Knowledge

Non-Desarguesian plane

Source đź“ť

188:, pp. 124–125) and a table of the then known existence results (for both collineation groups and planes having such a collineation group) in both the finite and infinite cases appears on page 126. As of 2007, "36 of them exist as finite groups. Between 7 and 12 exist as finite projective planes, and either 14 or 15 exist as infinite projective planes." 239:
can be defined in several different ways that can be proved to be equivalent. In non-Desarguesian planes these proofs are no longer valid and the different definitions can give rise to non-equivalent objects. Theodore G. Ostrom had suggested the name
175:
Hanfried Lenz gave a classification scheme for projective planes in 1954, which was refined by Adriano Barlotti in 1957. This classification scheme is based on the types of point–line transitivity permitted by the
108:
Regarding finite non-Desarguesian planes, every projective plane of order at most 8 is Desarguesian, but there are three non-Desarguesian examples of order 9, each with 91 points and 91 lines. They are:
333:
Artzy has given an example of a Steiner conic in a Moufang plane which is not a von Staudt conic. Garner gives an example of a von Staudt conic that is not an Ostrom conic in a finite semifield plane.
400:. According to the footnote on this page, the original "first" example appearing in earlier editions was replaced by Moulton's simpler example in later editions. 465:
Barlotti, Adriano (1957). "Le possibili configurazioni del sistema delle coppie punto-retta (A,a) per cui un piano grafico risulta (A,a)-transitivo".
655: 17: 155:. All known constructions of finite non-Desarguesian planes produce planes whose order is a proper prime power, that is, an integer of the form 270:
The set of points of intersection of corresponding lines of two pencils which are projectively, but not perspectively, related is known as a
389:, translated by Leo Unger from the 10th German edition (2nd English ed.), La Salle, IL: Open Court Publishing, p. 74, 541:
Ostrom, T.G. (1981), "Conicoids: Conic-like figures in Non-Pappian planes", in Plaumann, Peter; Strambach, Karl (eds.),
70:
found that some projective planes do not satisfy it. The current state of knowledge of these examples is not complete.
804: 768: 750: 728: 710: 635: 550: 394: 244:
for these conic-like figures but did not provide a formal definition and the term does not seem to be widely used.
778: 82:
and infinite non-Desarguesian planes. Some of the known examples of infinite non-Desarguesian planes include:
788: 144: 133: 54:
of dimension not 2; in other words, the only projective spaces of dimension not equal to 2 are the classical
151:
Numerous other constructions of both finite and infinite non-Desarguesian planes are known, see for example
79: 839: 783: 97: 371:, English translation by E.J. Townsend (2nd ed.), La Salle, IL: Open Court Publishing, p. 48 204: 844: 583: 216: 212: 121: 260: 101: 277:
The set of points whose coordinates satisfy an irreducible homogeneous equation of degree two.
39: 694: 560: 528: 478: 451: 349:
Desargues' theorem is vacuously true in dimension 1; it is only problematic in dimension 2.
8: 438:
Lenz, Hanfried (1954). "Kleiner desarguesscher Satz und Dualitat in projektiven Ebenen".
196: 192: 59: 55: 739: 682: 624: 311: 177: 47: 800: 764: 746: 724: 706: 674: 631: 546: 390: 363: 191:
Other classification schemes exist. One of the simplest is based on special types of
129: 664: 592: 516: 264: 252: 51: 43: 35: 690: 556: 524: 474: 447: 256: 137: 833: 678: 382: 359: 271: 236: 195:(PTR) that can be used to coordinatize the projective plane. These types are 125: 93: 87: 67: 63: 114: 247:
There are several ways that conics can be defined in Desarguesian planes:
96:
over alternative division algebras that are not associative, such as the
686: 596: 520: 224: 220: 200: 814: 208: 669: 274:. If the pencils are perspectively related, the conic is degenerate. 507:
Garner, Cyril W L. (1979), "Conics in Finite Projective Planes",
132:, this plane was generalized to an infinite family of planes by 365:
The Foundations of Geometry [Grundlagen der Geometrie]
100:. Since all finite alternative division rings are fields ( 104:), the only non-Desarguesian Moufang planes are infinite. 251:
The set of absolute points of a polarity is known as a
182:
Lenz–Barlotti classification of projective planes
630:(2nd ed.), Boca Raton: Chapman & Hall/ CRC, 440:
Jahresbericht der Deutschen Mathematiker-Vereinigung
494:, pg. 723 article on Finite Geometry by Leo Storme. 738: 623: 27:Projective plane not satisfying Desargues' theorem 656:Transactions of the American Mathematical Society 622:Colbourn, Charles J.; Dinitz, Jeffrey H. (2007), 136:. Hall planes are a subclass of the more general 831: 758: 428:for descriptions of all four planes of order 9. 425: 621: 491: 329:is based on a generalization of harmonic sets. 663:(2), American Mathematical Society: 229–277, 612: 281:Furthermore, in a finite Desarguesian plane: 653:Hall, Marshall (1943), "Projective planes", 502: 500: 799:, San Francisco: W.H. Freeman and Company, 700: 615:An Introduction to Finite Projective Planes 613:Albert, A. Adrian; Sandler, Reuben (1968), 46:), or in other words a plane that is not a 701:Hughes, Daniel R.; Piper, Fred C. (1973), 50:. The theorem of Desargues is true in all 794: 763:, Cambridge: Cambridge University Press, 668: 643: 497: 185: 152: 759:Room, T. G.; Kirkpatrick, P. B. (1971), 736: 718: 464: 408: 406: 776: 381: 358: 14: 832: 812: 617:, New York: Holt, Rinehart and Winston 540: 506: 412: 572: 543:Geometry – von Staudt's Point of View 403: 235:In a Desarguesian projective plane a 652: 437: 815:"Survey of Non-Desarguesian Planes" 230: 184:. The list of 53 types is given in 98:projective plane over the octonions 24: 25: 856: 721:Introduction to Finite Geometries 626:Handbook of Combinatorial Designs 255:. If the plane is defined over a 180:of the plane and is known as the 170: 18:Non-Desarguesian projective plane 795:Stevenson, Frederick W. (1972), 78:There are many examples of both 566: 545:, D. Reidel, pp. 175–196, 534: 485: 458: 431: 418: 375: 352: 343: 294:points, no three collinear in 167:is an integer greater than 1. 13: 1: 705:, New York: Springer Verlag, 606: 573:Artzy, R. (1971), "The Conic 322:is a conic, in sense 3 above. 147:of the Hall plane of order 9. 723:, Amsterdam: North-Holland, 7: 784:Encyclopedia of Mathematics 779:"Non-Desarguesian geometry" 745:, Berlin: Springer Verlag, 426:Room & Kirkpatrick 1971 73: 10: 861: 492:Colbourn & Dinitz 2007 205:alternative division rings 124:. Initially discovered by 648:, Berlin: Springer Verlag 644:Dembowski, Peter (1968), 813:Weibel, Charles (2007), 737:LĂĽneburg, Heinz (1980), 584:Aequationes Mathematicae 387:Foundations of Geometry 336: 777:Sidorov, L.A. (2001) , 761:Miniquaternion Geometry 286: 38:that does not satisfy 32:non-Desarguesian plane 719:Kárteszi, F. (1976), 122:Hall plane of order 9 56:projective geometries 581:in Moufang Planes", 840:Projective geometry 509:Journal of Geometry 467:Boll. Un. Mat. Ital 193:planar ternary ring 819:Notices of the AMS 741:Translation Planes 597:10.1007/bf01833234 521:10.1007/bf01918221 178:collineation group 102:Artin–Zorn theorem 48:Desarguesian plane 40:Desargues' theorem 30:In mathematics, a 797:Projective Planes 703:Projective Planes 646:Finite Geometries 265:degenerate conics 225:right quasifields 52:projective spaces 16:(Redirected from 852: 826: 809: 791: 773: 755: 744: 733: 715: 697: 672: 649: 640: 629: 618: 600: 599: 570: 564: 563: 538: 532: 531: 504: 495: 489: 483: 482: 462: 456: 455: 435: 429: 422: 416: 410: 401: 399: 379: 373: 372: 370: 356: 350: 347: 321: 301: 293: 253:von Staudt conic 231:Conics and ovals 217:right nearfields 153:Dembowski (1968) 44:Girard Desargues 36:projective plane 21: 860: 859: 855: 854: 853: 851: 850: 849: 845:Finite geometry 830: 829: 825:(10): 1294–1303 807: 771: 753: 731: 713: 670:10.2307/1990331 638: 609: 604: 603: 571: 567: 553: 539: 535: 505: 498: 490: 486: 463: 459: 436: 432: 423: 419: 411: 404: 397: 380: 376: 368: 357: 353: 348: 344: 339: 315: 312:Segre's theorem 295: 288: 233: 186:Dembowski (1968 173: 163:is a prime and 76: 28: 23: 22: 15: 12: 11: 5: 858: 848: 847: 842: 828: 827: 810: 805: 792: 774: 769: 756: 751: 734: 729: 716: 711: 698: 650: 641: 636: 619: 608: 605: 602: 601: 565: 551: 533: 515:(2): 132–138, 496: 484: 457: 430: 417: 415:, p. 1296 402: 395: 383:Hilbert, David 374: 360:Hilbert, David 351: 341: 340: 338: 335: 331: 330: 323: 285: 279: 278: 275: 268: 261:characteristic 232: 229: 172: 171:Classification 169: 149: 148: 141: 118: 106: 105: 94:Moufang planes 91: 75: 72: 26: 9: 6: 4: 3: 2: 857: 846: 843: 841: 838: 837: 835: 824: 820: 816: 811: 808: 806:0-7167-0443-9 802: 798: 793: 790: 786: 785: 780: 775: 772: 770:0-521-07926-8 766: 762: 757: 754: 752:0-387-09614-0 748: 743: 742: 735: 732: 730:0-7204-2832-7 726: 722: 717: 714: 712:0-387-90044-6 708: 704: 699: 696: 692: 688: 684: 680: 676: 671: 666: 662: 658: 657: 651: 647: 642: 639: 637:1-58488-506-8 633: 628: 627: 620: 616: 611: 610: 598: 594: 590: 586: 585: 580: 576: 569: 562: 558: 554: 552:90-277-1283-2 548: 544: 537: 530: 526: 522: 518: 514: 510: 503: 501: 493: 488: 480: 476: 472: 468: 461: 453: 449: 445: 441: 434: 427: 421: 414: 409: 407: 398: 396:0-87548-164-7 392: 388: 384: 378: 367: 366: 361: 355: 346: 342: 334: 328: 324: 319: 314:, an oval in 313: 309: 305: 302:is called an 299: 291: 284: 283: 282: 276: 273: 272:Steiner conic 269: 267:are obtained. 266: 262: 258: 254: 250: 249: 248: 245: 243: 238: 228: 226: 222: 218: 214: 210: 206: 202: 198: 194: 189: 187: 183: 179: 168: 166: 162: 158: 154: 146: 142: 139: 135: 134:Marshall Hall 131: 127: 123: 119: 116: 112: 111: 110: 103: 99: 95: 92: 89: 88:Moulton plane 85: 84: 83: 81: 71: 69: 68:David Hilbert 65: 64:division ring 61: 57: 53: 49: 45: 42:(named after 41: 37: 33: 19: 822: 818: 796: 782: 760: 740: 720: 702: 660: 654: 645: 625: 614: 588: 582: 578: 574: 568: 542: 536: 512: 508: 487: 470: 466: 460: 443: 439: 433: 420: 386: 377: 364: 354: 345: 332: 327:Ostrom conic 326: 317: 307: 303: 297: 289: 280: 246: 241: 234: 190: 181: 174: 164: 160: 156: 150: 138:AndrĂ© planes 115:Hughes plane 107: 77: 66:). However, 31: 29: 473:: 212–226. 413:Weibel 2007 310:is odd, by 221:quasifields 117:of order 9. 834:Categories 607:References 263:two, only 213:nearfields 209:semifields 201:skewfields 130:Wedderburn 789:EMS Press 679:0002-9947 591:: 30–35, 446:: 20–31. 385:(1990) , 362:(1950) , 287:A set of 242:conicoid 159:, where 74:Examples 695:0008892 687:1990331 561:0621316 529:0525253 479:0089435 452:0061844 58:over a 803:  767:  749:  727:  709:  693:  685:  677:  634:  559:  549:  527:  477:  450:  393:  316:PG(2, 296:PG(2, 197:fields 126:Veblen 80:finite 683:JSTOR 369:(PDF) 337:Notes 306:. If 257:field 237:conic 60:field 34:is a 801:ISBN 765:ISBN 747:ISBN 725:ISBN 707:ISBN 675:ISSN 632:ISBN 547:ISBN 424:see 391:ISBN 304:oval 223:and 145:dual 143:The 128:and 120:The 113:The 86:The 62:(or 665:doi 593:doi 517:doi 325:An 292:+ 1 259:of 836:: 823:54 821:, 817:, 787:, 781:, 691:MR 689:, 681:, 673:, 661:54 659:, 587:, 577:= 557:MR 555:, 525:MR 523:, 513:12 511:, 499:^ 475:MR 471:12 469:. 448:MR 444:57 442:. 405:^ 227:. 219:, 215:, 211:, 207:, 203:, 199:, 667:: 595:: 589:6 579:x 575:y 519:: 481:. 454:. 320:) 318:q 308:q 300:) 298:q 290:q 165:e 161:p 157:p 140:. 90:. 20:)

Index

Non-Desarguesian projective plane
projective plane
Desargues' theorem
Girard Desargues
Desarguesian plane
projective spaces
projective geometries
field
division ring
David Hilbert
finite
Moulton plane
Moufang planes
projective plane over the octonions
Artin–Zorn theorem
Hughes plane
Hall plane of order 9
Veblen
Wedderburn
Marshall Hall
André planes
dual
Dembowski (1968)
collineation group
Dembowski (1968
planar ternary ring
fields
skewfields
alternative division rings
semifields

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑