.1.394.2728 1266: 1259: 1226: 1222: 1212: 1210: 1197: 1196: 1192: 1145: 1138: 1128: 1126: 1117: 1116: 1112: 1065: 1061: 1030: 1026: 1001: 997: 948: 941: 894: 890: 818: 814: 807: 775: 771: 761: 759: 748: 744: 739: 734: 733: 727:F ring moonlets 720: 716: 711: 686: 635: 608: 606:Active missions 595: 578:Io plasma torus 550: 506: 482: 478: 450: 400: 395: 389:around Saturn. 375: 369: 307:prograde orbits 287: 237: 217:five satellites 190: 180: 175: 118:in appearance. 81:irregular moons 69:large collision 30:larger crescent 17: 12: 11: 5: 3625: 3615: 3614: 3597: 3596: 3594: 3593: 3588: 3583: 3578: 3573: 3568: 3563: 3558: 3553: 3547: 3544: 3543: 3541: 3540: 3537: 3532: 3527: 3522: 3517: 3512: 3507: 3502: 3497: 3492: 3487: 3482: 3477: 3472: 3467: 3462: 3457: 3452: 3447: 3442: 3437: 3432: 3427: 3422: 3417: 3412: 3407: 3402: 3401: 3400: 3386: 3384: 3378: 3377: 3375: 3374: 3369: 3364: 3363: 3362: 3353:GǃkĂșnǁʌhĂČmdĂ­mĂ  3350: 3349: 3348: 3336: 3335: 3334: 3322: 3317: 3312: 3307: 3306: 3305: 3298: 3286: 3282: 3281: 3280: 3279: 3267: 3266: 3265: 3253: 3252: 3251: 3239: 3235: 3234: 3228: 3223: 3218: 3217: 3216: 3204: 3203: 3202: 3190: 3189: 3188: 3183: 3173: 3168: 3163: 3162: 3161: 3156: 3146: 3145: 3144: 3137: 3125: 3124: 3123: 3111: 3110: 3109: 3099: 3094: 3093: 3092: 3080: 3076: 3075: 3070: 3065: 3058: 3057: 3056: 3044: 3043: 3042: 3030: 3025: 3021: 3019: 3011: 3010: 3008: 3007: 3002: 2997: 2992: 2987: 2982: 2977: 2971: 2969: 2960: 2959: 2940: 2938: 2936: 2935: 2930: 2925: 2920: 2915: 2910: 2904: 2902: 2893: 2892: 2881: 2880: 2873: 2866: 2858: 2850: 2849: 2818: 2796: 2766: 2741:. NASA (JPL). 2730: 2694: 2649: 2622: 2565: 2535: 2486:(2): 164–173. 2464: 2397: 2346: 2339: 2314: 2292: 2238: 2163: 2132: 2093:(8): 923–929. 2071: 2044: 2013: 1979:(2): 283–304. 1960: 1944: 1923:(E2): E02003. 1903: 1873: 1856:HubbleSite.org 1843: 1836: 1818: 1783: 1764:(2): 287–312. 1748: 1722: 1669: 1608: 1543: 1509: 1482:(1): 222–234. 1466: 1407: 1350: 1323:(2): 129–148. 1307: 1278:(2): 137–152. 1257: 1220: 1190: 1136: 1110: 1059: 1040:(2): 390–401. 1024: 995: 958:(9): 802–807. 939: 888: 812: 805: 769: 758:on 16 May 2010 741: 740: 738: 735: 732: 731: 713: 712: 710: 707: 706: 705: 699: 693: 690:Irregular moon 685: 682: 681: 680: 668: 648: 640:Europa Clipper 634: 631: 630: 629: 607: 604: 594: 591: 549: 546: 510:tidally locked 505: 502: 480: 475:sulfur dioxide 449: 446: 399: 396: 394: 391: 371:Main article: 368: 367:Shepherd moons 365: 299:Galilean moons 286: 283: 236: 233: 179: 176: 174: 171: 15: 9: 6: 4: 3: 2: 3624: 3613: 3610: 3609: 3607: 3592: 3589: 3587: 3586:Regular moons 3584: 3582: 3579: 3577: 3574: 3572: 3569: 3567: 3564: 3562: 3559: 3557: 3554: 3552: 3549: 3548: 3545: 3538: 3536: 3533: 3531: 3528: 3526: 3523: 3521: 3518: 3516: 3513: 3511: 3508: 3506: 3503: 3501: 3498: 3496: 3493: 3491: 3488: 3486: 3483: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3456: 3453: 3451: 3448: 3446: 3443: 3441: 3438: 3436: 3433: 3431: 3428: 3426: 3423: 3421: 3418: 3416: 3413: 3411: 3408: 3406: 3403: 3397: 3393: 3392: 3391: 3388: 3387: 3385: 3379: 3372: 3365: 3360: 3356: 3355: 3354: 3351: 3346: 3342: 3341: 3340: 3337: 3332: 3328: 3327: 3326: 3323: 3321: 3318: 3315: 3308: 3303: 3299: 3296: 3292: 3291: 3290: 3287: 3284: 3283: 3277: 3273: 3272: 3271: 3268: 3263: 3259: 3258: 3257: 3254: 3249: 3245: 3244: 3243: 3240: 3237: 3236: 3232: 3229: 3227: 3224: 3222: 3219: 3214: 3210: 3209: 3208: 3205: 3200: 3196: 3195: 3194: 3191: 3184: 3179: 3178: 3177: 3174: 3172: 3169: 3167: 3164: 3157: 3152: 3151: 3150: 3147: 3142: 3138: 3135: 3131: 3130: 3129: 3126: 3121: 3117: 3116: 3115: 3112: 3105: 3104: 3103: 3100: 3098: 3095: 3090: 3086: 3085: 3084: 3081: 3078: 3077: 3073: 3066: 3063: 3059: 3054: 3050: 3049: 3048: 3045: 3040: 3036: 3035: 3034: 3031: 3029: 3026: 3023: 3022: 3020: 3018: 3012: 3006: 3003: 3001: 2998: 2996: 2993: 2991: 2988: 2986: 2983: 2981: 2978: 2976: 2973: 2972: 2970: 2967: 2961: 2956: 2950: 2944: 2934: 2931: 2929: 2926: 2924: 2921: 2919: 2916: 2914: 2911: 2909: 2906: 2905: 2903: 2900: 2894: 2890: 2886: 2879: 2874: 2872: 2867: 2865: 2860: 2859: 2856: 2837: 2833: 2832:SpaceNews.com 2829: 2822: 2816: 2812: 2808: 2805: 2800: 2784: 2780: 2776: 2770: 2763: 2762:public domain 2744: 2740: 2734: 2715: 2711: 2704: 2698: 2689: 2684: 2680: 2676: 2672: 2668: 2664: 2660: 2653: 2637: 2633: 2626: 2618: 2614: 2609: 2604: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2569: 2553: 2549: 2545: 2539: 2523: 2519: 2515: 2511: 2507: 2503: 2499: 2494: 2489: 2485: 2481: 2480: 2475: 2468: 2460: 2456: 2451: 2446: 2442: 2438: 2433: 2428: 2424: 2420: 2416: 2412: 2408: 2401: 2393: 2389: 2384: 2379: 2375: 2371: 2367: 2363: 2362: 2357: 2350: 2342: 2336: 2332: 2328: 2321: 2319: 2310: 2306: 2302: 2296: 2288: 2284: 2280: 2276: 2272: 2268: 2263: 2258: 2254: 2250: 2242: 2234: 2230: 2226: 2222: 2218: 2214: 2209: 2204: 2200: 2196: 2191: 2186: 2182: 2178: 2174: 2167: 2151: 2147: 2143: 2136: 2120: 2116: 2112: 2108: 2104: 2100: 2096: 2092: 2088: 2087: 2082: 2075: 2059: 2055: 2048: 2040: 2036: 2032: 2028: 2024: 2017: 1998: 1994: 1990: 1986: 1982: 1978: 1974: 1967: 1948: 1939: 1934: 1930: 1926: 1922: 1918: 1914: 1907: 1892:on 4 May 2009 1891: 1887: 1883: 1877: 1861: 1857: 1853: 1847: 1839: 1833: 1829: 1822: 1814: 1810: 1806: 1802: 1798: 1794: 1787: 1779: 1775: 1771: 1767: 1763: 1759: 1752: 1736: 1732: 1726: 1718: 1714: 1710: 1706: 1702: 1698: 1693: 1688: 1684: 1680: 1673: 1665: 1661: 1657: 1653: 1648: 1643: 1639: 1635: 1631: 1627: 1623: 1619: 1612: 1604: 1600: 1596: 1592: 1587: 1582: 1578: 1574: 1570: 1566: 1562: 1558: 1554: 1547: 1531: 1527: 1523: 1519: 1513: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1470: 1462: 1458: 1453: 1448: 1444: 1440: 1435: 1430: 1426: 1422: 1418: 1411: 1392: 1388: 1384: 1380: 1376: 1373:(1): 93–111. 1372: 1368: 1361: 1354: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1311: 1303: 1299: 1294: 1289: 1285: 1281: 1277: 1273: 1272: 1264: 1262: 1253: 1249: 1245: 1241: 1237: 1233: 1232: 1224: 1208: 1204: 1200: 1194: 1185: 1180: 1176: 1172: 1167: 1162: 1158: 1154: 1150: 1143: 1141: 1124: 1120: 1114: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1063: 1055: 1051: 1047: 1043: 1039: 1035: 1028: 1020: 1016: 1012: 1008: 1007: 999: 991: 987: 983: 979: 975: 971: 966: 961: 957: 953: 946: 944: 935: 931: 927: 923: 919: 915: 911: 907: 903: 899: 892: 884: 880: 876: 872: 868: 864: 860: 856: 852: 848: 843: 838: 834: 830: 826: 825: 816: 808: 802: 798: 794: 789: 784: 780: 773: 757: 753: 746: 742: 729:are excluded. 728: 724: 718: 714: 703: 700: 697: 694: 691: 688: 687: 678: 674: 673: 669: 666: 662: 658: 654: 653: 649: 646: 642: 641: 637: 636: 627: 623: 619: 615: 614: 610: 609: 603: 601: 590: 588: 583: 579: 574: 571: 563: 559: 558:auroral spots 554: 545: 543: 539: 534: 532: 528: 524: 520: 515: 511: 501: 499: 494: 490: 485: 476: 472: 468: 464: 460: 456: 445: 442: 438: 436: 435:cryovolcanism 432: 428: 424: 420: 412: 408: 407:Active plumes 404: 390: 388: 384: 380: 374: 373:Shepherd moon 364: 362: 358: 354: 350: 345: 344:tidal heating 340: 336: 334: 330: 325: 321: 316: 312: 308: 300: 296: 291: 282: 279: 275: 274: 269: 264: 262: 258: 257:asteroid belt 254: 250: 246: 242: 235:Martian moons 232: 230: 226: 221: 218: 214: 210: 206: 203:In contrast, 201: 199: 195: 194:giant planets 189: 185: 170: 168: 164: 160: 156: 152: 151:dwarf planets 148: 144: 140: 136: 132: 131:giant planets 128: 124: 119: 117: 113: 109: 105: 101: 97: 93: 89: 84: 82: 78: 74: 70: 66: 62: 58: 54: 50: 43: 39: 35: 31: 27: 23: 19: 3591:Trojan moons 3585: 3581:Subsatellite 3395: 3120:Petit-Prince 3015:Minor-planet 2964:Dwarf planet 2889:Solar System 2840:. Retrieved 2831: 2821: 2814: 2799: 2787:. Retrieved 2778: 2769: 2747:. Retrieved 2733: 2721:. Retrieved 2697: 2662: 2658: 2652: 2640:. Retrieved 2625: 2582: 2578: 2568: 2556:. Retrieved 2547: 2538: 2526:. Retrieved 2483: 2477: 2467: 2414: 2410: 2400: 2365: 2359: 2349: 2330: 2309:the original 2295: 2252: 2248: 2241: 2180: 2176: 2166: 2154:. Retrieved 2145: 2135: 2123:. Retrieved 2090: 2084: 2074: 2062:. Retrieved 2047: 2022: 2016: 2004:. Retrieved 1976: 1972: 1947: 1920: 1916: 1906: 1894:. Retrieved 1890:the original 1885: 1876: 1864:. Retrieved 1855: 1846: 1827: 1821: 1796: 1792: 1786: 1761: 1757: 1751: 1739:. Retrieved 1725: 1682: 1678: 1672: 1647:11573/477190 1621: 1617: 1611: 1563:(6376): 21. 1560: 1556: 1546: 1534:. Retrieved 1530:the original 1521: 1512: 1479: 1475: 1469: 1424: 1420: 1410: 1398:. Retrieved 1370: 1366: 1353: 1320: 1316: 1310: 1275: 1269: 1235: 1229: 1223: 1211:. Retrieved 1202: 1193: 1156: 1152: 1127:. Retrieved 1113: 1072: 1068: 1062: 1037: 1033: 1027: 1010: 1004: 998: 955: 951: 901: 897: 891: 828: 822: 815: 778: 772: 760:. Retrieved 756:the original 745: 717: 676: 670: 664: 656: 650: 638: 625: 617: 611: 596: 587:auroral glow 582:plasma torus 575: 567: 535: 507: 486: 451: 439: 416: 376: 353:trojan moons 337: 315:eccentricity 304: 277: 271: 265: 238: 222: 202: 191: 123:Solar System 120: 116:minor bodies 85: 52: 49:regular moon 48: 46: 37: 29: 18: 3556:Inner moons 3262:Skamandrios 2842:28 November 2789:26 December 2688:10397/12621 2528:15 December 2125:15 December 1966:atmosphere" 1896:17 February 1536:20 December 1238:: 137–162. 835:: 493–496. 723:inner moons 593:Exploration 570:ocean tides 523:axial tilts 448:Atmospheres 383:shepherding 379:ring system 268:rubble pile 104:atmospheres 3320:Sila–Nunam 3186:Cleoselene 3181:Alexhelios 3159:Gorgoneion 3097:Euphrosyne 3024:Near-Earth 2966:satellites 2899:satellites 2665:(4): 743. 2493:2301.05259 2262:2211.07987 2217:6889796157 2190:1610.04305 2156:25 October 1692:1509.07555 1434:1810.01277 1400:22 January 1213:23 January 1166:2302.12556 1159:(4): 161. 965:1906.10833 842:1603.04536 762:4 November 737:References 696:Inner moon 329:Hyperion's 293:Orbits of 114:and other 3485:Enceladus 3359:GǃĂČÊŒĂ© ǃHĂș 3270:Eurybates 3248:Menoetius 3242:Patroclus 3231:Dinkinesh 3176:Kleopatra 3079:Main belt 3039:Dimorphos 2897:Planetary 2749:2 January 2518:255825649 2441:0027-8424 2287:253522934 2183:(6): 12. 2115:228102377 1741:2 January 1717:118429372 1685:: 37–47. 1603:257063108 1504:120102820 1461:119091388 1427:(2): 79. 1345:123594472 1288:CiteSeerX 1203:Sharjah24 1013:(3): 18. 990:195366822 867:0036-8075 788:0812.4995 677:Dragonfly 672:Dragonfly 427:Enceladus 411:Enceladus 333:Miranda's 178:Formation 112:asteroids 3606:Category 3530:Hyperion 3480:Dysnomia 3410:Callisto 3390:Ganymede 3213:Olympias 3083:Kalliope 3053:Squannit 3028:Florence 3000:Gonggong 2995:Makemake 2836:Archived 2807:Archived 2783:Archived 2743:Archived 2723:19 April 2714:Archived 2642:30 March 2636:Archived 2634:. NASA. 2617:31206026 2558:26 March 2552:Archived 2522:Archived 2459:36122219 2392:11875559 2233:33292771 2225:22662917 2150:Archived 2119:Archived 2058:Archived 1997:Archived 1860:Archived 1735:Archived 1733:. NASA. 1664:10966007 1656:22745254 1595:34737306 1391:Archived 1207:Archived 1123:Archived 1105:34095237 1097:17750259 926:16495992 875:26823426 684:See also 542:Dysnomia 504:Rotation 463:Callisto 459:Ganymede 92:Ganymede 3520:HiÊ»iaka 3500:Proteus 3490:Miranda 3460:Umbriel 3450:Iapetus 3435:Titania 3396:largest 3383:by size 3368:2013 FY 3325:Salacia 3311:2002 UX 3233:(Selam) 3221:Pulcova 3171:Elektra 3166:Camilla 3149:Minerva 3134:Romulus 3114:Eugenia 3107:Peneius 3069:2001 SN 3062:1994 CC 3033:Didymos 2933:Neptune 2918:Jupiter 2887:of the 2667:Bibcode 2608:6561749 2587:Bibcode 2498:Bibcode 2450:9522369 2419:Bibcode 2370:Bibcode 2267:Bibcode 2255:: 669. 2195:Bibcode 2095:Bibcode 2064:24 July 2027:Bibcode 2006:3 April 1981:Bibcode 1925:Bibcode 1801:Bibcode 1766:Bibcode 1697:Bibcode 1626:Bibcode 1618:Science 1586:8569204 1565:Bibcode 1484:Bibcode 1439:Bibcode 1375:Bibcode 1325:Bibcode 1280:Bibcode 1240:Bibcode 1171:Bibcode 1129:2 April 1077:Bibcode 1069:Science 1042:Bibcode 1015:Bibcode 970:Bibcode 934:4400037 906:Bibcode 883:6548599 847:Bibcode 824:Science 793:Bibcode 556:Bright 527:Hi'iaka 398:Geology 295:Jupiter 278:in situ 225:Neptune 198:planets 147:Neptune 135:Jupiter 100:Mercury 61:primary 3576:Naming 3535:Phoebe 3525:Actaea 3515:Nereid 3510:IlmarĂ« 3475:Tethys 3455:Charon 3445:Oberon 3430:Triton 3425:Europa 3381:Ranked 3345:IlmarĂ« 3331:Actaea 3256:Hektor 3207:Roxane 3199:Dactyl 3128:Sylvia 3102:Daphne 3047:Moshup 2990:Quaoar 2985:Haumea 2928:Uranus 2923:Saturn 2615:  2605:  2516:  2457:  2447:  2439:  2390:  2361:Nature 2337:  2285:  2235:. 195. 2231:  2223:  2215:  2113:  2023:Icarus 1973:Icarus 1866:13 May 1834:  1758:Icarus 1715:  1679:Icarus 1662:  1654:  1601:  1593:  1583:  1502:  1476:Icarus 1459:  1367:Icarus 1343:  1290:  1271:Icarus 1103:  1095:  1034:Icarus 988:  952:Nature 932:  924:  898:Nature 881:  873:  865:  803:  531:Namaka 519:Charon 469:. The 461:, and 455:Europa 425:, and 419:Europa 357:Tethys 253:Deimos 249:Phobos 229:Triton 165:, and 163:Haumea 145:, and 143:Uranus 139:Saturn 42:Saturn 32:) and 3612:Moons 3505:Mimas 3495:Vanth 3470:Dione 3465:Ariel 3405:Titan 3339:Varda 3295:Hiisi 3289:Lempo 3276:Queta 3226:Balam 3154:Aegis 3141:Remus 3089:Linus 3017:moons 2980:Pluto 2975:Orcus 2908:Earth 2717:(PDF) 2706:(PDF) 2514:S2CID 2488:arXiv 2283:S2CID 2257:arXiv 2229:S2CID 2185:arXiv 2111:S2CID 2000:(PDF) 1969:(PDF) 1713:S2CID 1687:arXiv 1660:S2CID 1599:S2CID 1500:S2CID 1457:S2CID 1429:arXiv 1394:(PDF) 1363:(PDF) 1341:S2CID 1161:arXiv 1101:S2CID 986:S2CID 960:arXiv 930:S2CID 879:S2CID 837:arXiv 783:arXiv 709:Notes 626:Juice 618:Juice 423:Titan 361:Dione 213:Pluto 205:Earth 167:Orcus 155:Pluto 125:host 96:Titan 55:is a 51:or a 26:Titan 3566:List 3440:Rhea 3420:Moon 3302:Paha 3285:TNOs 3005:Eris 2913:Mars 2844:2023 2791:2023 2779:JAXA 2751:2019 2725:2012 2644:2023 2613:PMID 2560:2008 2548:NASA 2530:2023 2455:PMID 2437:ISSN 2388:PMID 2335:ISBN 2221:OSTI 2213:OCLC 2158:2015 2146:NASA 2127:2023 2066:2012 2008:2024 1898:2017 1868:2022 1832:ISBN 1743:2019 1652:PMID 1591:PMID 1538:2017 1402:2008 1215:2024 1131:2011 1093:PMID 922:PMID 871:PMID 863:ISSN 801:ISBN 764:2011 661:JAXA 645:NASA 538:Eris 359:and 273:Hope 251:and 241:Mars 211:and 209:Moon 186:and 159:Eris 94:and 34:Rhea 3539:... 3193:Ida 3071:263 2710:ESA 2683:hdl 2675:doi 2603:PMC 2595:doi 2506:doi 2445:PMC 2427:doi 2415:119 2378:doi 2366:415 2275:doi 2203:doi 2181:152 2103:doi 2035:doi 1989:doi 1977:176 1933:doi 1921:110 1809:doi 1797:106 1774:doi 1762:167 1705:doi 1683:264 1642:hdl 1634:doi 1622:337 1581:PMC 1573:doi 1561:128 1492:doi 1480:179 1447:doi 1425:157 1383:doi 1371:127 1333:doi 1298:doi 1248:doi 1179:doi 1157:165 1085:doi 1073:245 1050:doi 1011:112 978:doi 914:doi 902:439 855:doi 829:351 665:MMX 657:MMX 355:of 313:or 297:'s 215:'s 207:'s 3608:: 3415:Io 3370:27 3313:25 2968:of 2901:of 2834:. 2830:. 2777:. 2708:. 2681:. 2673:. 2663:48 2661:. 2611:. 2601:. 2593:. 2581:. 2577:. 2546:. 2520:. 2512:. 2504:. 2496:. 2482:. 2476:. 2453:. 2443:. 2435:. 2425:. 2413:. 2409:. 2386:. 2376:. 2364:. 2358:. 2317:^ 2303:. 2281:. 2273:. 2265:. 2253:L3 2251:. 2227:. 2219:. 2211:. 2201:. 2193:. 2179:. 2175:. 2148:. 2144:. 2117:. 2109:. 2101:. 2089:. 2083:. 2033:. 1995:. 1987:. 1975:. 1971:. 1956:SO 1931:. 1919:. 1915:. 1884:. 1858:. 1854:. 1807:. 1795:. 1772:. 1760:. 1711:. 1703:. 1695:. 1681:. 1658:. 1650:. 1640:. 1632:. 1620:. 1597:. 1589:. 1579:. 1571:. 1559:. 1555:. 1524:. 1520:. 1498:. 1490:. 1478:. 1455:. 1445:. 1437:. 1423:. 1419:. 1389:. 1381:. 1369:. 1365:. 1339:. 1331:. 1321:59 1319:. 1296:. 1286:. 1276:58 1274:. 1260:^ 1246:. 1236:19 1234:. 1201:. 1177:. 1169:. 1155:. 1151:. 1139:^ 1121:. 1099:. 1091:. 1083:. 1071:. 1048:. 1038:99 1036:. 1009:. 984:. 976:. 968:. 954:. 942:^ 928:. 920:. 912:. 900:. 877:. 869:. 861:. 853:. 845:. 827:. 799:. 791:. 525:. 479:SO 457:, 441:Io 421:, 169:. 161:, 157:, 141:, 137:, 2877:e 2870:t 2863:v 2846:. 2793:. 2764:. 2753:. 2727:. 2691:. 2685:: 2677:: 2669:: 2646:. 2619:. 2597:: 2589:: 2583:5 2562:. 2532:. 2508:: 2500:: 2490:: 2484:8 2461:. 2429:: 2421:: 2394:. 2380:: 2372:: 2343:. 2289:. 2277:: 2269:: 2259:: 2205:: 2197:: 2187:: 2160:. 2129:. 2105:: 2097:: 2091:6 2068:. 2041:. 2037:: 2029:: 2010:. 1991:: 1983:: 1961:2 1941:. 1935:: 1927:: 1900:. 1870:. 1840:. 1815:. 1811:: 1803:: 1780:. 1776:: 1768:: 1745:. 1719:. 1707:: 1699:: 1689:: 1666:. 1644:: 1636:: 1628:: 1605:. 1575:: 1567:: 1540:. 1506:. 1494:: 1486:: 1463:. 1449:: 1441:: 1431:: 1404:. 1385:: 1377:: 1347:. 1335:: 1327:: 1304:. 1300:: 1282:: 1254:. 1250:: 1242:: 1217:. 1187:. 1181:: 1173:: 1163:: 1133:. 1107:. 1087:: 1079:: 1056:. 1052:: 1044:: 1021:. 1017:: 992:. 980:: 972:: 962:: 956:3 936:. 916:: 908:: 885:. 857:: 849:: 839:: 809:. 795:: 785:: 766:. 655:( 616:( 481:2 477:( 133:— 36:( 28:(

Index

Image of two regular moons
Titan
Rhea
Saturn
natural satellite
primary
discs of debris and gas
large collision
protoplanetary disc
planetary accretion
irregular moons
gravitationally rounded
Ganymede
Titan
Mercury
atmospheres
planetary objects
asteroids
minor bodies
Solar System
60 regular satellites
giant planets
Jupiter
Saturn
Uranus
Neptune
dwarf planets
Pluto
Eris
Haumea

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑