Knowledge

Matroid minor

Source đź“ť

43:, and the restriction and contraction operations by which they are formed correspond to edge deletion and edge contraction operations in graphs. The theory of matroid minors leads to structural decompositions of matroids, and characterizations of matroid families by forbidden minors, analogous to the corresponding theory in graphs. 276:
also belongs to the family. In this case, the family may be characterized by its set of "forbidden matroids", the minor-minimal matroids that do not belong to the family. A matroid belongs to the family if and only if it does not have a forbidden matroid as a minor. Often, but not always, the set of
464:
can also be generalized to matroids, and plays a bigger role than branchwidth in the theory of graph minors, branchwidth has more convenient properties in the matroid setting. If a minor-closed family of matroids representable over a finite field does not include the graphic matroids of all planar
568:
with rank or corank one. However, if the problem is restricted to the matroids that are representable over some fixed finite field (and represented as a matrix over that field) then, as in the graph case, it is conjectured to be possible to recognize the matroids that contain any fixed minor in
456:
have different branchwidths, 2 and 1 respectively, but they both induce the same graphic matroid with branchwidth 1. However, for graphs that are not trees, the branchwidth of the graph is equal to the branchwidth of its associated graphic matroid. The branchwidth of a matroid always equals the
389:
that, for any finite field, the matroids representable over that field have finitely many forbidden minors. A proof of this conjecture was announced, but not published, by Geelen, Gerards, and Whittle in 2014. The matroids that can be represented over the
409:
of the matroid elements, represented as an unrooted binary tree with the elements of the matroid at its leaves. Removing any edge of this tree partitions the matroids into two disjoint subsets; such a partition is called an e-separation. If
560:. Correspondingly, in matroid theory, it would be desirable to develop efficient algorithms for recognizing whether a given fixed matroid is a minor of an input matroid. Unfortunately, such a strong result is not possible: in the 385:, include both graphic and regular matroids. Tutte again showed that these matroids have a forbidden minor characterization: they are the matroids that do not have the four-point line as a minor. 260:
formed by the flats of a matroid, taking a minor of a matroid corresponds to taking an interval of the lattice, the part of the lattice lying between a given lower bound and upper bound element.
352:, matroids whose independent sets are the forest subgraphs of a graph, have five forbidden minors: the three for the regular matroids, and the two duals of the graphic matroids for the graphs 237: 489:. However, the example of the real-representable matroids, which have infinitely many forbidden minors, shows that the minor ordering is not a well-quasi-ordering on all matroids. 516:
states that all regular matroids can be built up in a simple way as the clique-sum of graphic matroids, their duals, and one special 10-element matroid. As a consequence,
441:. The width of a decomposition is the maximum width of any of its e-separations, and the branchwidth of a matroid is the minimum width of any of its branch-decompositions. 331: 556:
is allowed to vary). By combining this result with the Robertson–Seymour theorem, it is possible to recognize the members of any minor-closed graph family in
465:
graphs, then there is a constant bound on the branchwidth of the matroids in the family, generalizing similar results for minor-closed graph families.
508:
is an important tool in the theory of graph minors, according to which the graphs in any minor-closed family can be built up from simpler graphs by
1000: 481:
matroids characterized by a list of forbidden minors can be characterized by a finite list. Another way of saying the same thing is that the
885: 871: 1064:
Mazoit, Frédéric; Thomassé, Stéphan (2007), "Branchwidth of graphic matroids", in Hilton, Anthony; Talbot, John (eds.),
513: 1256: 532:
One of the important components of graph minor theory is the existence of an algorithm for testing whether a graph
288:, matroids that are representable over all fields. Equivalently a matroid is regular if it can be represented by a 1104: 960: 897: 836: 804: 760: 405:
of matroids may be defined analogously to their definition for graphs. A branch-decomposition of a matroid is a
795: 474: 460:
Branchwidth is an important component of attempts to extend the theory of graph minors to matroids: although
278: 520:
defined by totally unimodular matrices may be solved combinatorially by combining the solutions to a set of
169: 162:
and defining a set to be independent in the contraction if its union with this basis remains independent in
1133: 1099: 1276: 1073:, London Mathematical Society Lecture Note Series, vol. 346, Cambridge University Press, p. 275 1065: 863: 549: 958:
Hicks, Illya V.; McMurray, Nolan B. Jr. (2007), "The branchwidth of graphs and their cycle matroids",
289: 1150: 296:
proved that a matroid is regular if and only if it does not have one of three forbidden minors: the
1025: 496:
are well-quasi-ordered. So far this has been proven only for the matroids of bounded branchwidth.
268:
Many important families of matroids are closed under the operation of taking minors: if a matroid
1281: 505: 406: 302: 1145: 916: 342: 281:
which states that the set of forbidden minors of a minor-closed graph family is always finite.
39:
by a sequence of restriction and contraction operations. Matroid minors are closely related to
985:
Proc. 28th International Symposium on Mathematical Foundations of Computer Science (MFCS '03)
521: 1236: 1207: 1167: 1125: 1091: 783: 402: 386: 414:
denotes the rank function of the matroid, then the width of an e-separation is defined as
8: 486: 453: 367: 987:, Lecture Notes in Computer Science, vol. 2747, Springer-Verlag, pp. 470–479, 1195: 818: 492:
Robertson and Seymour conjectured that the matroids representable over any particular
292:(a matrix whose square submatrices all have determinants equal to 0, 1, or −1). 1252: 1117: 257: 932: 512:
operations. Some analogous results are also known in matroid theory. In particular,
1224: 1187: 1155: 1113: 1050: 1015: 988: 969: 947: 906: 845: 813: 769: 798:; Whittle, Geoff (2003), "On the excluded minors for the matroids of branch-width 524:
problems corresponding to the graphic and co-graphic parts of this decomposition.
1232: 1203: 1163: 1121: 1087: 1079: 992: 779: 565: 557: 445: 349: 297: 285: 1228: 1159: 974: 911: 561: 517: 378: 1055: 1020: 1270: 1244: 482: 850: 774: 493: 382: 371: 338: 104: 983:
Hliněný, Petr (2003), "On matroid properties definable in the MSO logic",
1215:
Vámos, P. (1978), "The missing axiom of matroid theory is lost forever",
1175: 564:
model, the only minors that can be recognized in polynomial time are the
391: 40: 1041:
Hliněný, Petr; Whittle, Geoff (2009), "Addendum to matroid tree-width",
1199: 928: 881: 859: 827: 791: 751: 509: 449: 334: 1084:
Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 3
951: 461: 1191: 444:
The branchwidth of a graph and the branchwidth of the corresponding
20: 1247:(2010) , "4.4 Minors and their representation in the lattice", 602: 832:"Branch-width and well-quasi-ordering in matroids and graphs" 831: 790: 755: 728: 485:
on graphic matroids formed by the minor operation is a
864:"Towards a structure theory for matrices and matroids" 756:"The excluded minors for GF(4)-representable matroids" 263: 305: 172: 146:
whose independent sets are the sets whose union with
1136:; Walton, P. N. (1981), "Detecting matroid minors", 927: 880: 858: 826: 710: 706: 694: 690: 678: 608: 750: 87:whose independent sets are the independent sets of 1178:(1958), "A homotopy theorem for matroids. I, II", 341:of the Fano plane. For this he used his difficult 325: 231: 1180:Transactions of the American Mathematical Society 540:, taking an amount of time that is polynomial in 16:Matroid obtained by restrictions and contractions 1268: 931:; Gerards, Bert; Whittle, Geoff (Aug 17, 2014), 578: 154:. This definition may be extended to arbitrary 1251:, Courier Dover Publications, pp. 65–67, 1063: 1040: 998: 872:Proc. International Congress of Mathematicians 663: 647: 635: 381:, matroids representable over the two-element 284:An example of this phenomenon is given by the 277:forbidden matroids is finite, paralleling the 1132: 1102:(1980), "Decomposition of regular matroids", 1086:, Paris: Gauthier-Villars, pp. 229–233, 1082:(1971), "Combinatorial theory, old and new", 957: 734: 651: 940:Notices of the American Mathematical Society 527: 272:belongs to the family, then every minor of 253:by restriction and contraction operations. 1217:Journal of the London Mathematical Society 1138:Journal of the London Mathematical Society 166:. The rank function of the contraction is 1149: 1054: 1019: 973: 910: 849: 817: 773: 499: 448:may differ: for instance, the three-edge 345:. Simpler proofs have since been found. 884:; Gerards, Bert; Whittle, Geoff (2007), 862:; Gerards, Bert; Whittle, Geoff (2006), 830:; Gerards, Bert; Whittle, Geoff (2002), 754:; Gerards, A. M. H.; Kapoor, A. (2000), 1098: 982: 722: 674: 672: 477:implies that every matroid property of 394:have infinitely many forbidden minors. 142:, is the matroid on the underlying set 1269: 999:HlinÄ›nĂ˝, Petr; Whittle, Geoff (2006), 631: 629: 468: 232:{\displaystyle r'(A)=r(A\cup T)-r(T).} 1243: 1214: 1174: 620: 584: 293: 1078: 711:Geelen, Gerards & Whittle (2006) 707:Geelen, Gerards & Whittle (2002) 695:Geelen, Gerards & Whittle (2007) 691:Geelen, Gerards & Whittle (2006) 679:Geelen, Gerards & Whittle (2006) 669: 609:Geelen, Gerards & Whittle (2014) 596: 95:. Its circuits are the circuits of 626: 264:Forbidden matroid characterizations 13: 886:"Excluding a planar graph from GF( 14: 1293: 1043:European Journal of Combinatorics 1008:European Journal of Combinatorics 875:, vol. III, pp. 827–842 1105:Journal of Combinatorial Theory 961:Journal of Combinatorial Theory 898:Journal of Combinatorial Theory 837:Journal of Combinatorial Theory 805:Journal of Combinatorial Theory 761:Journal of Combinatorial Theory 716: 700: 514:Seymour's decomposition theorem 684: 657: 641: 614: 590: 397: 249:if it can be constructed from 223: 217: 208: 196: 187: 181: 46: 19:In the mathematical theory of 1: 1067:Surveys in Combinatorics 2007 819:10.1016/S0095-8956(02)00046-1 743: 370:are forbidden minors for the 1118:10.1016/0095-8956(80)90075-1 1039:. Addendum and corrigendum: 993:10.1007/978-3-540-45138-9_41 664:HlinÄ›nĂ˝ & Whittle (2006) 648:Mazoit & ThomassĂ© (2007) 636:Mazoit & ThomassĂ© (2007) 536:is a minor of another graph 122:is an independent subset of 83:, is the matroid on the set 7: 933:"Solving Rota's conjecture" 735:Seymour & Walton (1981) 652:Hicks & McMurray (2007) 333:(the four-point line), the 326:{\displaystyle U{}_{4}^{2}} 10: 1298: 975:10.1016/j.jctb.2006.12.007 912:10.1016/j.jctb.2007.02.005 67:, then the restriction of 1056:10.1016/j.ejc.2008.09.028 1021:10.1016/j.ejc.2006.06.005 890:)-representable matroids" 550:fixed-parameter tractable 528:Algorithms and complexity 475:Robertson–Seymour theorem 457:branchwidth of its dual. 290:totally unimodular matrix 279:Robertson–Seymour theorem 111:restricted to subsets of 1229:10.1112/jlms/s2-18.3.403 1160:10.1112/jlms/s2-23.2.193 572: 544:for any fixed choice of 245:is a minor of a matroid 158:by choosing a basis for 55:is a matroid on the set 506:graph structure theorem 407:hierarchical clustering 851:10.1006/jctb.2001.2082 775:10.1006/jctb.2000.1963 500:Matroid decompositions 327: 233: 99:that are contained in 91:that are contained in 35:that is obtained from 522:minimum spanning tree 403:Branch-decompositions 328: 234: 126:, the contraction of 1001:"Matroid tree-width" 303: 170: 548:(and more strongly 487:well-quasi-ordering 469:Well-quasi-ordering 452:and the three-edge 322: 31:is another matroid 1277:Graph minor theory 323: 309: 229: 150:is independent in 1219:, Second Series, 1140:, Second Series, 794:; Gerards, Bert; 569:polynomial time. 258:geometric lattice 1289: 1261: 1239: 1210: 1170: 1153: 1128: 1094: 1080:Rota, Gian-Carlo 1074: 1072: 1059: 1058: 1049:(4): 1036–1044, 1038: 1037: 1036: 1030: 1024:, archived from 1023: 1014:(7): 1117–1128, 1005: 995: 978: 977: 954: 952:10.1090/noti1139 937: 923: 921: 915:, archived from 914: 894: 876: 868: 854: 853: 822: 821: 786: 777: 738: 732: 726: 720: 714: 704: 698: 688: 682: 676: 667: 661: 655: 645: 639: 633: 624: 618: 612: 606: 600: 594: 588: 582: 566:uniform matroids 440: 387:Rota conjectured 368:Wagner's theorem 350:graphic matroids 343:homotopy theorem 332: 330: 329: 324: 321: 316: 311: 286:regular matroids 256:In terms of the 238: 236: 235: 230: 180: 1297: 1296: 1292: 1291: 1290: 1288: 1287: 1286: 1267: 1266: 1265: 1259: 1245:Welsh, D. J. A. 1192:10.2307/1993244 1151:10.1.1.108.1426 1070: 1034: 1032: 1028: 1003: 935: 919: 892: 866: 796:Robertson, Neil 746: 741: 733: 729: 721: 717: 705: 701: 689: 685: 677: 670: 662: 658: 646: 642: 634: 627: 619: 615: 607: 603: 595: 591: 583: 579: 575: 558:polynomial time 552:if the size of 530: 518:linear programs 502: 471: 446:graphic matroid 415: 400: 379:binary matroids 365: 358: 317: 312: 310: 304: 301: 300: 298:uniform matroid 266: 173: 171: 168: 167: 63:is a subset of 49: 17: 12: 11: 5: 1295: 1285: 1284: 1282:Matroid theory 1279: 1264: 1263: 1257: 1249:Matroid Theory 1241: 1223:(3): 403–408, 1212: 1186:(1): 144–174, 1172: 1144:(2): 193–203, 1134:Seymour, P. D. 1130: 1112:(3): 305–359, 1100:Seymour, P. D. 1096: 1076: 1061: 996: 980: 968:(5): 681–692, 955: 946:(7): 736–743, 925: 905:(6): 971–998, 878: 856: 844:(2): 270–290, 824: 812:(2): 261–265, 788: 768:(2): 247–299, 747: 745: 742: 740: 739: 727: 723:Seymour (1980) 715: 699: 683: 668: 656: 640: 625: 613: 601: 589: 576: 574: 571: 562:matroid oracle 529: 526: 501: 498: 470: 467: 399: 396: 363: 356: 320: 315: 308: 265: 262: 228: 225: 222: 219: 216: 213: 210: 207: 204: 201: 198: 195: 192: 189: 186: 183: 179: 176: 48: 45: 15: 9: 6: 4: 3: 2: 1294: 1283: 1280: 1278: 1275: 1274: 1272: 1260: 1258:9780486474397 1254: 1250: 1246: 1242: 1238: 1234: 1230: 1226: 1222: 1218: 1213: 1209: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1165: 1161: 1157: 1152: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1106: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1069: 1068: 1062: 1057: 1052: 1048: 1044: 1031:on 2012-03-06 1027: 1022: 1017: 1013: 1009: 1002: 997: 994: 990: 986: 981: 976: 971: 967: 963: 962: 956: 953: 949: 945: 941: 934: 930: 926: 922:on 2010-09-24 918: 913: 908: 904: 900: 899: 891: 889: 883: 879: 874: 873: 865: 861: 857: 852: 847: 843: 839: 838: 833: 829: 825: 820: 815: 811: 807: 806: 801: 797: 793: 789: 785: 781: 776: 771: 767: 763: 762: 757: 753: 752:Geelen, J. F. 749: 748: 736: 731: 724: 719: 712: 708: 703: 696: 692: 687: 680: 675: 673: 665: 660: 653: 649: 644: 637: 632: 630: 622: 617: 610: 605: 598: 593: 586: 581: 577: 570: 567: 563: 559: 555: 551: 547: 543: 539: 535: 525: 523: 519: 515: 511: 507: 497: 495: 490: 488: 484: 483:partial order 480: 476: 466: 463: 458: 455: 451: 447: 442: 438: 434: 430: 426: 422: 418: 413: 408: 404: 395: 393: 388: 384: 380: 375: 373: 372:planar graphs 369: 362: 355: 351: 346: 344: 340: 336: 318: 313: 306: 299: 295: 291: 287: 282: 280: 275: 271: 261: 259: 254: 252: 248: 244: 239: 226: 220: 214: 211: 205: 202: 199: 193: 190: 184: 177: 174: 165: 161: 157: 153: 149: 145: 141: 137: 133: 129: 125: 121: 116: 114: 110: 106: 105:rank function 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 44: 42: 38: 34: 30: 27:of a matroid 26: 22: 1248: 1220: 1216: 1183: 1179: 1176:Tutte, W. T. 1141: 1137: 1109: 1108:, Series B, 1103: 1083: 1066: 1046: 1042: 1033:, retrieved 1026:the original 1011: 1007: 984: 965: 964:, Series B, 959: 943: 939: 917:the original 902: 901:, Series B, 896: 887: 870: 841: 840:, Series B, 835: 809: 808:, Series B, 803: 799: 765: 764:, Series B, 759: 730: 718: 702: 686: 659: 643: 621:Vámos (1978) 616: 604: 592: 585:Welsh (2010) 580: 553: 545: 541: 537: 533: 531: 503: 494:finite field 491: 478: 472: 459: 443: 436: 432: 428: 424: 420: 416: 411: 401: 392:real numbers 383:finite field 376: 360: 353: 347: 339:dual matroid 294:Tutte (1958) 283: 273: 269: 267: 255: 250: 246: 242: 240: 163: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 117: 112: 108: 100: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 50: 41:graph minors 36: 32: 28: 24: 18: 929:Geelen, Jim 882:Geelen, Jim 860:Geelen, Jim 828:Geelen, Jim 792:Geelen, Jim 597:Rota (1971) 398:Branchwidth 144:E − T 107:is that of 47:Definitions 1271:Categories 1035:2012-08-17 744:References 510:clique-sum 450:path graph 431:) − 335:Fano plane 241:A matroid 134:, written 75:, written 1146:CiteSeerX 462:treewidth 337:, or the 212:− 203:∪ 366:that by 178:′ 103:and its 21:matroids 1237:0518224 1208:0101526 1200:1993244 1168:0609098 1126:0579077 1092:0505646 784:1769191 479:graphic 79: | 1255:  1235:  1206:  1198:  1166:  1148:  1124:  1090:  782:  1196:JSTOR 1071:(PDF) 1029:(PDF) 1004:(PDF) 936:(PDF) 920:(PDF) 893:(PDF) 867:(PDF) 573:Notes 439:) + 1 25:minor 1253:ISBN 504:The 473:The 454:star 423:) + 377:The 359:and 348:The 59:and 23:, a 1225:doi 1188:doi 1156:doi 1114:doi 1051:doi 1016:doi 989:doi 970:doi 948:doi 907:doi 846:doi 814:doi 802:", 770:doi 364:3,3 130:by 118:If 71:to 51:If 1273:: 1233:MR 1231:, 1221:18 1204:MR 1202:, 1194:, 1184:88 1182:, 1164:MR 1162:, 1154:, 1142:23 1122:MR 1120:, 1110:28 1088:MR 1047:30 1045:, 1012:27 1010:, 1006:, 966:97 944:61 942:, 938:, 903:97 895:, 869:, 842:84 834:, 810:88 780:MR 778:, 766:79 758:, 709:; 693:; 671:^ 650:; 628:^ 374:. 115:. 1262:. 1240:. 1227:: 1211:. 1190:: 1171:. 1158:: 1129:. 1116:: 1095:. 1075:. 1060:. 1053:: 1018:: 991:: 979:. 972:: 950:: 924:. 909:: 888:q 877:. 855:. 848:: 823:. 816:: 800:k 787:. 772:: 737:. 725:. 713:. 697:. 681:. 666:. 654:. 638:. 623:. 611:. 599:. 587:. 554:H 546:H 542:G 538:G 534:H 437:M 435:( 433:r 429:B 427:( 425:r 421:A 419:( 417:r 412:r 361:K 357:5 354:K 319:2 314:4 307:U 274:M 270:M 251:M 247:M 243:N 227:. 224:) 221:T 218:( 215:r 209:) 206:T 200:A 197:( 194:r 191:= 188:) 185:A 182:( 175:r 164:M 160:T 156:T 152:M 148:T 140:T 138:/ 136:M 132:T 128:M 124:E 120:T 113:S 109:M 101:S 97:M 93:S 89:M 85:S 81:S 77:M 73:S 69:M 65:E 61:S 57:E 53:M 37:M 33:N 29:M

Index

matroids
graph minors
rank function
geometric lattice
Robertson–Seymour theorem
regular matroids
totally unimodular matrix
Tutte (1958)
uniform matroid
Fano plane
dual matroid
homotopy theorem
graphic matroids
Wagner's theorem
planar graphs
binary matroids
finite field
Rota conjectured
real numbers
Branch-decompositions
hierarchical clustering
graphic matroid
path graph
star
treewidth
Robertson–Seymour theorem
partial order
well-quasi-ordering
finite field
graph structure theorem

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑