Knowledge

Fano plane

Source 📝

691: 1188:. The configuration consisting of the three points of a triangle and the three lines joining pairs of these points is represented by a 6-cycle in the Heawood graph. A color-preserving automorphism of the Heawood graph that fixes each vertex of a 6-cycle must be the identity automorphism. This means that there are 168 labeled triangles fixed only by the identity collineation and only six collineations that stabilize an unlabeled triangle, one for each permutation of the points. These 28 triangles may be viewed as corresponding to the 28 361: 861: 818: 805: 797: 786: 778: 699: 1268: 317: 746: 1685: 24: 234:
The lines of the Fano plane may also be given homogeneous coordinates, again using non-zero triples of binary digits. With this system of coordinates, a point is incident to a line if the coordinate for the point and the coordinate for the line have an even number of positions at which they both have
1134:
of the quadrangle and a collineation fixes the quadrangle if and only if it fixes the diagonal line. Thus, there are 24 symmetries that fix any such quadrangle. The dual configuration is a quadrilateral consisting of four lines no three of which meet at a point and their six points of intersection,
1093:
The Fano plane contains the following numbers of configurations of points and lines of different types. For each type of configuration, the number of copies of configuration multiplied by the number of symmetries of the plane that keep the configuration unchanged is equal to 168, the size of the
538:
called the Cat's Cradle map. Color the seven lines of the Fano plane ROYGBIV, place your fingers into the two dimensional projective space in ambient 3-space, and stretch your fingers out like the children's game Cat's Cradle. You will obtain a complete graph on seven vertices with seven colored
732:
Dualities can be viewed in the context of the Heawood graph as color reversing automorphisms. An example of a polarity is given by reflection through a vertical line that bisects the Heawood graph representation given on the right. The existence of this polarity shows that the Fano plane is
250:
On three of the lines, two of the positions in the binary triples of each point have the same value: in the line 110 (containing the points 001, 110, and 111) the first and second positions are always equal to each other, and the lines 101 and 011 are formed in the same
1060:
If this configuration lies in a projective plane and the three diagonal points are collinear, then the seven points and seven lines of the expanded configuration form a subplane of the projective plane that is isomorphic to the Fano plane and is called a
1104:
There are 7 points with 24 symmetries fixing any point and dually, there are 7 lines with 24 symmetries fixing any line. The number of symmetries follows from the 2-transitivity of the collineation group, which implies the group acts transitively on the
1680:
If you break one line apart into three 2-point lines you obtain the "non-Fano configuration", which can be embedded in the real plane. It is another important example in matroid theory, as it must be excluded for many theorems to hold.
1072:
states that if every complete quadrangle in a finite projective plane extends to a Fano subplane (that is, has collinear diagonal points) then the plane is Desarguesian. Gleason called any projective plane satisfying this condition a
246:
On three of the lines the binary triples for the points have the 0 in a constant position: the line 100 (containing the points 001, 010, and 011) has 0 in the first position, and the lines 010 and 001 are formed in the same
1100:). Since the Fano plane is self-dual, these configurations come in dual pairs and it can be shown that the number of collineations fixing a configuration equals the number of collineations that fix its dual configuration. 114:
with the smallest possible number of points and lines: 7 points and 7 lines, with 3 points on every line and 3 lines through every point. These points and lines cannot exist with this pattern of incidences in
196:, the seven points of the Fano plane may be labeled with the seven non-zero ordered triples of binary digits 001, 010, 011, 100, 101, 110, and 111. This can be done in such a way that for every two points 1192:. There are 84 ways of specifying a triangle together with one distinguished point on that triangle and two symmetries fixing this configuration. The dual of the triangle configuration is also a triangle. 235:
nonzero bits: for instance, the point 101 belongs to the line 111, because they have nonzero bits at two common positions. In terms of the underlying linear algebra, a point belongs to a line if the
737:. This is also an immediate consequence of the symmetry between points and lines in the definition of the incidence relation in terms of homogeneous coordinates, as detailed in an earlier section. 1011: 1123:
consisting of a line and a point on that line. Each flag corresponds to the unordered pair of the other two points on the same line. For each flag, 8 different symmetries keep it fixed.
1288:-design. The points of the design are the points of the plane, and the blocks of the design are the lines of the plane. As such it is a valuable example in (block) design theory. 1178: 694:
Bijection between the Fano plane as field with eight elements minus the origin and the projective line over the field with seven elements. Symmetries are made explicit.
139:", the first parameter is the geometric dimension (it is a plane, of dimension 2) and the second parameter is the order (the number of points per line, minus one). 1112:
of points, and each may be mapped by a symmetry onto any other ordered pair. For any ordered pair there are 4 symmetries fixing it. Correspondingly, there are 21
930: 1271:
The upper figure is an alternative representation of the Fano plane in grid layout – compare with one of the finite projective plane of order 3 below
216:
modulo 2 digit by digit (e.g., 010 and 111 resulting in 101). In other words, the points of the Fano plane correspond to the non-zero points of the finite
332:, the vertices of one part representing the points and the other representing the lines, with two vertices joined if the corresponding point and line are 2607: 2125: 1085:
collinear, a condition that holds in the Euclidean and real projective planes. Thus, what Gleason called Fano planes do not satisfy Fano's axiom.
546:
will be at the center of the septagon inside. Now label this point as ∞, and pull it backwards to the origin. One can write down a bijection from
2415: 1264:
configurations of this type can be realized in the Euclidean plane having at most one curved line (all other lines lying on Euclidean lines).
1116:
of points, each of which may be mapped by a symmetry onto any other unordered pair. For any unordered pair there are 8 symmetries fixing it.
395: 189:
with two elements. One can similarly construct projective planes over any other finite field, with the Fano plane being the smallest.
1020: 1037:
In any projective plane a set of four points, no three of which are collinear, and the six lines joining pairs of these points is a
905: 687:). The corresponding symmetries on the Fano plane are respectively swapping vertices, rotating the graph, and rotating triangles. 2358: 2307: 2282: 2201: 2089: 1130:
of four (unordered) points no three of which are collinear. These four points form the complement of a line, which is the
939: 2576: 2679: 2622: 2566: 2408: 2536: 1219:
form a triangle, and for every triangle there is a unique way of grouping the remaining four points into an anti-flag.
2340: 2257: 2137: 2107: 1199:), and six ways of permuting the Fano plane while keeping an anti-flag fixed. For every non-incident point-line pair 254:
In the remaining line 111 (containing the points 011, 101, and 110), each binary triple has exactly two nonzero bits.
1658:
is formed by taking the Fano plane's points as the ground set, and the three-element noncollinear subsets as bases.
2612: 320:
Bipartite Heawood graph. Points are represented by vertices of one color and lines by vertices of the other color.
2643: 1788: 2185: 47: 2586: 2401: 1703:
The Fano plane can be extended in a third dimension to form a three-dimensional projective space, denoted by
712: 2664: 2617: 2602: 933: 162: 2674: 790: 453:
of points can be mapped by at least one collineation to any other ordered pair of points. (See below.)
442: 2042: 1602: 1142: 390:
of the Fano plane is a permutation of the 7 points that preserves collinearity: that is, it carries
2669: 2518: 1744: 1096: 1038: 812:
The 48 permutations with a complete 7-cycle form two distinct conjugacy classes with 24 elements:
649: 2684: 2551: 2193: 1226:
in which no three consecutive vertices lie on a line, and six symmetries fixing any such hexagon.
1189: 769: 411: 228: 193: 154:. Since it is a projective space, algebraic techniques can also be effective tools in its study. 111: 62: 2561: 2689: 2638: 2506: 1291:
With the points labelled 0, 1, 2, ..., 6 the lines (as point sets) are the translates of the
1260:)-configuration, is unique and is the smallest such configuration. According to a theorem by 1256:
lines with three points on each line and three lines through each point. The Fano plane, a (7
1233:
in which no three consecutive vertices lie on a line, and two symmetries fixing any pentagon.
1182:
triples of points, seven of which are collinear triples, leaving 28 non-collinear triples or
690: 2571: 2541: 2481: 2459: 2147: 1795: 1749: 1281: 429: 391: 341: 333: 1195:
There are 28 ways of selecting a point and a line that are not incident to each other (an
263:
Alternatively, the 7 points of the plane correspond to the 7 non-identity elements of the
8: 2581: 2546: 2526: 2424: 1042: 1032: 349: 264: 166: 143: 136: 1772:, but since the finite field of order 2 has no non-identity automorphisms, this becomes 2556: 2476: 2296: 2270: 2219: 2174: 2118: 2054: 915: 403: 224: 151: 116: 88: 2376: 2354: 2336: 2303: 2278: 2253: 2237: 2197: 2154: 2133: 2103: 2085: 1069: 762: 758: 446: 439: 2266: 123:
with two elements. The standard notation for this plane, as a member of a family of
2486: 2438: 2233: 2229: 2166: 2064: 1708: 1609:. This quasigroup coincides with the multiplicative structure defined by the unit 1328: 1094:
entire collineation group, provided each copy can be mapped to any other copy (see
182: 124: 2068: 1707:. It has 15 points, 35 lines, and 15 planes and is the smallest three-dimensional 2291: 2143: 2129: 1787:). Since the field has only one nonzero element, this group is isomorphic to the 1674: 1670: 1120: 1077:
thus creating some confusion with modern terminology. To compound the confusion,
860: 817: 804: 796: 785: 470: 360: 329: 169:
are always collinear. "The" Fano plane of 7 points and lines is "a" Fano plane.
99: 2469: 2380: 2316: 1646: 1596: 1296: 1261: 1113: 407: 285:. The lines of the plane correspond to the subgroups of order 4, isomorphic to 178: 932:
colors can be calculated by plugging the numbers of cycle structures into the
456:
Collineations may also be viewed as the color-preserving automorphisms of the
2658: 2241: 1666: 1127: 777: 619: 457: 345: 236: 147: 1669:
is necessary to characterize several important classes of matroids, such as
721:
between the point set and the line set that preserves incidence is called a
2464: 2073: 1661:
The Fano plane is one of the important examples in the structure theory of
1267: 1109: 702:
Duality in the Fano plane: Each point corresponds to a line and vice versa.
698: 635: 450: 399: 380: 374: 297: 217: 186: 120: 2210:
Manivel, L. (2006), "Configurations of lines and models of Lie algebras",
1734:
A line and a plane not containing the line intersect in exactly one point.
1725: 1049:
and pairs of sides that do not meet at one of the four points are called
337: 2496: 2443: 2393: 2178: 1606: 325: 2385: 2224: 2059: 2038: 1184: 745: 718: 365: 316: 107: 2170: 1684: 1610: 1230: 425: 386: 301: 1698: 1662: 1223: 227:, even though the plane is too small to contain a non-degenerate 1633:(omitting 1) if the signs of the octonion products are ignored ( 750: 223:
Due to this construction, the Fano plane is considered to be a
428:
of order 168 = 2·3·7, the next non-abelian simple group after
1081:
states that the diagonal points of a complete quadrangle are
23: 912:
The number of inequivalent colorings of the Fano plane with
364:
A collineation of the Fano plane corresponding to the 3-bit
1015: 1026: 652:, and the basic transformations are reflections (order 2, 1718:
Each line is contained in 3 planes and contains 3 points.
480:, so the points of the Fano plane may be identified with 192:
Using the standard construction of projective spaces via
1858: 445:
on the 7 points of the plane, the collineation group is
239:
of the vectors representing the point and line is zero.
1894: 1846: 1836: 1834: 1819: 1147: 942: 518:. There is a relation between the underlying objects, 394:
points (on the same line) to collinear points. By the
2002: 1145: 1053:. The points at which opposite sides meet are called 918: 146:, so many of its properties can be established using 2100:
Introduction to the theory of groups of finite order
1952: 1006:{\textstyle {{n^{7}+21n^{5}+98n^{3}+48n} \over 168}} 539:
triangles (projective lines). The missing origin of
2374: 1831: 2295: 2117: 1906: 1731:Every pair of distinct planes intersect in a line. 1172: 1135:it is the complement of a point in the Fano plane. 1005: 924: 2265: 1969: 1946: 1840: 220:of dimension 3 over the finite field of order 2. 2656: 2126:Ergebnisse der Mathematik und ihrer Grenzgebiete 1715:Each point is contained in 7 lines and 7 planes. 308:) is that of the Fano plane, and has order 168. 1605:. As such, it can be given the structure of a 258: 2348: 1984: 242:The lines can be classified into three types. 119:, but they can be given coordinates using the 2409: 1980: 1978: 1163: 1150: 344:and each part contains 7 vertices. It is the 208:has the label formed by adding the labels of 800:42 permutations with a 4-cycle and a 2-cycle 2321:Über die construction der configurationen n 165:; in other words, the diagonal points of a 161:is a projective plane that never satisfies 2416: 2402: 2326:(Ph. D. thesis), Kgl. Universität, Breslau 2184: 2097: 1975: 1864: 418: 396:Fundamental theorem of projective geometry 172: 2330: 2275:Configurations from a Graphical Viewpoint 2223: 2115: 2058: 1923: 1900: 1825: 1721:Each plane contains 7 points and 7 lines. 1711:. It also has the following properties: 231:(which requires 10 points and 10 lines). 142:The Fano plane is an example of a finite 2423: 2315: 2190:Projective Geometries Over Finite Fields 2079: 1958: 1852: 1688:The Fano plane redrawn as a planar graph 1683: 1601:The Fano plane, as a block design, is a 1266: 744: 697: 689: 359: 315: 22: 2349:van Lint, J. H.; Wilson, R. M. (1992), 2290: 2247: 2209: 2153: 2020: 2008: 1996: 1935: 1912: 1888: 1876: 1211:, the three points that are unequal to 1027:Complete quadrangles and Fano subplanes 725:and a duality of order two is called a 336:. This particular graph is a connected 2657: 2080:Brown, Ezra; Guy, Richard K. (2021) , 1275: 772:each define a single conjugacy class: 177:The Fano plane can be constructed via 2397: 2375: 324:As with any incidence structure, the 150:and other tools used in the study of 2037: 1634: 490:. The symmetry group may be written 1237:The Fano plane is an example of an 13: 1248:-configuration, that is, a set of 1229:There are 84 ways of specifying a 1222:There are 28 ways of specifying a 1154: 740: 18:Geometry with 7 points and 7 lines 14: 2701: 2368: 1665:. Excluding the Fano plane as a 1640: 1590: 1088: 808:56 permutations with two 3-cycles 2331:Stevenson, Frederick W. (1972), 2250:Fundamental Concepts of Geometry 1173:{\displaystyle {\tbinom {7}{3}}} 1126:There are 7 ways of selecting a 859: 816: 803: 795: 784: 776: 355: 2159:American Journal of Mathematics 2098:Carmichael, Robert D. (1956) , 2014: 1990: 1963: 1940: 1929: 1917: 1789:projective special linear group 673:), and doubling (order 3 since 435:of order 60 (ordered by size). 2567:Cremona–Richmond configuration 2353:, Cambridge University Press, 2234:10.1016/j.jalgebra.2006.04.029 2157:(1956), "Finite Fano planes", 1882: 1870: 1762: 936:. This number of colorings is 638:of order 7. The symmetries of 1: 2128:, Band 44, Berlin, New York: 2069:10.1090/S0273-0979-01-00934-X 2030: 1970:Pisanski & Servatius 2013 1947:Pisanski & Servatius 2013 1841:Pisanski & Servatius 2013 1057:and there are three of them. 713:Duality (projective geometry) 311: 2644:Kirkman's schoolgirl problem 2577:Grünbaum–Rigby configuration 1812: 1581: 1569: 1563: 1550: 1547: 1535: 1516: 1513: 1501: 1488: 1482: 1479: 1454: 1448: 1445: 1420: 1414: 1411: 1386: 1380: 1377: 706: 259:Group-theoretic construction 7: 2537:Möbius–Kantor configuration 2248:Meserve, Bruce E. (1983) , 1801:. It is also isomorphic to 1738: 1692: 753:numbering of the Fano plane 340:(regular of degree 3), has 10: 2706: 2623:Bruck–Ryser–Chowla theorem 2298:A Geometrical Picture Book 2082:The Unity of Combinatorics 1985:van Lint & Wilson 1992 1696: 1644: 1594: 1280:The Fano plane is a small 1215:and that do not belong to 1030: 710: 662:), translations (order 7, 204:, the third point on line 2680:Configurations (geometry) 2631: 2613:Szemerédi–Trotter theorem 2595: 2517: 2452: 2431: 2351:A Course in Combinatorics 2116:Dembowski, Peter (1968), 1313:. With the lines labeled 934:Pólya enumeration theorem 789:21 permutations with two 84: 76: 68: 56: 46: 38: 33: 2603:Sylvester–Gallai theorem 2335:, W.H. Freeman and Co., 1755: 1745:Projective configuration 1097:Orbit-stabiliser theorem 1068:A famous result, due to 781:The identity permutation 148:combinatorial techniques 2608:De Bruijn–Erdős theorem 2552:Desargues configuration 2194:Oxford University Press 1190:bitangents of a quartic 1045:. The lines are called 891:is on the same line as 848:is on the same line as 611:labels the vertices of 412:projective linear group 328:of the Fano plane is a 229:Desargues configuration 194:homogeneous coordinates 173:Homogeneous coordinates 112:finite projective plane 2047:Bull. Amer. Math. Soc. 1689: 1677:, and cographic ones. 1282:symmetric block design 1272: 1174: 1007: 926: 761:of the 7 points has 6 754: 703: 695: 650:Möbius transformations 369: 321: 28: 2639:Design of experiments 1687: 1603:Steiner triple system 1331:(table) is given by: 1270: 1175: 1008: 927: 908:for a complete list.) 748: 701: 693: 363: 319: 157:In a separate usage, 26: 2572:Kummer configuration 2542:Pappus configuration 2425:Incidence structures 2186:Hirschfeld, J. W. P. 1853:Brown & Guy 2021 1796:general linear group 1750:Transylvania lottery 1143: 940: 916: 152:incidence geometries 2665:Projective geometry 2582:Klein configuration 2562:Schläfli double six 2547:Hesse configuration 2527:Complete quadrangle 2271:Servatius, Brigitte 2074:Online HTML version 1276:Block design theory 1043:complete quadrangle 1033:Complete quadrangle 570:and send the slope 167:complete quadrangle 144:incidence structure 137:projective geometry 69:Point orbit lengths 48:Lenz–Barlotti class 2675:Incidence geometry 2557:Reye configuration 2377:Weisstein, Eric W. 2212:Journal of Algebra 2155:Gleason, Andrew M. 1987:, pp. 196–197 1728:to the Fano plane. 1690: 1273: 1170: 1168: 1003: 922: 755: 704: 696: 469:is a degree-three 404:automorphism group 400:collineation group 370: 322: 225:Desarguesian plane 117:Euclidean geometry 77:Line orbit lengths 29: 2652: 2651: 2360:978-0-521-42260-4 2333:Projective Planes 2309:978-0-387-98437-7 2284:978-0-8176-8363-4 2203:978-0-19-850295-1 2120:Finite geometries 2091:978-1-4704-5667-2 1651:The Fano matroid 1586: 1585: 1284:, specifically a 1161: 1070:Andrew M. Gleason 1001: 925:{\displaystyle n} 909: 763:conjugacy classes 759:permutation group 449:meaning that any 447:doubly transitive 440:permutation group 125:projective spaces 96: 95: 2697: 2487:Projective plane 2439:Incidence matrix 2418: 2411: 2404: 2395: 2394: 2390: 2389: 2363: 2345: 2327: 2312: 2301: 2292:Polster, Burkard 2287: 2262: 2244: 2227: 2206: 2181: 2150: 2123: 2112: 2094: 2071: 2062: 2024: 2018: 2012: 2006: 2000: 1994: 1988: 1982: 1973: 1967: 1961: 1956: 1950: 1944: 1938: 1933: 1927: 1921: 1915: 1910: 1904: 1898: 1892: 1886: 1880: 1874: 1868: 1862: 1856: 1850: 1844: 1838: 1829: 1823: 1806: 1804: 1800: 1793: 1776:also denoted PGL 1775: 1771: 1766: 1709:projective space 1336: 1335: 1329:incidence matrix 1312: 1302: 1294: 1287: 1247: 1210: 1181: 1179: 1177: 1176: 1171: 1169: 1167: 1166: 1153: 1018: 1012: 1010: 1009: 1004: 1002: 997: 987: 986: 971: 970: 955: 954: 944: 931: 929: 928: 923: 903: 863: 820: 807: 799: 788: 780: 770:cycle structures 686: 676: 672: 661: 633: 632: 606: 569: 555: 517: 506:PSL(2, 7) = Aut( 503: 492:PGL(3, 2) = Aut( 489: 426:well-known group 416: 295: 284: 183:projective plane 134: 130: 31: 30: 2705: 2704: 2700: 2699: 2698: 2696: 2695: 2694: 2670:Finite geometry 2655: 2654: 2653: 2648: 2627: 2591: 2513: 2448: 2444:Incidence graph 2427: 2422: 2371: 2366: 2361: 2343: 2324: 2317:Steinitz, Ernst 2310: 2285: 2267:Pisanski, Tomaž 2260: 2204: 2171:10.2307/2372469 2140: 2130:Springer-Verlag 2110: 2092: 2043:"The Octonions" 2033: 2028: 2027: 2019: 2015: 2007: 2003: 1995: 1991: 1983: 1976: 1968: 1964: 1957: 1953: 1945: 1941: 1934: 1930: 1922: 1918: 1911: 1907: 1899: 1895: 1887: 1883: 1875: 1871: 1865:Carmichael 1956 1863: 1859: 1851: 1847: 1839: 1832: 1824: 1820: 1815: 1810: 1809: 1802: 1798: 1791: 1786: 1779: 1773: 1769: 1768:Actually it is 1767: 1763: 1758: 1741: 1701: 1695: 1657: 1649: 1643: 1632: 1625: 1618: 1599: 1593: 1561: 1530: 1499: 1468: 1437: 1406: 1375: 1344: 1341: 1326: 1319: 1304: 1300: 1292: 1285: 1278: 1259: 1245: 1238: 1200: 1162: 1149: 1148: 1146: 1144: 1141: 1140: 1139: 1114:unordered pairs 1091: 1055:diagonal points 1035: 1029: 1014: 982: 978: 966: 962: 950: 946: 945: 943: 941: 938: 937: 917: 914: 913: 743: 741:Cycle structure 715: 709: 678: 674: 663: 653: 647: 631: 628: 627: 626: 617: 596: 589: 571: 564: 562: 553: 547: 545: 537: 527: 515: 505: 501: 491: 487: 481: 479: 471:field extension 468: 433: 419:Hirschfeld 1979 414: 358: 330:bipartite graph 314: 307: 304:of the group (Z 294: 290: 286: 283: 279: 275: 271: 267: 261: 175: 132: 128: 100:finite geometry 91: 61: 19: 12: 11: 5: 2703: 2693: 2692: 2687: 2685:Matroid theory 2682: 2677: 2672: 2667: 2650: 2649: 2647: 2646: 2641: 2635: 2633: 2629: 2628: 2626: 2625: 2620: 2618:Beck's theorem 2615: 2610: 2605: 2599: 2597: 2593: 2592: 2590: 2589: 2584: 2579: 2574: 2569: 2564: 2559: 2554: 2549: 2544: 2539: 2534: 2529: 2523: 2521: 2519:Configurations 2515: 2514: 2512: 2511: 2510: 2509: 2501: 2500: 2499: 2491: 2490: 2489: 2484: 2474: 2473: 2472: 2470:Steiner system 2467: 2456: 2454: 2450: 2449: 2447: 2446: 2441: 2435: 2433: 2432:Representation 2429: 2428: 2421: 2420: 2413: 2406: 2398: 2392: 2391: 2370: 2369:External links 2367: 2365: 2364: 2359: 2346: 2341: 2328: 2322: 2313: 2308: 2288: 2283: 2277:, Birkhäuser, 2263: 2258: 2245: 2218:(1): 457–486, 2207: 2202: 2182: 2165:(4): 797–807, 2151: 2138: 2113: 2108: 2095: 2090: 2077: 2053:(2): 145–205, 2034: 2032: 2029: 2026: 2025: 2013: 2001: 1989: 1974: 1962: 1951: 1939: 1928: 1924:Dembowski 1968 1916: 1905: 1901:Stevenson 1972 1893: 1881: 1869: 1857: 1845: 1830: 1826:Stevenson 1972 1817: 1816: 1814: 1811: 1808: 1807: 1784: 1777: 1760: 1759: 1757: 1754: 1753: 1752: 1747: 1740: 1737: 1736: 1735: 1732: 1729: 1724:Each plane is 1722: 1719: 1716: 1697:Main article: 1694: 1691: 1655: 1647:Matroid theory 1645:Main article: 1642: 1641:Matroid theory 1639: 1630: 1623: 1616: 1597:Steiner system 1595:Main article: 1592: 1591:Steiner system 1589: 1588: 1587: 1584: 1583: 1580: 1577: 1574: 1571: 1568: 1565: 1562: 1559: 1553: 1552: 1549: 1546: 1543: 1540: 1537: 1534: 1531: 1528: 1522: 1521: 1518: 1515: 1512: 1509: 1506: 1503: 1500: 1497: 1491: 1490: 1487: 1484: 1481: 1478: 1475: 1472: 1469: 1466: 1460: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1429: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1404: 1398: 1397: 1394: 1391: 1388: 1385: 1382: 1379: 1376: 1373: 1367: 1366: 1363: 1360: 1357: 1354: 1351: 1348: 1345: 1342: 1339: 1324: 1317: 1297:difference set 1277: 1274: 1257: 1243: 1235: 1234: 1227: 1220: 1193: 1165: 1160: 1157: 1152: 1136: 1124: 1117: 1106: 1090: 1089:Configurations 1087: 1051:opposite sides 1031:Main article: 1028: 1025: 1000: 996: 993: 990: 985: 981: 977: 974: 969: 965: 961: 958: 953: 949: 921: 901: 900: 857: 810: 809: 801: 793: 782: 742: 739: 711:Main article: 708: 705: 645: 629: 622:, noting that 615: 594: 587: 560: 551: 543: 535: 525: 513: 499: 485: 477: 466: 460:(see figure). 431: 421:, p. 131 408:symmetry group 357: 354: 313: 310: 305: 292: 288: 281: 277: 273: 269: 260: 257: 256: 255: 252: 248: 179:linear algebra 174: 171: 104:the Fano plane 94: 93: 86: 82: 81: 78: 74: 73: 70: 66: 65: 58: 54: 53: 50: 44: 43: 40: 36: 35: 27:The Fano plane 17: 9: 6: 4: 3: 2: 2702: 2691: 2688: 2686: 2683: 2681: 2678: 2676: 2673: 2671: 2668: 2666: 2663: 2662: 2660: 2645: 2642: 2640: 2637: 2636: 2634: 2630: 2624: 2621: 2619: 2616: 2614: 2611: 2609: 2606: 2604: 2601: 2600: 2598: 2594: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2553: 2550: 2548: 2545: 2543: 2540: 2538: 2535: 2533: 2530: 2528: 2525: 2524: 2522: 2520: 2516: 2508: 2505: 2504: 2502: 2498: 2495: 2494: 2493:Graph theory 2492: 2488: 2485: 2483: 2480: 2479: 2478: 2475: 2471: 2468: 2466: 2463: 2462: 2461: 2460:Combinatorics 2458: 2457: 2455: 2451: 2445: 2442: 2440: 2437: 2436: 2434: 2430: 2426: 2419: 2414: 2412: 2407: 2405: 2400: 2399: 2396: 2388: 2387: 2382: 2378: 2373: 2372: 2362: 2356: 2352: 2347: 2344: 2342:0-7167-0443-9 2338: 2334: 2329: 2325: 2318: 2314: 2311: 2305: 2300: 2299: 2293: 2289: 2286: 2280: 2276: 2272: 2268: 2264: 2261: 2259:0-486-63415-9 2255: 2251: 2246: 2243: 2239: 2235: 2231: 2226: 2221: 2217: 2213: 2208: 2205: 2199: 2195: 2191: 2187: 2183: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2152: 2149: 2145: 2141: 2139:3-540-61786-8 2135: 2131: 2127: 2122: 2121: 2114: 2111: 2109:0-486-60300-8 2105: 2101: 2096: 2093: 2087: 2084:, MAA Press, 2083: 2078: 2075: 2070: 2066: 2061: 2056: 2052: 2048: 2044: 2040: 2036: 2035: 2022: 2017: 2010: 2005: 1998: 1993: 1986: 1981: 1979: 1972:, p. 221 1971: 1966: 1960: 1959:Steinitz 1894 1955: 1949:, p. 165 1948: 1943: 1937: 1932: 1926:, p. 168 1925: 1920: 1914: 1909: 1902: 1897: 1890: 1885: 1878: 1873: 1867:, p. 363 1866: 1861: 1855:, p. 177 1854: 1849: 1843:, p. 171 1842: 1837: 1835: 1827: 1822: 1818: 1797: 1790: 1783: 1765: 1761: 1751: 1748: 1746: 1743: 1742: 1733: 1730: 1727: 1723: 1720: 1717: 1714: 1713: 1712: 1710: 1706: 1705:PG(3, 2) 1700: 1686: 1682: 1678: 1676: 1672: 1668: 1667:matroid minor 1664: 1659: 1654: 1648: 1638: 1636: 1629: 1622: 1615: 1612: 1608: 1604: 1598: 1578: 1575: 1572: 1566: 1558: 1555: 1554: 1544: 1541: 1538: 1532: 1527: 1524: 1523: 1519: 1510: 1507: 1504: 1496: 1493: 1492: 1485: 1476: 1473: 1470: 1465: 1462: 1461: 1457: 1451: 1442: 1439: 1434: 1431: 1430: 1426: 1423: 1417: 1408: 1403: 1400: 1399: 1395: 1392: 1389: 1383: 1372: 1369: 1368: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1338: 1337: 1334: 1333: 1332: 1330: 1323: 1316: 1311: 1307: 1303:in the group 1298: 1289: 1283: 1269: 1265: 1263: 1255: 1251: 1242: 1232: 1228: 1225: 1221: 1218: 1214: 1208: 1204: 1198: 1194: 1191: 1187: 1186: 1158: 1155: 1137: 1133: 1132:diagonal line 1129: 1125: 1122: 1119:There are 21 1118: 1115: 1111: 1110:ordered pairs 1108:There are 42 1107: 1103: 1102: 1101: 1099: 1098: 1086: 1084: 1080: 1076: 1071: 1066: 1064: 1063:Fano subplane 1058: 1056: 1052: 1048: 1044: 1040: 1039:configuration 1034: 1024: 1022: 1017: 998: 994: 991: 988: 983: 979: 975: 972: 967: 963: 959: 956: 951: 947: 935: 919: 910: 907: 898: 894: 890: 886: 882: 878: 874: 870: 866: 862: 858: 855: 851: 847: 843: 839: 835: 831: 827: 823: 819: 815: 814: 813: 806: 802: 798: 794: 792: 787: 783: 779: 775: 774: 773: 771: 766: 764: 760: 752: 747: 738: 736: 730: 728: 724: 720: 714: 700: 692: 688: 685: 681: 670: 666: 660: 656: 651: 644: 641: 637: 625: 621: 620:edge coloring 614: 610: 604: 600: 593: 586: 582: 578: 574: 567: 559: 550: 542: 534: 531: 524: 521: 512: 509: 504:. Similarly, 498: 495: 484: 476: 472: 465: 461: 459: 458:Heawood graph 454: 452: 448: 444: 441: 436: 434: 427: 422: 420: 413: 409: 405: 401: 397: 393: 389: 388: 383: 382: 377: 376: 367: 362: 356:Collineations 353: 351: 348:, the unique 347: 346:Heawood graph 343: 339: 335: 331: 327: 318: 309: 303: 302:GL(3, 2) 299: 266: 253: 249: 245: 244: 243: 240: 238: 237:inner product 232: 230: 226: 221: 219: 215: 211: 207: 203: 199: 195: 190: 188: 184: 180: 170: 168: 164: 160: 155: 153: 149: 145: 140: 138: 126: 122: 118: 113: 109: 105: 101: 90: 87: 83: 79: 75: 71: 67: 64: 59: 57:Automorphisms 55: 51: 49: 45: 41: 37: 32: 25: 21: 16: 2690:Dot patterns 2632:Applications 2531: 2465:Block design 2384: 2381:"Fano Plane" 2350: 2332: 2320: 2302:, Springer, 2297: 2274: 2249: 2225:math/0507118 2215: 2211: 2189: 2162: 2158: 2119: 2099: 2081: 2060:math/0105155 2050: 2046: 2023:, p. 69 2021:Polster 1998 2016: 2011:, p. 29 2009:Meserve 1983 2004: 1999:, p. 23 1997:Polster 1998 1992: 1965: 1954: 1942: 1936:Manivel 2006 1931: 1919: 1913:Gleason 1956 1908: 1903:, p. 21 1896: 1891:, p. 15 1889:Polster 1998 1884: 1879:, p. 11 1877:Polster 1998 1872: 1860: 1848: 1828:, p. 34 1821: 1781: 1764: 1704: 1702: 1679: 1660: 1652: 1650: 1627: 1620: 1613: 1600: 1556: 1525: 1494: 1463: 1432: 1401: 1370: 1321: 1314: 1309: 1305: 1290: 1279: 1253: 1249: 1240: 1236: 1216: 1212: 1206: 1202: 1196: 1183: 1131: 1095: 1092: 1082: 1079:Fano's axiom 1078: 1074: 1067: 1062: 1059: 1054: 1050: 1046: 1036: 911: 902: 896: 892: 888: 884: 880: 876: 872: 868: 864: 853: 849: 845: 841: 837: 833: 829: 825: 821: 811: 767: 756: 734: 731: 726: 722: 716: 683: 679: 668: 664: 658: 654: 642: 639: 636:cyclic group 623: 612: 608: 607:, where now 602: 598: 591: 584: 580: 576: 572: 565: 557: 548: 540: 532: 529: 522: 519: 510: 507: 496: 493: 482: 474: 463: 462: 455: 451:ordered pair 437: 423: 385: 381:automorphism 379: 375:collineation 373: 371: 323: 298:automorphism 262: 241: 233: 222: 218:vector space 213: 209: 205: 201: 197: 191: 187:finite field 176: 163:Fano's axiom 159:a Fano plane 158: 156: 141: 135:stands for " 121:finite field 103: 97: 89:Desarguesian 20: 15: 2503:Statistics 1286:2-(7, 3, 1) 1252:points and 1041:known as a 768:These four 488:∖ {0} 398:, the full 368:permutation 338:cubic graph 2659:Categories 2532:Fano plane 2497:Hypergraph 2039:Baez, John 2031:References 1726:isomorphic 1607:quasigroup 1138:There are 1128:quadrangle 1075:Fano plane 1013:(sequence 424:This is a 326:Levi graph 312:Levi graph 85:Properties 34:Fano plane 2482:Incidence 2386:MathWorld 2252:, Dover, 2242:0021-8693 2102:, Dover, 1813:Citations 1803:PSL(2, 7) 1792:PSL(3, 2) 1774:PGL(3, 2) 1770:PΓL(3, 2) 1635:Baez 2002 1611:octonions 1301:{0, 1, 3} 1299:given by 1293:(7, 3, 1) 1197:anti-flag 1185:triangles 735:self-dual 719:bijection 707:Dualities 415:PGL(3, 2) 410:) is the 392:collinear 366:Gray code 185:over the 108:Gino Fano 92:Self-dual 63:PGL(3, 2) 60:2 × 3 × 7 2596:Theorems 2507:Blocking 2477:Geometry 2319:(1894), 2294:(1998), 2273:(2013), 2188:(1979), 2041:(2002), 1799:GL(3, 2) 1794:and the 1739:See also 1693:PG(3, 2) 1663:matroids 1262:Steinitz 1231:pentagon 867:maps to 824:maps to 791:2-cycles 727:polarity 387:symmetry 334:incident 131:. Here, 129:PG(2, 2) 2179:2372469 2148:0233275 1699:PG(3,2) 1675:graphic 1671:regular 1626:, ..., 1320:, ..., 1295:planar 1224:hexagon 1105:points. 1019:in the 1016:A241929 887:. Then 844:. Then 723:duality 342:girth 6 296:. The 181:as the 110:) is a 106:(after 2453:Fields 2357:  2339:  2306:  2281:  2256:  2240:  2200:  2177:  2146:  2136:  2106:  2088:  751:nimber 563:. Set 443:acting 350:6-cage 300:group 2220:arXiv 2175:JSTOR 2055:arXiv 1756:Notes 1340:Point 1121:flags 1083:never 1047:sides 904:(See 675:2 = 1 657:↦ −1/ 634:is a 618:with 554:∪ {∞} 438:As a 406:, or 384:, or 272:) = Z 265:group 127:, is 52:VII.2 39:Order 2587:Dual 2355:ISBN 2337:ISBN 2304:ISBN 2279:ISBN 2254:ISBN 2238:ISSN 2198:ISBN 2134:ISBN 2104:ISBN 2086:ISBN 1343:Line 1327:the 1180:= 35 1021:OEIS 906:here 895:and 852:and 757:The 648:are 605:+ 1) 528:and 402:(or 251:way. 247:way. 212:and 200:and 2230:doi 2216:304 2167:doi 2065:doi 1637:). 1308:/ 7 1023:). 999:168 883:to 875:to 840:to 832:to 765:. 682:↦ 2 671:+ 1 597:/ ( 568:= 0 556:to 473:of 372:A 291:× Z 280:× Z 276:× Z 98:In 2661:: 2383:, 2379:, 2269:; 2236:, 2228:, 2214:, 2196:, 2192:, 2173:, 2163:78 2161:, 2144:MR 2142:, 2132:, 2124:, 2063:, 2051:39 2049:, 2045:, 1977:^ 1833:^ 1673:, 1619:, 1582:1 1551:1 1520:0 1489:1 1458:0 1427:0 1396:0 1365:6 1205:, 1065:. 992:48 976:98 960:21 879:, 871:, 836:, 828:, 749:A 729:. 717:A 677:, 667:↦ 601:+ 590:≅ 583:∈ 579:+ 575:↦ 378:, 352:. 268:(Z 206:pq 133:PG 102:, 2417:e 2410:t 2403:v 2323:3 2232:: 2222:: 2169:: 2076:) 2072:( 2067:: 2057:: 1805:. 1785:2 1782:F 1780:( 1778:3 1656:7 1653:F 1631:7 1628:e 1624:2 1621:e 1617:1 1614:e 1579:0 1576:0 1573:0 1570:1 1567:0 1564:1 1560:6 1557:ℓ 1548:1 1545:0 1542:0 1539:0 1536:1 1533:0 1529:5 1526:ℓ 1517:1 1514:1 1511:0 1508:0 1505:0 1502:1 1498:4 1495:ℓ 1486:0 1483:1 1480:1 1477:0 1474:0 1471:0 1467:3 1464:ℓ 1455:1 1452:0 1449:1 1446:1 1443:0 1440:0 1436:2 1433:ℓ 1424:0 1421:1 1418:0 1415:1 1412:1 1409:0 1405:1 1402:ℓ 1393:0 1390:0 1387:1 1384:0 1381:1 1378:1 1374:0 1371:ℓ 1362:5 1359:4 1356:3 1353:2 1350:1 1347:0 1325:6 1322:ℓ 1318:0 1315:ℓ 1310:Z 1306:Z 1258:3 1254:n 1250:n 1246:) 1244:3 1241:n 1239:( 1217:l 1213:p 1209:) 1207:l 1203:p 1201:( 1164:) 1159:3 1156:7 1151:( 995:n 989:+ 984:3 980:n 973:+ 968:5 964:n 957:+ 952:7 948:n 920:n 899:. 897:C 893:A 889:D 885:D 881:C 877:C 873:B 869:B 865:A 856:. 854:B 850:A 846:D 842:D 838:C 834:C 830:B 826:B 822:A 684:k 680:k 669:k 665:k 659:k 655:k 646:7 643:F 640:P 630:8 624:F 616:7 613:K 609:x 603:x 599:x 595:2 592:F 588:8 585:F 581:x 577:x 573:k 566:x 561:8 558:F 552:7 549:F 544:8 541:F 536:7 533:F 530:P 526:2 523:F 520:P 516:) 514:7 511:F 508:P 502:) 500:2 497:F 494:P 486:8 483:F 478:2 475:F 467:8 464:F 432:5 430:A 417:, 306:2 293:2 289:2 287:Z 282:2 278:2 274:2 270:2 214:q 210:p 202:q 198:p 80:7 72:7 42:2

Index


Lenz–Barlotti class
PGL(3, 2)
Desarguesian
finite geometry
Gino Fano
finite projective plane
Euclidean geometry
finite field
projective spaces
projective geometry
incidence structure
combinatorial techniques
incidence geometries
Fano's axiom
complete quadrangle
linear algebra
projective plane
finite field
homogeneous coordinates
vector space
Desarguesian plane
Desargues configuration
inner product
group
automorphism
GL(3, 2)

Levi graph
bipartite graph

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.