Knowledge

Regular matroid

Source 📝

290:
If a matroid is regular, it must clearly be realizable over the two fields GF(2) and GF(3). The converse is true: every matroid that is realizable over both of these two fields is regular. The result follows from a forbidden minor characterization of the matroids realizable over these fields, part of
166:(and every co-graphic matroid) is regular. Conversely, every regular matroid may be constructed by combining graphic matroids, co-graphic matroids, and a certain ten-element matroid that is neither graphic nor co-graphic, using an operation for combining matroids that generalizes the 245:(a rank-three matroid in which seven of the triples of points are dependent) and its dual are also not regular: they can be realized over GF(2), and over all fields of characteristic two, but not over any other fields than those. As 47:
is defined to be a family of subsets of a finite set, satisfying certain axioms. The sets in the family are called "independent sets". One of the ways of constructing a matroid is to select a finite set of vectors in a
302:, a matrix in which every square submatrix has determinant 0, 1, or −1. The vectors realizing the matroid may be taken as the rows of the matrix. For this reason, regular matroids are sometimes also called 56:
in the vector space. Every family of sets constructed in this way is a matroid, but not every matroid can be constructed in this way, and the vector spaces over different
285: 228: 141: 121: 101: 81: 249:
showed, these three examples are fundamental to the theory of regular matroids: every non-regular matroid has at least one of these three as a
306:. The equivalence of regular matroids and unimodular matrices, and their characterization by forbidden minors, are deep results of 390: 362: 318:
later published an alternative and simpler proof of the characterization of unimodular matrices by forbidden minors.
610: 476: 521:
Maurer, Stephen B. (1976), "Matrix generalizations of some theorems on trees, cycles and cocycles in graphs",
431: 605: 471: 253:. Thus, the regular matroids are exactly the matroids that do not have one of the three forbidden minors 659:
Gerards, A. M. H. (1989), "A short proof of Tutte's characterization of totally unimodular matrices",
726: 256: 199: 311: 178: 28: 707: 633: 591: 542: 507: 457: 385:, Oxford Graduate Texts in Mathematics, vol. 3, Oxford University Press, p. 209, 330:
algorithm for testing whether a matroid is regular, given access to the matroid through an
292: 53: 8: 57: 32: 579: 126: 106: 86: 66: 698: 669: 624: 489: 386: 358: 299: 52:, and to define a subset of the vectors to be independent in the matroid when it is 693: 664: 619: 571: 530: 493: 485: 443: 703: 684:
Truemper, K. (1982), "On the efficiency of representability tests for matroids",
629: 587: 538: 503: 453: 327: 230:(the four-point line) is not regular: it cannot be realized over the two-element 194: 182: 163: 331: 238: 498: 720: 250: 156: 231: 152: 49: 448: 559: 378: 307: 174: 241:, although it can be realized over all other fields. The matroid of the 583: 242: 167: 60:
lead to different sets of matroids that can be constructed from them.
575: 534: 298:
The regular matroids are the matroids that can be defined from a
44: 24: 173:
The number of bases in a regular matroid may be computed as the
234: 357:, Annals of Discrete Mathematics, Elsevier, p. 24, 159:. Every direct sum of regular matroids remains regular. 436:
Journal of Research of the National Bureau of Standards
259: 202: 129: 109: 89: 69: 562:(1958), "A homotopy theorem for matroids. I, II", 279: 222: 135: 115: 95: 75: 564:Transactions of the American Mathematical Society 718: 123:can be represented by a system of vectors over 16:Matroid that can be represented over all fields 608:(1979), "Matroid representation over GF(3)", 474:(1980), "Decomposition of regular matroids", 697: 668: 623: 497: 447: 352: 683: 658: 604: 470: 315: 719: 520: 177:of an associated matrix, generalizing 646: 558: 554: 552: 429: 417: 405: 377: 355:Submodular Functions and Optimization 348: 346: 310:, originally proved by him using the 246: 188: 661:Linear Algebra and Its Applications 523:SIAM Journal on Applied Mathematics 151:If a matroid is regular, so is its 13: 549: 343: 14: 738: 686:European Journal of Combinatorics 83:is regular when, for every field 291:a family of results codified by 677: 652: 640: 611:Journal of Combinatorial Theory 477:Journal of Combinatorial Theory 287:, the Fano plane, or its dual. 179:Kirchhoff's matrix-tree theorem 598: 514: 464: 423: 411: 399: 371: 1: 699:10.1016/s0195-6698(82)80039-5 337: 321: 155:, and so is every one of its 146: 38: 670:10.1016/0024-3795(89)90461-8 625:10.1016/0095-8956(79)90055-8 490:10.1016/0095-8956(80)90075-1 7: 280:{\displaystyle U{}_{4}^{2}} 223:{\displaystyle U{}_{4}^{2}} 10: 743: 353:Fujishige, Satoru (2005), 300:totally unimodular matrix 432:"Lectures on matroids" 312:Tutte homotopy theorem 281: 224: 137: 117: 97: 77: 449:10.6028/jres.069b.001 430:Tutte, W. T. (1965), 282: 225: 170:operation on graphs. 138: 118: 98: 78: 663:, 114/115: 207–212, 257: 200: 127: 107: 87: 67: 54:linearly independent 332:independence oracle 304:unimodular matroids 276: 219: 499:10338.dmlcz/101946 277: 263: 220: 206: 133: 113: 93: 73: 19:In mathematics, a 293:Rota's conjecture 237:, so it is not a 189:Characterizations 136:{\displaystyle F} 116:{\displaystyle M} 96:{\displaystyle F} 76:{\displaystyle M} 734: 712: 710: 701: 681: 675: 673: 672: 656: 650: 644: 638: 636: 627: 602: 596: 594: 556: 547: 545: 518: 512: 510: 501: 468: 462: 460: 451: 427: 421: 415: 409: 403: 397: 395: 375: 369: 367: 350: 286: 284: 283: 278: 275: 270: 265: 229: 227: 226: 221: 218: 213: 208: 183:graphic matroids 142: 140: 139: 134: 122: 120: 119: 114: 102: 100: 99: 94: 82: 80: 79: 74: 742: 741: 737: 736: 735: 733: 732: 731: 717: 716: 715: 682: 678: 657: 653: 645: 641: 603: 599: 576:10.2307/1993244 557: 550: 535:10.1137/0130017 519: 515: 469: 465: 428: 424: 416: 412: 404: 400: 393: 379:Oxley, James G. 376: 372: 365: 351: 344: 340: 328:polynomial time 324: 271: 266: 264: 258: 255: 254: 214: 209: 207: 201: 198: 197: 195:uniform matroid 191: 164:graphic matroid 149: 128: 125: 124: 108: 105: 104: 88: 85: 84: 68: 65: 64: 41: 21:regular matroid 17: 12: 11: 5: 740: 730: 729: 727:Matroid theory 714: 713: 692:(3): 275–291, 676: 651: 639: 618:(2): 159–173, 606:Seymour, P. D. 597: 570:(1): 144–174, 548: 529:(1): 143–148, 513: 484:(3): 305–359, 472:Seymour, P. D. 463: 422: 410: 398: 391: 383:Matroid Theory 370: 363: 341: 339: 336: 323: 320: 316:Gerards (1989) 274: 269: 262: 239:binary matroid 217: 212: 205: 190: 187: 148: 145: 132: 112: 92: 72: 40: 37: 15: 9: 6: 4: 3: 2: 739: 728: 725: 724: 722: 709: 705: 700: 695: 691: 687: 680: 671: 666: 662: 655: 648: 643: 635: 631: 626: 621: 617: 613: 612: 607: 601: 593: 589: 585: 581: 577: 573: 569: 565: 561: 555: 553: 544: 540: 536: 532: 528: 524: 517: 509: 505: 500: 495: 491: 487: 483: 479: 478: 473: 467: 459: 455: 450: 445: 441: 437: 433: 426: 419: 414: 407: 402: 394: 392:9780199202508 388: 384: 380: 374: 366: 364:9780444520869 360: 356: 349: 347: 342: 335: 333: 329: 319: 317: 313: 309: 305: 301: 296: 294: 288: 272: 267: 260: 252: 248: 244: 240: 236: 233: 215: 210: 203: 196: 186: 184: 180: 176: 171: 169: 165: 160: 158: 154: 144: 130: 110: 90: 70: 61: 59: 55: 51: 46: 36: 34: 30: 26: 22: 689: 685: 679: 660: 654: 647:Oxley (2006) 642: 615: 614:, Series B, 609: 600: 567: 563: 560:Tutte, W. T. 526: 522: 516: 481: 480:, Series B, 475: 466: 439: 435: 425: 418:Oxley (2006) 413: 406:Oxley (2006) 401: 382: 373: 354: 325: 303: 297: 289: 247:Tutte (1958) 232:finite field 192: 172: 161: 153:dual matroid 150: 62: 50:vector space 42: 27:that can be 20: 18: 326:There is a 308:W. T. Tutte 175:determinant 29:represented 338:References 322:Algorithms 243:Fano plane 168:clique-sum 147:Properties 63:A matroid 39:Definition 420:, p. 131. 408:, p. 112. 31:over all 721:Category 649:, p. 20. 442:: 1–47, 381:(2006), 708:0679212 634:0532586 592:0101526 584:1993244 543:0392635 508:0579077 458:0179781 45:matroid 25:matroid 706:  632:  590:  582:  541:  506:  456:  389:  361:  162:Every 157:minors 58:fields 33:fields 580:JSTOR 251:minor 235:GF(2) 23:is a 387:ISBN 359:ISBN 193:The 181:for 694:doi 665:doi 620:doi 572:doi 531:doi 494:hdl 486:doi 444:doi 440:69B 723:: 704:MR 702:, 688:, 630:MR 628:, 616:26 588:MR 586:, 578:, 568:88 566:, 551:^ 539:MR 537:, 527:30 525:, 504:MR 502:, 492:, 482:28 454:MR 452:, 438:, 434:, 345:^ 334:. 314:. 295:. 185:. 143:. 103:, 43:A 35:. 711:. 696:: 690:3 674:. 667:: 637:. 622:: 595:. 574:: 546:. 533:: 511:. 496:: 488:: 461:. 446:: 396:. 368:. 273:2 268:4 261:U 216:2 211:4 204:U 131:F 111:M 91:F 71:M

Index

matroid
represented
fields
matroid
vector space
linearly independent
fields
dual matroid
minors
graphic matroid
clique-sum
determinant
Kirchhoff's matrix-tree theorem
graphic matroids
uniform matroid
finite field
GF(2)
binary matroid
Fano plane
Tutte (1958)
minor
Rota's conjecture
totally unimodular matrix
W. T. Tutte
Tutte homotopy theorem
Gerards (1989)
polynomial time
independence oracle

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.