Knowledge

Desargues's theorem

Source 📝

654: 31: 683:, and the axis of perspectivity) and the ten points involved (the six vertices, the three points of intersection on the axis of perspectivity, and the center of perspectivity) are so arranged that each of the ten lines passes through three of the ten points, and each of the ten points lies on three of the ten lines. Those ten points and ten lines make up the 707:
This restricted version states that if two triangles are perspective from a point on a given line, and two pairs of corresponding sides also meet on this line, then the third pair of corresponding sides meet on the line as well. Thus, it is the specialization of Desargues's Theorem to only the cases
524:
This proves Desargues's theorem if the two triangles are not contained in the same plane. If they are in the same plane, Desargues's theorem can be proved by choosing a point not in the plane, using this to lift the triangles out of the plane so that the argument above works, and then projecting back
34:
Perspective triangles. Corresponding sides of the triangles, when extended, meet at points on a line called the axis of perspectivity. The lines which run through corresponding vertices on the triangles meet at a point called the center of perspectivity. Desargues's theorem states that the truth of
314:(where points correspond to lines and collinearity of points corresponds to concurrency of lines), the statement of Desargues's theorem is self-dual: axial perspectivity is translated into central perspectivity and vice versa. The Desargues configuration (below) is a self-dual configuration. 217:
but special care needs to be taken in exceptional cases, as when a pair of sides are parallel, so that their "point of intersection" recedes to infinity. Commonly, to remove these exceptions, mathematicians "complete" the Euclidean plane by adding points at infinity, following
317:
This self-duality in the statement is due to the usual modern way of writing the theorem. Historically, the theorem only read, "In a projective space, a pair of centrally perspective triangles is axially perspective" and the dual of this statement was called the
273:
The importance of Desargues's theorem in abstract projective geometry is due especially to the fact that a projective space satisfies that theorem if and only if it is isomorphic to a projective space defined over a field or division ring.
290:
a similar statement is true, but only if one lists various exceptions involving parallel lines. Desargues's theorem is therefore one of the simplest geometric theorems whose natural home is in projective rather than affine space.
603:
lie on a second line, then each two opposite sides of the hexagon lie on two lines that meet in a point and the three points constructed in this way are collinear. A plane in which Pappus's theorem is universally true is called
330:
Desargues's theorem holds for projective space of any dimension over any field or division ring, and also holds for abstract projective spaces of dimension at least 3. In dimension 2 the planes for which it holds are called
831:, pg. 159, footnote 1), Hessenberg's original proof is not complete; he disregarded the possibility that some additional incidences could occur in the Desargues configuration. A complete proof is provided by 699:
of the ten points may be chosen to be the center of perspectivity, and that choice determines which six points will be the vertices of triangles and which line will be the axis of perspectivity.
531:
also asserts that three points lie on a line, and has a proof using the same idea of considering it in three rather than two dimensions and writing the line as an intersection of two planes.
543:
in which Desargues's theorem is not true, some extra conditions need to be met in order to prove it. These conditions usually take the form of assuming the existence of sufficiently many
347:
Desargues's theorem is true for any projective space of dimension at least 3, and more generally for any projective space that can be embedded in a space of dimension at least 3.
882: 619:
of this result is not true, that is, not all Desarguesian planes are Pappian. Satisfying Pappus's theorem universally is equivalent to having the underlying coordinate system be
521:
also exist and belong to the planes of both triangles. Since these two planes intersect in more than one point, their intersection is a line that contains all three points.
525:
into the plane. The last step of the proof fails if the projective space has dimension less than 3, as in this case it is not possible to find a point not in the plane.
657:
The Desargues configuration viewed as a pair of mutually inscribed pentagons: each pentagon vertex lies on the line through one of the sides of the other pentagon.
303:
if and only if they are in perspective centrally (or, equivalently according to this theorem, in perspective axially). Note that perspective triangles need not be
623:. A plane defined over a non-commutative division ring (a division ring that is not a field) would therefore be Desarguesian but not Pappian. However, due to 1157:
Pambuccian, Victor; Schacht, Celia (2019), "The axiomatic destiny of the theorems of Pappus and Desargues", in Dani, S. G.; Papadopoulos, A. (eds.),
980: 887: 1319: 691:. Although Desargues's theorem chooses different roles for these ten lines and points, the Desargues configuration itself is more 1304: 1300: 1166: 1027: 961: 872: 639:
give a proof that uses only "elementary" algebraic facts (rather than the full strength of Wedderburn's little theorem).
265:) to a practical book on the use of perspective published in 1648. by his friend and pupil Abraham Bosse (1602–1676). 1334: 1329: 1231: 1213: 1191: 1148: 1126: 1108: 1090: 928: 540: 479:
belong to the same plane and must intersect. Further, if the two triangles lie on different planes, then the point
949: 937: 624: 1251: 311: 547:
of a certain type, which in turn leads to showing that the underlying algebraic coordinate system must be a
1324: 17: 1241: 1246: 559: 242: 1183: 335:
and are the same as the planes that can be given coordinates over a division ring. There are also many
1282: 635:
Desarguesian planes are Pappian. There is no known completely geometric proof of this fact, although
688: 36: 1273: 1291: 920: 684: 648: 336: 300: 246: 64: 1038: 612:
showed that Desargues's theorem can be deduced from three applications of Pappus's theorem.
304: 230: 1009: 971: 219: 210: 8: 1078: 724: 234: 44: 27:
Two triangles are in perspective axially if and only if they are in perspective centrally
1202: 1175: 1063: 997: 904: 661:
The ten lines involved in Desargues's theorem (six sides of triangles, the three lines
528: 332: 172:
meet in a third point, and that these three points all lie on a common line called the
1264: 1227: 1209: 1187: 1162: 1144: 1137: 1122: 1104: 1086: 1067: 1055: 1023: 957: 924: 908: 868: 715:
is a projective plane in which the little Desargues theorem is valid for every line.
82: 1036:
Hessenberg, Gerhard (1905), "Beweis des Desarguesschen Satzes aus dem Pascalschen",
1047: 989: 896: 223: 52: 1017: 1005: 967: 862: 287: 214: 257:
Desargues never published this theorem, but it appeared in an appendix entitled
653: 241:; that includes any projective space of dimension greater than two or in which 70: 1313: 1074: 1059: 712: 548: 238: 120: 1286: 1277: 544: 447:
are coplanar (lie in the same plane) because of the assumed concurrency of
283: 900: 616: 319: 620: 708:
in which the center of perspectivity lies on the axis of perspectivity.
30: 1295: 1051: 1001: 1268: 420: 993: 692: 60: 263:
Manière universelle de M. Desargues pour practiquer la perspective
563: 322:
of Desargues's theorem and was always referred to by that name.
493:
belongs to both planes. By a symmetric argument, the points
233:
and for any projective space defined arithmetically from a
978:
Cronheim, Arno (1953), "A proof of Hessenberg's theorem",
883:"Completing Segre's proof of Wedderburn's little theorem" 1143:(2nd ed.), Reading, Mass.: Addison Wesley Longman, 259:
Universal Method of M. Desargues for Using Perspective
1201: 1136: 1073: 277: 1156: 1311: 981:Proceedings of the American Mathematical Society 1174: 880: 794: 793:The smallest examples of these can be found in 702: 636: 554: 325: 1239: 642: 350:Desargues's theorem can be stated as follows: 860: 807: 861:Albert, A. Adrian; Sandler, Reuben (2015) , 1098: 1085:(2nd ed.), Chelsea, pp. 119–128, 888:Bulletin of the London Mathematical Society 864:An Introduction to Finite Projective Planes 811: 1035: 609: 342: 249:", in which Desargues's theorem is false. 1221: 1015: 828: 815: 339:where Desargues's theorem does not hold. 1139:A History of Mathematics:An Introduction 1116: 977: 832: 652: 534: 29: 948: 936: 844: 781: 768: 14: 1312: 376:are concurrent (meet at a point), then 202:are concurrent, at a point called the 1199: 914: 881:Bamberg, John; Penttila, Tim (2015), 743: 571:is drawn in such a way that vertices 1134: 917:Projective Geometry: An Introduction 755: 312:duality of plane projective geometry 229:Desargues's theorem is true for the 268: 24: 541:non-Desarguesian projective planes 156:meet in a second point, and lines 25: 1346: 1258: 1119:Introduction to Finite Geometries 1099:Hughes, Dan; Piper, Fred (1973), 299:By definition, two triangles are 1222:Stevenson, Frederick W. (1972), 245:holds. However, there are many " 1320:Theorems in projective geometry 950:Coxeter, Harold Scott MacDonald 631:division rings are fields, all 294: 278:Projective versus affine spaces 1240:Voitsekhovskii, M.I. (2001) , 1161:, Springer, pp. 355–399, 838: 821: 800: 787: 774: 761: 749: 737: 13: 1: 1178:; Kirkpatrick, P. B. (1971), 854: 637:Bamberg & Penttila (2015) 1292:Proof of Desargues's theorem 1204:A Source Book in Mathematics 1200:Smith, David Eugene (1959), 1083:Geometry and the Imagination 703:The little Desargues theorem 555:Relation to Pappus's theorem 326:Proof of Desargues's theorem 101:, and those of the other by 39:for the truth of the second. 7: 1247:Encyclopedia of Mathematics 795:Room & Kirkpatrick 1971 718: 643:The Desargues configuration 625:Wedderburn's little theorem 587:lie on a line and vertices 180:means that the three lines 10: 1351: 1184:Cambridge University Press 646: 252: 1305:Dynamic Geometry Sketches 1117:Kárteszi, Ferenc (1976), 1016:Dembowski, Peter (1968), 808:Albert & Sandler 2015 73:they are in perspective 1335:Euclidean plane geometry 1330:Theorems about triangles 1135:Katz, Victor J. (1998), 1046:(2), Springer: 161–172, 954:Introduction to Geometry 730: 689:projective configuration 627:, which states that all 560:Pappus's hexagon theorem 37:necessary and sufficient 1180:Miniquaternion Geometry 956:(2nd ed.), Wiley, 921:Oxford University Press 812:Hughes & Piper 1973 685:Desargues configuration 649:Desargues configuration 463:. Therefore, the lines 343:Three-dimensional proof 337:non-Desarguesian planes 247:non-Desarguesian planes 204:center of perspectivity 140:meet in a point, lines 35:the first condition is 1242:"Desargues assumption" 847:, p. 238, section 14.3 658: 40: 1039:Mathematische Annalen 656: 535:Two-dimensional proof 231:real projective plane 213:is true in the usual 178:Central perspectivity 174:axis of perspectivity 33: 1079:Cohn-Vossen, Stephan 222:. This results in a 220:Jean-Victor Poncelet 211:intersection theorem 1325:Proof without words 1301:Desargues's Theorem 1283:Monge via Desargues 1274:Desargues's Theorem 1159:Geometry in history 1103:, Springer-Verlag, 1022:, Springer Verlag, 942:Projective Geometry 915:Casse, Rey (2006), 901:10.1112/blms/bdv021 333:Desarguesian planes 310:Under the standard 85:of one triangle by 49:Desargues's theorem 45:projective geometry 1052:10.1007/BF01457558 771:) pp. 26–27. 687:, an example of a 659: 562:states that, if a 41: 1265:Desargues Theorem 1224:Projective Planes 1168:978-3-030-13611-6 1121:, North-Holland, 1101:Projective Planes 1029:978-3-540-61786-0 1019:Finite Geometries 963:978-0-471-50458-0 874:978-0-486-78994-1 610:Hessenberg (1905) 124:means that lines 81:Denote the three 16:(Redirected from 1342: 1254: 1236: 1226:, W.H. Freeman, 1218: 1207: 1196: 1171: 1153: 1142: 1131: 1113: 1095: 1070: 1032: 1012: 974: 945: 933: 911: 877: 848: 842: 836: 825: 819: 804: 798: 791: 785: 778: 772: 765: 759: 753: 747: 741: 725:Pascal's theorem 682: 681: 674: 673: 667: 602: 596: 586: 580: 570: 520: 519: 513: 506: 505: 499: 492: 491: 485: 478: 477: 470: 469: 462: 461: 454: 453: 446: 440: 418: 417: 411: 404: 403: 397: 391: 385: 375: 374: 367: 366: 360: 269:Coordinatization 243:Pappus's theorem 224:projective plane 201: 200: 193: 192: 186: 171: 170: 163: 162: 155: 154: 147: 146: 139: 138: 131: 130: 116: 110: 100: 94: 53:Girard Desargues 21: 1350: 1349: 1345: 1344: 1343: 1341: 1340: 1339: 1310: 1309: 1261: 1234: 1216: 1194: 1176:Room, Thomas G. 1169: 1151: 1129: 1111: 1093: 1030: 994:10.2307/2031794 964: 938:Coxeter, H.S.M. 931: 875: 857: 852: 851: 843: 839: 826: 822: 805: 801: 792: 788: 779: 775: 766: 762: 754: 750: 742: 738: 733: 721: 705: 677: 676: 669: 663: 662: 651: 645: 598: 588: 582: 572: 566: 557: 537: 529:Monge's theorem 515: 509: 508: 501: 495: 494: 487: 481: 480: 473: 472: 465: 464: 457: 456: 449: 448: 442: 428: 413: 407: 406: 399: 393: 387: 381: 380: 370: 369: 362: 356: 355: 345: 328: 297: 288:Euclidean plane 280: 271: 255: 215:Euclidean plane 196: 195: 188: 182: 181: 166: 165: 158: 157: 150: 149: 142: 141: 134: 133: 126: 125: 112: 102: 96: 86: 28: 23: 22: 15: 12: 11: 5: 1348: 1338: 1337: 1332: 1327: 1322: 1308: 1307: 1298: 1289: 1280: 1271: 1260: 1259:External links 1257: 1256: 1255: 1237: 1232: 1219: 1214: 1197: 1192: 1172: 1167: 1154: 1149: 1132: 1127: 1114: 1109: 1096: 1091: 1075:Hilbert, David 1071: 1033: 1028: 1013: 988:(2): 219–221, 975: 962: 946: 934: 929: 912: 895:(3): 483–492, 878: 873: 856: 853: 850: 849: 837: 829:Dembowski 1968 827:According to ( 820: 816:Stevenson 1972 799: 786: 773: 760: 748: 735: 734: 732: 729: 728: 727: 720: 717: 704: 701: 647:Main article: 644: 641: 556: 553: 536: 533: 425: 424: 377: 344: 341: 327: 324: 296: 293: 279: 276: 270: 267: 254: 251: 79: 78: 71:if and only if 51:, named after 26: 9: 6: 4: 3: 2: 1347: 1336: 1333: 1331: 1328: 1326: 1323: 1321: 1318: 1317: 1315: 1306: 1302: 1299: 1297: 1293: 1290: 1288: 1284: 1281: 1279: 1275: 1272: 1270: 1266: 1263: 1262: 1253: 1249: 1248: 1243: 1238: 1235: 1233:0-7167-0443-9 1229: 1225: 1220: 1217: 1215:0-486-64690-4 1211: 1206: 1205: 1198: 1195: 1193:0-521-07926-8 1189: 1185: 1182:, Cambridge: 1181: 1177: 1173: 1170: 1164: 1160: 1155: 1152: 1150:0-321-01618-1 1146: 1141: 1140: 1133: 1130: 1128:0-7204-2832-7 1124: 1120: 1115: 1112: 1110:0-387-90044-6 1106: 1102: 1097: 1094: 1092:0-8284-1087-9 1088: 1084: 1080: 1076: 1072: 1069: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1040: 1034: 1031: 1025: 1021: 1020: 1014: 1011: 1007: 1003: 999: 995: 991: 987: 983: 982: 976: 973: 969: 965: 959: 955: 951: 947: 943: 939: 935: 932: 930:0-19-929886-6 926: 922: 918: 913: 910: 906: 902: 898: 894: 890: 889: 884: 879: 876: 870: 866: 865: 859: 858: 846: 841: 834: 833:Cronheim 1953 830: 824: 817: 813: 809: 803: 796: 790: 783: 777: 770: 764: 757: 752: 745: 740: 736: 726: 723: 722: 716: 714: 713:Moufang plane 709: 700: 698: 694: 690: 686: 680: 672: 666: 655: 650: 640: 638: 634: 630: 626: 622: 618: 613: 611: 607: 601: 595: 591: 585: 579: 575: 569: 565: 561: 552: 551:(skewfield). 550: 549:division ring 546: 545:collineations 542: 539:As there are 532: 530: 526: 522: 518: 512: 504: 498: 490: 484: 476: 468: 460: 452: 445: 439: 435: 431: 422: 416: 410: 402: 396: 390: 384: 378: 373: 365: 359: 353: 352: 351: 348: 340: 338: 334: 323: 321: 315: 313: 308: 306: 302: 292: 289: 285: 275: 266: 264: 260: 250: 248: 244: 240: 239:division ring 236: 232: 227: 225: 221: 216: 212: 207: 205: 199: 191: 185: 179: 175: 169: 161: 153: 145: 137: 129: 123: 122: 121:perspectivity 115: 109: 105: 99: 93: 89: 84: 76: 72: 69: 66: 62: 58: 57: 56: 54: 50: 46: 38: 32: 19: 1287:cut-the-knot 1278:cut-the-knot 1245: 1223: 1203: 1179: 1158: 1138: 1118: 1100: 1082: 1043: 1037: 1018: 985: 979: 953: 941: 916: 892: 886: 863: 845:Coxeter 1969 840: 823: 802: 789: 782:Coxeter 1964 776: 769:Coxeter 1964 763: 751: 739: 710: 706: 696: 678: 670: 664: 660: 632: 628: 614: 605: 599: 593: 589: 583: 577: 573: 567: 558: 538: 527: 523: 516: 510: 502: 496: 488: 482: 474: 466: 458: 450: 443: 437: 433: 429: 426: 414: 408: 400: 394: 388: 382: 371: 363: 357: 349: 346: 329: 316: 309: 298: 295:Self-duality 286:such as the 284:affine space 281: 272: 262: 258: 256: 228: 208: 203: 197: 189: 183: 177: 173: 167: 159: 151: 143: 135: 127: 118: 113: 107: 103: 97: 91: 87: 80: 74: 67: 48: 42: 18:Desarguesian 944:, Blaisdell 744:Smith (1959 621:commutative 427:The points 379:the points 301:perspective 65:perspective 1314:Categories 1296:PlanetMath 919:, Oxford: 855:References 756:Katz (1998 55:, states: 1269:MathWorld 1252:EMS Press 1208:, Dover, 1068:120456855 1060:1432-1807 909:123036578 867:, Dover, 784:, pg. 19) 758:, p. 461) 746:, p. 307) 693:symmetric 421:collinear 354:If lines 75:centrally 61:triangles 1081:(1952), 952:(1969), 940:(1964), 814:), and ( 719:See also 617:converse 320:converse 83:vertices 1010:0053531 1002:2031794 972:0123930 606:Pappian 564:hexagon 305:similar 253:History 68:axially 63:are in 1230:  1212:  1190:  1165:  1147:  1125:  1107:  1089:  1066:  1058:  1026:  1008:  1000:  970:  960:  927:  907:  871:  633:finite 629:finite 568:AbCaBc 282:In an 119:Axial 1064:S2CID 998:JSTOR 905:S2CID 731:Notes 235:field 209:This 1228:ISBN 1210:ISBN 1188:ISBN 1163:ISBN 1145:ISBN 1123:ISBN 1105:ISBN 1087:ISBN 1056:ISSN 1024:ISBN 958:ISBN 925:ISBN 869:ISBN 810:), ( 675:and 615:The 597:and 581:and 507:and 471:and 455:and 441:and 419:are 405:and 368:and 194:and 164:and 148:and 132:and 111:and 95:and 59:Two 1303:at 1294:at 1285:at 1276:at 1267:at 1048:doi 990:doi 897:doi 697:any 237:or 176:. 117:. 43:In 1316:: 1250:, 1244:, 1186:, 1077:; 1062:, 1054:, 1044:61 1042:, 1006:MR 1004:, 996:, 984:, 968:MR 966:, 923:, 903:, 893:47 891:, 885:, 818:). 711:A 695:: 679:Cc 671:Bb 668:, 665:Aa 608:. 592:, 576:, 517:bc 514:∩ 511:BC 503:ac 500:∩ 497:AC 489:ab 486:∩ 483:AB 475:ab 467:AB 459:Bb 451:Aa 436:, 432:, 415:bc 412:∩ 409:BC 401:ac 398:∩ 395:AC 392:, 389:ab 386:∩ 383:AB 372:Cc 364:Bb 361:, 358:Aa 307:. 226:. 206:. 198:Cc 190:Bb 187:, 184:Aa 168:BC 160:bc 152:AC 144:ac 136:AB 128:ab 106:, 90:, 47:, 1050:: 992:: 986:4 899:: 835:. 806:( 797:. 780:( 767:( 600:C 594:B 590:A 584:c 578:b 574:a 444:b 438:a 434:B 430:A 423:. 261:( 114:C 108:B 104:A 98:c 92:b 88:a 77:. 20:)

Index

Desarguesian

necessary and sufficient
projective geometry
Girard Desargues
triangles
perspective
if and only if
vertices
perspectivity
intersection theorem
Euclidean plane
Jean-Victor Poncelet
projective plane
real projective plane
field
division ring
Pappus's theorem
non-Desarguesian planes
affine space
Euclidean plane
perspective
similar
duality of plane projective geometry
converse
Desarguesian planes
non-Desarguesian planes
collinear
Monge's theorem
non-Desarguesian projective planes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.