Knowledge

Matroid oracle

Source 📝

498:, researchers began studying oracles from the point of view of proving lower bounds on algorithms for matroids and related structures. These two papers by Hausmann and Korte both concerned the problem of finding a maximum cardinality independent set, which is easy for matroids but (as they showed) harder to approximate or compute exactly for more general 286:, etc. However, an algorithm for performing computations on arbitrary matroids needs a uniform method of accessing its argument, rather than having to be redesigned for each of these matroid classes. The oracle model provides a convenient way of codifying and classifying the kinds of access that an algorithm might need. 1040:
The basis oracle, the circuit oracle, and the oracle that tests whether a given set is closed are all weaker than the independence oracle: they can be simulated in polynomial time by an algorithm that accesses the matroid using an independence oracle, but not vice versa. Additionally, none of these
65:
that perform computations on matroids have been designed to take an oracle as input, allowing them to run efficiently without change on many different kinds of matroids, and without additional assumptions about what kind of matroid they are using. For instance, given an independence oracle for any
1074:
simultaneous queries, of the prefixes of the sorted order of the matroid elements: an element belongs to the optimal basis if and only if the rank of its prefix differs from the rank of the previous prefix. In contrast, finding a minimum basis with an independence oracle is much slower: it can be
1282:
of a given matroid, a sequence of circuits whose union is the matroid and in which each circuit remains a circuit after all previous circuits in the sequence are contracted. Such a decomposition may also be found with the additional property that a chosen matroid element belongs to every
906:, adding elements of the given set one element at a time, and using the circuit-finding oracle to test whether each addition preserves the independence of the set that has been constructed so far. In the other direction, if an independence oracle is available, the circuit in a set 58:, a subroutine for testing whether a set of matroid elements is independent. Several other types of oracle have also been used; some of them have been shown to be weaker than independence oracles, some stronger, and some equivalent in computational power. 1188:, by algorithms that access the matroid only through an independence oracle or another oracle of equivalent power, without need of any additional assumptions about what kind of matroid has been given to them. These polynomially-solvable problems include: 3297:
minor, respectively. Testing whether a matroid is graphic or regular may be expressed in terms of a finite set of forbidden minors, and may be solved in polynomial time, but the forbidden minors for these problems include the uniform matroid
2062: 502:
represented by an independence oracle. This work kicked off a flurry of papers in the late 1970s and early 1980s showing similar hardness results for problems on matroids and comparing the power of different kinds of matroid oracles.
1036:
is independent and returning the elements for which the answer is no. The independence oracle is also polynomially equivalent to the rank oracle, the spanning oracle, the first two types of closure oracle, and the port oracle.
1903: 1375:
For many matroid problems, it is possible to show that an independence oracle does not provide enough power to allow the problem to be solved in polynomial time. The main idea of these proofs is to find two matroids
2424: 1820:-element subsets of the elements: if it missed one set, it could be fooled by an oracle that chose that same set as the one to make dependent. Therefore, testing for whether a matroid is uniform may require 589:
takes as its input a set of matroid elements, and returns as output a Boolean value, true if the given set is spanning (i.e. contains a basis and has the same rank as the whole matroid) and false otherwise.
506:
Since that time, the independence oracle has become standard for most research on matroid algorithms. There has also been continued research on lower bounds, and comparisons of different types of oracle.
582:
have been considered: one that tests if a given element belongs to the closure of a given set, a second one that returns the closure of the set, and a third one that tests whether a given set is closed.
2250: 1034: 1203:
Partitioning the elements of a matroid into a minimum number of independent sets, and finding the largest set that is simultaneously independent in two given matroids. The latter problem is called
1174: 2099: 2627:
Computing the girth (size of the smallest circuit), size of the largest circuit, number of circuits, number of bases, number of flats, number of maximum-rank flats, size of the largest flat,
109:
Although some authors have experimented with computer representations of matroids that explicitly list all independent sets or all basis sets of the matroid, these representations are not
2581: 2555: 2529: 1108: 1638: 3332: 3291: 938: 455: 254: 619: 3105: 2203: 1961: 1788: 1665: 1543: 1472: 1423: 1262: 988: 2337: 2279: 2154: 1908:
independence queries, much higher than polynomial. Even a randomized algorithm must make nearly as many queries in order to be confident of distinguishing these two matroids.
1818: 1717: 2449: 2308: 3231: 3077: 3051: 2677: 2655: 2503: 2481: 2176: 2125: 1934: 1761: 1739: 1687: 1594: 1572: 1516: 1494: 1445: 1396: 1364: 1342: 1320: 1230: 1072: 960: 900: 871: 849: 827: 805: 771: 749: 727: 701: 670: 648: 477: 417: 395: 362: 340: 318: 177: 155: 133: 681:
Although there are many known types of oracles, the choice of which to use can be simplified, because many of them are equivalent in computational power. An oracle
1969: 564:
takes as input an independent set and an additional element, and either determines that their union is independent, or finds a circuit in the union and returns it.
527:, true if the given set is independent and false otherwise. It may be implemented easily based on the underlying structure from which the matroid was defined for 1474:
only in the answers to a small number of queries, then it may take a very large number of queries for an algorithm to be sure of distinguishing an input of type
1052:, the rank and independence oracles are significantly different in computational power. The rank oracle allows the construction of a minimum weight basis by 320:-functions" have been studied as one of many equivalent ways of axiomatizing matroids. An independence function maps a set of matroid elements to the number 829:
are polynomially equivalent, then every result that proves the existence or nonexistence of a polynomial time algorithm for a matroid problem using oracle
650:
of the matroid takes as its input a set of matroid elements, and returns as output a Boolean value, true if the given set contains a circuit that includes
1963:
on the same set of elements but with differing problem answers, an algorithm that correctly solves the given problem on those elements must use at least
375:, in studying matroid partition problems, assumed that the access to the given matroid was through a subroutine that takes as input an independent set 1826: 596:
takes as its input a set of matroid elements, and returns as its output a numerical value, the size of the smallest circuit within that set (or
3167:. In contrast, it is not possible for deterministic algorithms to approximate the number of bases of a matroid accurately in polynomial time ( 2342: 85:
proving that certain matroid problems cannot be solved in polynomial time, without invoking unproved assumptions such as the assumption that
1041:
three oracles can simulate each other within polynomial time. The girth oracle is stronger than the independence oracle, in the same sense.
553:
takes as its input a set of matroid elements, and returns as output a Boolean value, true if the given set is a circuit and false otherwise.
1741:
dependent instead of independent. In order for an algorithm to correctly test whether its input is uniform, it must be able to distinguish
3950:
Mathematical Foundations of Computer Science 1981, Proceedings, 10th Symposium Štrbské Pleso, Czechoslovakia August 31 – September 4, 1981
546:
takes as its input a set of matroid elements, and returns as output a Boolean value, true if the given set is a basis and false otherwise.
259:
from which it follows that any explicit representation capable of handling all possible matroids would necessarily use exponential space.
3107:
is much more difficult ... We do not know how this can be efficiently accomplished for binary matroids, let alone for general matroids."
70:
that adds elements to the basis in sorted order by weight, using the independence oracle to test whether each element can be added.
3797: 3511:; Hellerstein, Lisa (1996), "Independence and port oracles for matroids, with an application to computational learning theory", 2208: 262:
Instead, different types of matroids may be represented more efficiently from the other structures from which they are defined:
2657:-element matroids, the fraction of the properties that do not require exponential time to test goes to zero, in the limit, as 2597:
Solving the matroid matching problem, in which the input is a graph and a matroid on its vertices, and the goal is to find a
993: 3846:; Boros, E.; Elbassioni, K.; Gurvich, V.; Makino, K. (2005), "On the complexity of some enumeration problems for matroids", 1113: 4024: 3848: 1297: 2070: 3645:
Fujishige, Satoru; Zhang, Xiaodong (1995), "An efficient cost scaling algorithm for the independent assignment problem",
3616: 2601:
in the graph that is as large as possible, subject to the constraint that the matched vertices form an independent set.
1044:
As well as polynomial time Turing reductions, other types of reducibility have been considered as well. In particular,
2454:
Problems that have been proven to be impossible for a matroid oracle algorithm to compute in polynomial time include:
2557:, then it is not possible to test in polynomial time whether a given matroid contains one or more of the matroids in 1425:
on which the answer to the problem differs and which are difficult for an algorithm to tell apart. In particular, if
487:), and observed that the information it provides is sufficient to find the minimum weight basis in polynomial time. 4395: 4105: 4072: 3892: 2560: 2534: 2508: 1078: 74: 1599: 3668: 3666:
Hausmann, Dirk; Korte, Bernhard (1978), "Lower bounds on the worst-case complexity of some oracle algorithms",
3406: 3301: 3260: 909: 426: 3577: 3487:, Contemporary Mathematics, vol. 197, Providence, RI: American Mathematical Society, pp. 371–376, 189: 4441: 4314: 4280: 4067: 599: 3948:
Korte, B.; Schrader, R. (1981), "A survey on oracle techniques", in Gruska, Jozef; Chytil, Michal (eds.),
3082: 3053:
was announced by Cunningham and Edmonds at roughly the same time, but appears not to have been published.
1239: 1344:, with the additional assumption that the number of bases is within a polynomial factor of the number of 965: 483:
used a subroutine that tests whether a given set is independent (that is, in more modern terminology, an
180: 3923:
Korte, Bernhard; Hausmann, Dirk (1978), "An analysis of the greedy heuristic for independence systems",
3826:
Kelmans, A. K.; Polesskiĭ, V. P. (1994), "Extremal sets and covering and packing problems in matroids",
2313: 2255: 2130: 1548:
A simple example of this approach can be used to show that it is difficult to test whether a matroid is
777:
as measured in terms of the number of elements of the matroid; in complexity-theoretic terms, this is a
3830:, Amer. Math. Soc. Transl. Ser. 2, vol. 158, Providence, RI: Amer. Math. Soc., pp. 149–174, 1793: 1692: 3755: 3544: 2429: 2288: 2181: 1939: 1766: 1643: 1521: 1450: 1401: 539:, and linear matroids, and for matroids formed from these by standard operations such as direct sums. 4376: 3862: 3542:
Cunningham, William H. (1986), "Improved bounds for matroid partition and intersection algorithms",
3214: 3060: 3034: 2660: 2638: 2486: 2464: 2159: 2108: 1917: 1744: 1722: 1670: 1577: 1555: 1499: 1477: 1428: 1379: 1347: 1325: 1303: 1213: 1055: 943: 883: 854: 832: 810: 788: 754: 732: 710: 684: 653: 631: 460: 400: 378: 345: 323: 301: 160: 138: 116: 3701:
Mathematical programming at Oberwolfach (Proc. Conf., Math. Forschungsinstitut, Oberwolfach, 1979)
876:
For instance, the independence oracle is polynomially equivalent to the circuit-finding oracle of
4436: 2598: 2826:
For additional research on matroids based on the independence function axiomatization, see e.g.
3857: 880:. If a circuit-finding oracle is available, a set may be tested for independence using at most 571:
takes as its input a set of matroid elements, and returns as its output a numerical value, the
4009:, Colloq. Math. Soc. János Bolyai, vol. 25, Amsterdam: North-Holland, pp. 495–517, 2057:{\displaystyle {\frac {|\operatorname {aut} (M)|}{\sum _{i}|\operatorname {fix} (M,Q_{i})|}}} 1293:
Listing all of the bases, flats, or circuits of a matroid, in polynomial time per output set.
4002: 89:. Problems that have been shown to be hard in this way include testing whether a matroid is 4418: 4367: 4338: 4306: 4272: 4252: 4231: 4199: 4179: 4159: 4126: 4095: 4055: 4014: 3994: 3965: 3940: 3915: 3879: 3835: 3818: 3776: 3745: 3716: 3691: 3658: 3637: 3603: 3565: 3534: 3500: 3471: 3450: 3427: 3379: 1287: 1204: 420: 283: 8: 3462:
Bixby, Robert E.; Cunningham, William H. (1979), "Matroids, graphs, and 3-connectivity",
2609: 2591: 532: 499: 368:
of the family of independent sets, essentially the same thing as an independence oracle.
86: 36: 4256: 4183: 3699:
Hausmann, D.; Korte, B. (1981), "Algorithmic versus axiomatic definitions of matroids",
3454: 371:
Matroid oracles have also been part of the earliest algorithmic work on matroids. Thus,
4033: 3440: 2102: 1049: 365: 271: 4359: 3952:, Lecture Notes in Computer Science, vol. 118, Berlin: Springer, pp. 61–77, 3932: 66:
matroid, it is possible to find the minimum weight basis of the matroid by applying a
4118: 3906: 3810: 3753:
Jensen, Per M.; Korte, Bernhard (1982), "Complexity of matroid property algorithms",
3682: 3508: 3419: 2613: 1790:. But in order for a deterministic algorithm to do so, it must test every one of the 1279: 4404: 4355: 4326: 4294: 4260: 4219: 4187: 4147: 4114: 4081: 4043: 3982: 3953: 3928: 3901: 3867: 3843: 3806: 3764: 3733: 3704: 3677: 3625: 3589: 3553: 3522: 3488: 3464:
Graph theory and related topics (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1977)
3415: 2628: 2621: 2617: 2281:
to itself. For instance, the automorphism group of the uniform matroid is just the
1197: 1193: 778: 67: 48: 3294: 4414: 4363: 4346:
Truemper, K. (1982), "On the efficiency of representability tests for matroids",
4334: 4302: 4268: 4227: 4195: 4155: 4122: 4091: 4051: 4010: 3990: 3961: 3936: 3911: 3875: 3831: 3814: 3784: 3772: 3741: 3712: 3687: 3654: 3633: 3599: 3561: 3530: 3496: 3467: 3423: 3375: 2688: 2282: 1549: 1272: 1268: 1185: 774: 528: 267: 263: 94: 1898:{\displaystyle {\binom {n}{n/2}}=\Omega \left({\frac {2^{n}}{\sqrt {n}}}\right)} 4330: 4191: 4086: 3492: 3401: 2697: 2587: 1290:
of a given matroid, whenever its branch-width is no more than a fixed constant.
279: 90: 78: 4264: 4223: 3986: 3973:
Lazarson, T. (1958), "The representation problem for independence functions",
3871: 3737: 4430: 4285: 4240: 4135: 3957: 3792: 3513: 3480: 3397: 751:
may be simulated by an algorithm that accesses the matroid using only oracle
524: 98: 44: 3404:(1994), "On the problem of approximating the number of bases of a matroid", 4409: 4207: 4167: 3887: 3611: 3573: 2692: 2605: 1914:
formalize this approach by proving that, whenever there exist two matroids
572: 40: 4151: 4022:
Mayhew, Dillon (2008), "Matroid complexity and nonsuccinct descriptions",
3925:
Algorithmic Aspects of Combinatorics (Conf., Vancouver Island, B.C., 1976)
3594: 135:
elements may expand into a representation that takes space exponential in
4390: 4063: 82: 2310:, and in the problem of testing uniform matroids there was only one set 4298: 3708: 3629: 3526: 2419:{\displaystyle \scriptstyle |\operatorname {fix} (M,Q_{i})|=(n/2)!^{2}} 1207:, and the solutions to both problems are closely related to each other. 35:, an abstract combinatorial structure that can be used to describe the 24: 4047: 2531:
is a fixed finite set of matroids, and there is no uniform matroid in
523:
takes as its input a set of matroid elements, and returns as output a
4038: 3788: 3724:
Ingleton, A. W. (1959), "A note on independence functions and rank",
3358:
for the existence of a field over which the matroid is representable.
903: 62: 28: 3768: 3557: 3237:
applies the same idea to a non-uniform but highly symmetric matroid.
3703:, Mathematical Programming Studies, vol. 14, pp. 98–111, 3445: 4103:
Piff, M. J. (1973), "An upper bound for the number of matroids",
2594:, or whether there exists a field over which it is representable. 536: 275: 32: 4245:
Mathematical Proceedings of the Cambridge Philosophical Society
3927:, Annals of Discrete Mathematics, vol. 2, pp. 65–74, 3842: 3152: 2918: 2505:
is uniform with rank or corank at most one. More generally, if
4243:(1980), "The computational complexity of matroid properties", 515:
The following types of matroid oracles have been considered.
4007:
Algebraic methods in graph theory, Vol. I, II (Szeged, 1978)
3828:
Selected topics in discrete mathematics (Moscow, 1972–1990)
3483:(1996), "Randomised approximation of the number of bases", 3434: 3031:. A paper claiming a similar result for any fixed constant 2799: 2156:
denotes the family of sets whose independence differs from
479:, if it exists) or determines that no such circuit exists. 2245:{\displaystyle \scriptstyle \operatorname {fix} (M,Q_{i})} 3578:"Minimum partition of a matroid into independent subsets" 3257:
give special cases of this for the problems of finding a
2461:
Testing whether a given matroid contains a fixed matroid
3582:
Journal of Research of the National Bureau of Standards
1496:
from an input formed by using one of the symmetries of
1029:{\displaystyle \scriptstyle I\setminus \{y\}\cup \{x\}} 3334:, so they do not contradict this impossibility result. 3305: 3264: 3218: 3086: 3064: 3038: 2664: 2642: 2564: 2538: 2512: 2490: 2468: 2433: 2346: 2317: 2292: 2259: 2212: 2185: 2163: 2134: 2112: 2074: 1943: 1921: 1797: 1770: 1748: 1726: 1696: 1674: 1647: 1603: 1581: 1559: 1525: 1503: 1481: 1454: 1432: 1405: 1383: 1351: 1329: 1307: 1243: 1217: 1184:
Many problems on matroids are known to be solvable in
1169:{\displaystyle \scriptstyle \Omega ((n/\log n)^{1/3})} 1117: 1082: 1059: 997: 969: 947: 913: 887: 858: 836: 814: 792: 758: 736: 714: 688: 676: 657: 635: 603: 464: 430: 404: 382: 349: 327: 305: 164: 142: 120: 3304: 3263: 3217: 3085: 3063: 3037: 2663: 2641: 2563: 2537: 2511: 2489: 2467: 2432: 2345: 2316: 2291: 2258: 2211: 2184: 2162: 2133: 2111: 2073: 1972: 1942: 1920: 1829: 1796: 1769: 1747: 1725: 1695: 1673: 1646: 1602: 1580: 1558: 1524: 1502: 1480: 1453: 1431: 1404: 1382: 1350: 1328: 1306: 1298:
fully polynomial-time randomized approximation scheme
1242: 1216: 1116: 1081: 1058: 996: 968: 946: 912: 886: 857: 835: 813: 791: 785:
if they are polynomially reducible to each other. If
757: 735: 713: 687: 656: 634: 602: 463: 429: 403: 381: 348: 326: 304: 192: 163: 141: 119: 4317:; Walton, P. N. (1981), "Detecting matroid minors", 3435:
Bansal, N.; Pendavingh, R.; van der Pol, J. (2012),
2094:{\displaystyle \scriptstyle \operatorname {aut} (M)} 3647:
Journal of the Operations Research Society of Japan
3507: 3207:. In most of the applications of this technique in 3000: 2950: 2727: 4138:(1971), "The number of combinatorial geometries", 3783: 3478: 3326: 3285: 3225: 3164: 3099: 3071: 3045: 2946: 2914: 2671: 2649: 2575: 2549: 2523: 2497: 2475: 2443: 2418: 2331: 2302: 2273: 2244: 2197: 2170: 2148: 2119: 2093: 2056: 1955: 1928: 1897: 1812: 1782: 1755: 1733: 1711: 1681: 1659: 1632: 1588: 1566: 1537: 1510: 1488: 1466: 1439: 1417: 1390: 1358: 1336: 1314: 1256: 1224: 1168: 1102: 1066: 1045: 1028: 982: 954: 932: 894: 865: 843: 821: 799: 765: 743: 721: 695: 664: 642: 613: 471: 449: 411: 389: 356: 334: 312: 248: 171: 149: 127: 1856: 1833: 962:calls to the oracle by testing, for each element 54:The most commonly used oracle of this type is an 4428: 3825: 3395: 3374:. However, the special case of this problem for 3168: 2934: 2907: 2252:denotes the subgroup of automorphisms that maps 1447:has a high degree of symmetry, and differs from 4170:(1942), "A theorem on independence relations", 4140:The Bulletin of the London Mathematical Society 3890:(1974), "The asymptotic number of geometries", 3461: 3028: 2715: 2713: 1192:Finding a minimum or maximum weight basis of a 97:, or testing whether it contains certain fixed 4212:Proceedings of the London Mathematical Society 3644: 2910: 4313: 4238: 3947: 3922: 3795:(1988), "The complexity of parallel search", 3698: 3665: 3614:(1971), "Matroids and the greedy algorithm", 3466:, New York: Academic Press, pp. 91–103, 3347: 3246: 3204: 3183: 2985: 2970: 2966: 2890: 2886: 2855: 2814: 2723: 2719: 2590:, is representable over any particular fixed 2483:as a minor, except in the special cases that 495: 491: 157:. Indeed, the number of distinct matroids on 2710: 1022: 1016: 1010: 1004: 926: 920: 443: 437: 3752: 3371: 3355: 3254: 3208: 3200: 3187: 2859: 2800:Bansal, Pendavingh & van der Pol (2012) 2763: 2700:, an oracle-like model for graph algorithms 2576:{\displaystyle \scriptstyle {\mathcal {H}}} 2550:{\displaystyle \scriptstyle {\mathcal {H}}} 2524:{\displaystyle \scriptstyle {\mathcal {H}}} 2458:Testing whether a given matroid is uniform. 1911: 1103:{\displaystyle \scriptstyle O({\sqrt {n}})} 4319:Journal of the London Mathematical Society 4210:(1957), "Note on independence functions", 4062: 3975:Journal of the London Mathematical Society 3726:Journal of the London Mathematical Society 3541: 3140: 3016: 2922: 2903: 1633:{\displaystyle \scriptstyle U{}_{n}^{n/2}} 1110:time steps, and there is a lower bound of 4408: 4133: 4085: 4037: 3905: 3861: 3681: 3593: 3444: 2787: 1176:even for randomized parallel algorithms. 4374: 4345: 4283:(1981), "Recognizing graphic matroids", 4005:(1981), "The matroid matching problem", 3972: 3723: 3351: 3327:{\displaystyle \scriptstyle U{}_{4}^{2}} 3286:{\displaystyle \scriptstyle U{}_{4}^{2}} 3128: 3054: 2863: 2835: 2831: 2426:, smaller by an exponential factor than 933:{\displaystyle \scriptstyle I\cup \{x\}} 902:calls to the oracle by starting from an 450:{\displaystyle \scriptstyle I\cup \{x\}} 4279: 3798:Journal of Computer and System Sciences 3610: 3572: 3343: 3250: 3234: 3179: 3177: 3116: 3012: 2996: 2994: 2981: 2979: 2962: 2851: 2742: 1370: 1296:Approximating the number of bases by a 877: 561: 480: 372: 364:if it is dependent; that is, it is the 19:In mathematics and computer science, a 4429: 4021: 4001: 3378:can be solved in polynomial time as a 3367: 2882: 2880: 2878: 2876: 2874: 2872: 2847: 2810: 2808: 2775: 2759: 2757: 2755: 2753: 2751: 851:also proves the same thing for oracle 249:{\displaystyle 2^{2^{n}n^{-3/2+o(1)}}} 4389: 3886: 2795: 2738: 2736: 2631:, or connectivity of a given matroid. 1233: 614:{\displaystyle \scriptstyle +\infty } 4393:(1966), "Connectivity in matroids", 4206: 4172:The Quarterly Journal of Mathematics 4166: 4102: 4025:SIAM Journal on Discrete Mathematics 3849:SIAM Journal on Discrete Mathematics 3203:, this formalization is surveyed in 3174: 3100:{\displaystyle \scriptstyle k\geq 4} 2991: 2976: 2827: 2791: 1552:. For simplicity of exposition, let 1257:{\displaystyle \scriptstyle k\leq 3} 295: 2869: 2805: 2748: 2635:Among the set of all properties of 2604:Testing whether a given matroid is 2586:Testing whether a given matroid is 1763:from every possible permutation of 1267:Testing whether a given matroid is 983:{\displaystyle \scriptstyle y\in I} 677:Relative power of different oracles 510: 457:(necessarily unique and containing 266:from their two numeric parameters, 16:Subroutine for testing independence 13: 3485:Matroid Theory (Seattle, WA, 1995) 2947:Karp, Upfal & Wigderson (1988) 2733: 2567: 2541: 2515: 2332:{\displaystyle \scriptstyle Q_{i}} 2274:{\displaystyle \scriptstyle Q_{i}} 2149:{\displaystyle \scriptstyle Q_{i}} 1865: 1837: 1118: 1046:Karp, Upfal & Wigderson (1988) 607: 14: 4453: 4348:European Journal of Combinatorics 3346:showed this for binary matroids, 3001:Coullard & Hellerstein (1996) 2951:Coullard & Hellerstein (1996) 2728:Coullard & Hellerstein (1996) 1001: 621:if the given set is independent). 4070:(2007), "Testing branch-width", 3165:Chávez Lomelí & Welsh (1996) 3057:, pp. 186–187, writes "Locating 2935:Azar, Broder & Frieze (1994) 2915:Chávez Lomelí & Welsh (1996) 1813:{\displaystyle \scriptstyle n/2} 1712:{\displaystyle \scriptstyle n/2} 4396:Canadian Journal of Mathematics 4106:Journal of Combinatorial Theory 4073:Journal of Combinatorial Theory 3893:Journal of Combinatorial Theory 3361: 3337: 3240: 3193: 3158: 3146: 3134: 3122: 3110: 3022: 3006: 2956: 2940: 2928: 2896: 2444:{\displaystyle \scriptstyle n!} 2303:{\displaystyle \scriptstyle n!} 2198:{\displaystyle \scriptstyle M'} 1956:{\displaystyle \scriptstyle M'} 1783:{\displaystyle \scriptstyle M'} 1660:{\displaystyle \scriptstyle M'} 1538:{\displaystyle \scriptstyle M'} 1467:{\displaystyle \scriptstyle M'} 1418:{\displaystyle \scriptstyle M'} 298:, "independence functions" or " 104: 75:computational complexity theory 3407:Information Processing Letters 3226:{\displaystyle \scriptstyle M} 3169:Azar, Broder & Frieze 1994 3072:{\displaystyle \scriptstyle k} 3046:{\displaystyle \scriptstyle k} 2908:Kelmans & Polesskiĭ (1994) 2841: 2820: 2781: 2769: 2672:{\displaystyle \scriptstyle n} 2650:{\displaystyle \scriptstyle n} 2498:{\displaystyle \scriptstyle H} 2476:{\displaystyle \scriptstyle H} 2402: 2388: 2381: 2377: 2358: 2348: 2238: 2219: 2171:{\displaystyle \scriptstyle M} 2120:{\displaystyle \scriptstyle M} 2087: 2081: 2047: 2043: 2024: 2014: 1997: 1993: 1987: 1977: 1929:{\displaystyle \scriptstyle M} 1756:{\displaystyle \scriptstyle M} 1734:{\displaystyle \scriptstyle M} 1689:by making a single one of the 1682:{\displaystyle \scriptstyle M} 1589:{\displaystyle \scriptstyle M} 1567:{\displaystyle \scriptstyle n} 1511:{\displaystyle \scriptstyle M} 1489:{\displaystyle \scriptstyle M} 1440:{\displaystyle \scriptstyle M} 1391:{\displaystyle \scriptstyle M} 1359:{\displaystyle \scriptstyle r} 1337:{\displaystyle \scriptstyle r} 1315:{\displaystyle \scriptstyle n} 1225:{\displaystyle \scriptstyle k} 1162: 1145: 1124: 1121: 1096: 1086: 1067:{\displaystyle \scriptstyle n} 955:{\displaystyle \scriptstyle n} 895:{\displaystyle \scriptstyle n} 866:{\displaystyle \scriptstyle Y} 844:{\displaystyle \scriptstyle X} 822:{\displaystyle \scriptstyle Y} 800:{\displaystyle \scriptstyle X} 766:{\displaystyle \scriptstyle Y} 744:{\displaystyle \scriptstyle X} 722:{\displaystyle \scriptstyle Y} 696:{\displaystyle \scriptstyle X} 665:{\displaystyle \scriptstyle x} 643:{\displaystyle \scriptstyle x} 472:{\displaystyle \scriptstyle x} 412:{\displaystyle \scriptstyle x} 390:{\displaystyle \scriptstyle I} 357:{\displaystyle \scriptstyle 0} 335:{\displaystyle \scriptstyle 1} 313:{\displaystyle \scriptstyle I} 239: 233: 172:{\displaystyle \scriptstyle n} 150:{\displaystyle \scriptstyle n} 128:{\displaystyle \scriptstyle n} 1: 4360:10.1016/s0195-6698(82)80039-5 3933:10.1016/S0167-5060(08)70322-4 3388: 3029:Bixby & Cunningham (1979) 1210:Testing whether a matroid is 1179: 781:. Two oracles are said to be 342:if the set is independent or 4119:10.1016/0095-8956(73)90006-3 3907:10.1016/0097-3165(74)90063-6 3811:10.1016/0022-0000(88)90027-X 3683:10.1016/0012-365X(78)90097-3 3420:10.1016/0020-0190(94)90037-X 2911:Fujishige & Zhang (1995) 1232:-connected (in the sense of 1075:solved deterministically in 490:Beginning from the work of 51:, among other applications. 7: 3348:Seymour & Walton (1981) 3247:Seymour & Walton (1981) 3205:Korte & Schrader (1981) 3184:Robinson & Welsh (1980) 2986:Hausmann & Korte (1981) 2971:Hausmann & Korte (1981) 2967:Robinson & Welsh (1980) 2891:Hausmann & Korte (1981) 2887:Robinson & Welsh (1980) 2856:Seymour & Walton (1981) 2815:Robinson & Welsh (1980) 2724:Hausmann & Korte (1981) 2720:Robinson & Welsh (1980) 2691:, an oracle-like model for 2682: 940:may be found using at most 496:Hausmann & Korte (1978) 492:Korte & Hausmann (1978) 10: 4458: 4087:10.1016/j.jctb.2006.06.006 3354:for arbitrary fields, and 289: 4265:10.1017/S0305004100056498 3872:10.1137/S0895480103428338 3756:SIAM Journal on Computing 3545:SIAM Journal on Computing 3437:On the number of matroids 3372:Jensen & Korte (1982) 3356:Jensen & Korte (1982) 3255:Jensen & Korte (1982) 3209:Jensen & Korte (1982) 3201:Jensen & Korte (1982) 3188:Jensen & Korte (1982) 2860:Jensen & Korte (1982) 2764:Jensen & Korte (1982) 1912:Jensen & Korte (1982) 1667:be a matroid formed from 81:has led to unconditional 4331:10.1112/jlms/s2-23.2.193 4192:10.1093/qmath/os-13.1.83 3958:10.1007/3-540-10856-4_74 3617:Mathematical Programming 3141:Oum & Seymour (2007) 2923:Oum & Seymour (2007) 2704: 4224:10.1112/plms/s3-7.1.300 3987:10.1112/jlms/s1-33.1.21 3738:10.1112/jlms/s1-34.1.49 3153:Khachiyan et al. (2005) 2919:Khachiyan et al. (2005) 2788:Piff & Welsh (1971) 1719:-element basis sets of 1596:be the uniform matroid 783:polynomially equivalent 419:, and either returns a 4410:10.4153/CJM-1966-129-2 3493:10.1090/conm/197/02534 3479:Chávez Lomelí, Laura; 3328: 3287: 3227: 3101: 3073: 3047: 2673: 2651: 2577: 2551: 2525: 2499: 2477: 2445: 2420: 2333: 2304: 2275: 2246: 2199: 2172: 2150: 2121: 2095: 2058: 1957: 1930: 1899: 1814: 1784: 1757: 1735: 1713: 1683: 1661: 1634: 1590: 1568: 1539: 1512: 1490: 1468: 1441: 1419: 1392: 1360: 1338: 1316: 1258: 1226: 1170: 1104: 1068: 1030: 984: 956: 934: 896: 867: 845: 823: 801: 767: 745: 723: 705:polynomially reducible 697: 666: 644: 615: 558:circuit-finding oracle 473: 451: 413: 391: 358: 336: 314: 250: 173: 151: 129: 4378:Matroid Decomposition 4375:Truemper, K. (1998), 3595:10.6028/jres.069b.004 3509:Coullard, Collette R. 3329: 3288: 3228: 3102: 3074: 3048: 2674: 2652: 2578: 2552: 2526: 2500: 2478: 2446: 2421: 2334: 2305: 2276: 2247: 2200: 2173: 2151: 2122: 2096: 2059: 1958: 1931: 1900: 1815: 1785: 1758: 1736: 1714: 1684: 1662: 1635: 1591: 1569: 1540: 1513: 1491: 1469: 1442: 1420: 1393: 1361: 1339: 1317: 1300:, for a matroid with 1259: 1227: 1171: 1105: 1069: 1031: 985: 957: 935: 897: 868: 846: 824: 802: 768: 746: 724: 698: 667: 645: 616: 474: 452: 414: 392: 359: 337: 315: 251: 174: 152: 130: 39:between vectors in a 3669:Discrete Mathematics 3380:matroid intersection 3302: 3261: 3215: 3199:As well as being in 3083: 3061: 3035: 2661: 2639: 2561: 2535: 2509: 2487: 2465: 2430: 2343: 2314: 2289: 2256: 2209: 2182: 2160: 2131: 2109: 2071: 1970: 1940: 1918: 1827: 1794: 1767: 1745: 1723: 1693: 1671: 1644: 1600: 1578: 1556: 1522: 1500: 1478: 1451: 1429: 1402: 1380: 1371:Impossibility proofs 1348: 1326: 1304: 1288:branch-decomposition 1240: 1214: 1205:matroid intersection 1114: 1079: 1056: 994: 966: 944: 910: 884: 855: 833: 811: 789: 755: 733: 711: 685: 672:and false otherwise. 654: 632: 628:for a fixed element 600: 533:transversal matroids 500:independence systems 461: 427: 401: 379: 346: 324: 302: 190: 181:doubly exponentially 161: 139: 117: 4442:Computation oracles 4257:1980MPCPS..87...29R 4184:1942QJMat..13...83R 4152:10.1112/blms/3.1.55 3455:2012arXiv1206.6270B 3350:for finite fields, 3322: 3281: 1628: 1050:parallel algorithms 521:independence oracle 485:independence oracle 272:bicircular matroids 56:independence oracle 37:linear dependencies 4384:(revised ed.) 4299:10.1007/BF02579179 3709:10.1007/BFb0120924 3630:10.1007/BF01584082 3527:10.1007/BF01844845 3324: 3323: 3309: 3283: 3282: 3268: 3223: 3222: 3097: 3096: 3079:-sums for general 3069: 3068: 3043: 3042: 2679:goes to infinity. 2669: 2668: 2647: 2646: 2573: 2572: 2547: 2546: 2521: 2520: 2495: 2494: 2473: 2472: 2441: 2440: 2416: 2415: 2329: 2328: 2300: 2299: 2271: 2270: 2242: 2241: 2195: 2194: 2168: 2167: 2146: 2145: 2117: 2116: 2103:automorphism group 2091: 2090: 2054: 2012: 1953: 1952: 1926: 1925: 1895: 1810: 1809: 1780: 1779: 1753: 1752: 1731: 1730: 1709: 1708: 1679: 1678: 1657: 1656: 1630: 1629: 1607: 1586: 1585: 1564: 1563: 1535: 1534: 1508: 1507: 1486: 1485: 1464: 1463: 1437: 1436: 1415: 1414: 1388: 1387: 1356: 1355: 1334: 1333: 1322:elements and rank 1312: 1311: 1254: 1253: 1222: 1221: 1166: 1165: 1100: 1099: 1064: 1063: 1026: 1025: 980: 979: 952: 951: 930: 929: 892: 891: 863: 862: 841: 840: 819: 818: 797: 796: 763: 762: 741: 740: 719: 718: 707:to another oracle 693: 692: 662: 661: 640: 639: 611: 610: 469: 468: 447: 446: 409: 408: 387: 386: 366:indicator function 354: 353: 332: 331: 310: 309: 246: 169: 168: 147: 146: 125: 124: 4321:, Second Series, 4239:Robinson, G. C.; 4174:, Second Series, 4048:10.1137/050640576 3977:, Second Series, 3728:, Second Series, 3017:Cunningham (1986) 2904:Cunningham (1986) 2052: 2003: 1889: 1888: 1854: 1280:ear decomposition 1094: 575:of the given set. 113:: a matroid with 27:through which an 4449: 4421: 4412: 4385: 4383: 4370: 4341: 4309: 4275: 4234: 4214:, Third Series, 4202: 4162: 4129: 4098: 4089: 4058: 4041: 4017: 3997: 3968: 3943: 3918: 3909: 3888:Knuth, Donald E. 3882: 3865: 3838: 3821: 3785:Karp, Richard M. 3779: 3748: 3719: 3694: 3685: 3661: 3640: 3606: 3597: 3568: 3537: 3503: 3474: 3457: 3448: 3430: 3383: 3376:bipartite graphs 3365: 3359: 3341: 3335: 3333: 3331: 3330: 3325: 3321: 3316: 3311: 3292: 3290: 3289: 3284: 3280: 3275: 3270: 3244: 3238: 3233:is uniform, but 3232: 3230: 3229: 3224: 3197: 3191: 3181: 3172: 3162: 3156: 3150: 3144: 3138: 3132: 3126: 3120: 3114: 3108: 3106: 3104: 3103: 3098: 3078: 3076: 3075: 3070: 3052: 3050: 3049: 3044: 3026: 3020: 3010: 3004: 2998: 2989: 2983: 2974: 2960: 2954: 2944: 2938: 2932: 2926: 2900: 2894: 2884: 2867: 2845: 2839: 2824: 2818: 2812: 2803: 2785: 2779: 2773: 2767: 2761: 2746: 2740: 2731: 2717: 2678: 2676: 2675: 2670: 2656: 2654: 2653: 2648: 2629:Tutte polynomial 2582: 2580: 2579: 2574: 2571: 2570: 2556: 2554: 2553: 2548: 2545: 2544: 2530: 2528: 2527: 2522: 2519: 2518: 2504: 2502: 2501: 2496: 2482: 2480: 2479: 2474: 2450: 2448: 2447: 2442: 2425: 2423: 2422: 2417: 2414: 2413: 2398: 2384: 2376: 2375: 2351: 2338: 2336: 2335: 2330: 2327: 2326: 2309: 2307: 2306: 2301: 2280: 2278: 2277: 2272: 2269: 2268: 2251: 2249: 2248: 2243: 2237: 2236: 2204: 2202: 2201: 2196: 2193: 2177: 2175: 2174: 2169: 2155: 2153: 2152: 2147: 2144: 2143: 2126: 2124: 2123: 2118: 2100: 2098: 2097: 2092: 2063: 2061: 2060: 2055: 2053: 2051: 2050: 2042: 2041: 2017: 2011: 2001: 2000: 1980: 1974: 1962: 1960: 1959: 1954: 1951: 1935: 1933: 1932: 1927: 1904: 1902: 1901: 1896: 1894: 1890: 1884: 1883: 1882: 1873: 1861: 1860: 1859: 1853: 1849: 1836: 1819: 1817: 1816: 1811: 1805: 1789: 1787: 1786: 1781: 1778: 1762: 1760: 1759: 1754: 1740: 1738: 1737: 1732: 1718: 1716: 1715: 1710: 1704: 1688: 1686: 1685: 1680: 1666: 1664: 1663: 1658: 1655: 1639: 1637: 1636: 1631: 1627: 1623: 1614: 1609: 1595: 1593: 1592: 1587: 1573: 1571: 1570: 1565: 1544: 1542: 1541: 1536: 1533: 1517: 1515: 1514: 1509: 1495: 1493: 1492: 1487: 1473: 1471: 1470: 1465: 1462: 1446: 1444: 1443: 1438: 1424: 1422: 1421: 1416: 1413: 1397: 1395: 1394: 1389: 1365: 1363: 1362: 1357: 1343: 1341: 1340: 1335: 1321: 1319: 1318: 1313: 1263: 1261: 1260: 1255: 1231: 1229: 1228: 1223: 1198:greedy algorithm 1194:weighted matroid 1175: 1173: 1172: 1167: 1161: 1160: 1156: 1134: 1109: 1107: 1106: 1101: 1095: 1090: 1073: 1071: 1070: 1065: 1048:showed that, in 1035: 1033: 1032: 1027: 989: 987: 986: 981: 961: 959: 958: 953: 939: 937: 936: 931: 901: 899: 898: 893: 872: 870: 869: 864: 850: 848: 847: 842: 828: 826: 825: 820: 806: 804: 803: 798: 779:Turing reduction 772: 770: 769: 764: 750: 748: 747: 742: 728: 726: 725: 720: 702: 700: 699: 694: 671: 669: 668: 663: 649: 647: 646: 641: 620: 618: 617: 612: 529:graphic matroids 511:Types of oracles 478: 476: 475: 470: 456: 454: 453: 448: 418: 416: 415: 410: 396: 394: 393: 388: 363: 361: 360: 355: 341: 339: 338: 333: 319: 317: 316: 311: 268:graphic matroids 264:uniform matroids 255: 253: 252: 247: 245: 244: 243: 242: 223: 207: 206: 178: 176: 175: 170: 156: 154: 153: 148: 134: 132: 131: 126: 68:greedy algorithm 4457: 4456: 4452: 4451: 4450: 4448: 4447: 4446: 4427: 4426: 4425: 4381: 4241:Welsh, D. J. A. 4136:Welsh, D. J. A. 3863:10.1.1.124.4286 3769:10.1137/0211014 3558:10.1137/0215066 3391: 3386: 3366: 3362: 3352:Truemper (1982) 3342: 3338: 3317: 3312: 3310: 3303: 3300: 3299: 3276: 3271: 3269: 3262: 3259: 3258: 3245: 3241: 3216: 3213: 3212: 3198: 3194: 3182: 3175: 3163: 3159: 3151: 3147: 3139: 3135: 3129:Truemper (1982) 3127: 3123: 3115: 3111: 3084: 3081: 3080: 3062: 3059: 3058: 3055:Truemper (1998) 3036: 3033: 3032: 3027: 3023: 3011: 3007: 2999: 2992: 2984: 2977: 2961: 2957: 2945: 2941: 2933: 2929: 2901: 2897: 2885: 2870: 2864:Truemper (1982) 2846: 2842: 2836:Ingleton (1959) 2832:Lazarson (1958) 2825: 2821: 2813: 2806: 2786: 2782: 2774: 2770: 2762: 2749: 2741: 2734: 2718: 2711: 2707: 2689:Black box group 2685: 2662: 2659: 2658: 2640: 2637: 2636: 2566: 2565: 2562: 2559: 2558: 2540: 2539: 2536: 2533: 2532: 2514: 2513: 2510: 2507: 2506: 2488: 2485: 2484: 2466: 2463: 2462: 2431: 2428: 2427: 2409: 2405: 2394: 2380: 2371: 2367: 2347: 2344: 2341: 2340: 2322: 2318: 2315: 2312: 2311: 2290: 2287: 2286: 2283:symmetric group 2264: 2260: 2257: 2254: 2253: 2232: 2228: 2210: 2207: 2206: 2186: 2183: 2180: 2179: 2161: 2158: 2157: 2139: 2135: 2132: 2129: 2128: 2110: 2107: 2106: 2072: 2069: 2068: 2067:queries, where 2046: 2037: 2033: 2013: 2007: 2002: 1996: 1976: 1975: 1973: 1971: 1968: 1967: 1944: 1941: 1938: 1937: 1919: 1916: 1915: 1878: 1874: 1872: 1868: 1855: 1845: 1841: 1832: 1831: 1830: 1828: 1825: 1824: 1801: 1795: 1792: 1791: 1771: 1768: 1765: 1764: 1746: 1743: 1742: 1724: 1721: 1720: 1700: 1694: 1691: 1690: 1672: 1669: 1668: 1648: 1645: 1642: 1641: 1619: 1615: 1610: 1608: 1601: 1598: 1597: 1579: 1576: 1575: 1557: 1554: 1553: 1526: 1523: 1520: 1519: 1501: 1498: 1497: 1479: 1476: 1475: 1455: 1452: 1449: 1448: 1430: 1427: 1426: 1406: 1403: 1400: 1399: 1381: 1378: 1377: 1373: 1349: 1346: 1345: 1327: 1324: 1323: 1305: 1302: 1301: 1241: 1238: 1237: 1215: 1212: 1211: 1186:polynomial time 1182: 1152: 1148: 1144: 1130: 1115: 1112: 1111: 1089: 1080: 1077: 1076: 1057: 1054: 1053: 995: 992: 991: 967: 964: 963: 945: 942: 941: 911: 908: 907: 885: 882: 881: 856: 853: 852: 834: 831: 830: 812: 809: 808: 790: 787: 786: 775:polynomial time 756: 753: 752: 734: 731: 730: 729:if any call to 712: 709: 708: 686: 683: 682: 679: 655: 652: 651: 633: 630: 629: 601: 598: 597: 587:spanning oracle 578:Three types of 513: 462: 459: 458: 428: 425: 424: 402: 399: 398: 397:and an element 380: 377: 376: 347: 344: 343: 325: 322: 321: 303: 300: 299: 292: 280:linear matroids 219: 212: 208: 202: 198: 197: 193: 191: 188: 187: 179:elements grows 162: 159: 158: 140: 137: 136: 118: 115: 114: 107: 17: 12: 11: 5: 4455: 4445: 4444: 4439: 4437:Matroid theory 4424: 4423: 4387: 4372: 4354:(3): 275–291, 4343: 4325:(2): 193–203, 4315:Seymour, P. D. 4311: 4281:Seymour, P. D. 4277: 4236: 4204: 4164: 4131: 4100: 4080:(3): 385–393, 4060: 4032:(2): 455–466, 4019: 3999: 3970: 3945: 3920: 3884: 3856:(4): 966–984, 3840: 3823: 3805:(2): 225–253, 3793:Wigderson, Avi 3781: 3763:(1): 184–190, 3750: 3721: 3696: 3676:(3): 261–276, 3663: 3653:(1): 124–136, 3642: 3608: 3570: 3552:(4): 948–957, 3539: 3521:(2): 189–208, 3505: 3481:Welsh, Dominic 3476: 3459: 3432: 3392: 3390: 3387: 3385: 3384: 3360: 3344:Seymour (1981) 3336: 3320: 3315: 3308: 3279: 3274: 3267: 3251:Seymour (1981) 3239: 3235:Seymour (1981) 3221: 3192: 3173: 3157: 3145: 3133: 3121: 3117:Seymour (1981) 3109: 3095: 3092: 3089: 3067: 3041: 3021: 3013:Edmonds (1965) 3005: 2990: 2975: 2963:Edmonds (1971) 2955: 2939: 2927: 2895: 2868: 2852:Seymour (1981) 2840: 2819: 2804: 2780: 2768: 2747: 2743:Edmonds (1971) 2732: 2708: 2706: 2703: 2702: 2701: 2698:Implicit graph 2695: 2684: 2681: 2667: 2645: 2633: 2632: 2625: 2602: 2595: 2584: 2569: 2543: 2517: 2493: 2471: 2459: 2439: 2436: 2412: 2408: 2404: 2401: 2397: 2393: 2390: 2387: 2383: 2379: 2374: 2370: 2366: 2363: 2360: 2357: 2354: 2350: 2325: 2321: 2298: 2295: 2267: 2263: 2240: 2235: 2231: 2227: 2224: 2221: 2218: 2215: 2192: 2189: 2166: 2142: 2138: 2115: 2089: 2086: 2083: 2080: 2077: 2065: 2064: 2049: 2045: 2040: 2036: 2032: 2029: 2026: 2023: 2020: 2016: 2010: 2006: 1999: 1995: 1992: 1989: 1986: 1983: 1979: 1950: 1947: 1924: 1906: 1905: 1893: 1887: 1881: 1877: 1871: 1867: 1864: 1858: 1852: 1848: 1844: 1840: 1835: 1808: 1804: 1800: 1777: 1774: 1751: 1729: 1707: 1703: 1699: 1677: 1654: 1651: 1626: 1622: 1618: 1613: 1606: 1584: 1562: 1532: 1529: 1506: 1484: 1461: 1458: 1435: 1412: 1409: 1386: 1372: 1369: 1368: 1367: 1366:-element sets. 1354: 1332: 1310: 1294: 1291: 1284: 1276: 1265: 1252: 1249: 1246: 1220: 1208: 1201: 1181: 1178: 1164: 1159: 1155: 1151: 1147: 1143: 1140: 1137: 1133: 1129: 1126: 1123: 1120: 1098: 1093: 1088: 1085: 1062: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 978: 975: 972: 950: 928: 925: 922: 919: 916: 890: 878:Edmonds (1965) 861: 839: 817: 795: 761: 739: 717: 703:is said to be 691: 678: 675: 674: 673: 660: 638: 622: 609: 606: 590: 583: 580:closure oracle 576: 565: 562:Edmonds (1965) 554: 551:circuit oracle 547: 540: 512: 509: 481:Edmonds (1971) 467: 445: 442: 439: 436: 433: 407: 385: 373:Edmonds (1965) 352: 330: 308: 294:Starting with 291: 288: 257: 256: 241: 238: 235: 232: 229: 226: 222: 218: 215: 211: 205: 201: 196: 167: 145: 123: 106: 103: 45:spanning trees 21:matroid oracle 15: 9: 6: 4: 3: 2: 4454: 4443: 4440: 4438: 4435: 4434: 4432: 4420: 4416: 4411: 4406: 4403:: 1301–1324, 4402: 4398: 4397: 4392: 4388: 4380: 4379: 4373: 4369: 4365: 4361: 4357: 4353: 4349: 4344: 4340: 4336: 4332: 4328: 4324: 4320: 4316: 4312: 4308: 4304: 4300: 4296: 4292: 4288: 4287: 4286:Combinatorica 4282: 4278: 4274: 4270: 4266: 4262: 4258: 4254: 4250: 4246: 4242: 4237: 4233: 4229: 4225: 4221: 4217: 4213: 4209: 4205: 4201: 4197: 4193: 4189: 4185: 4181: 4177: 4173: 4169: 4165: 4161: 4157: 4153: 4149: 4145: 4141: 4137: 4134:Piff, M. J.; 4132: 4128: 4124: 4120: 4116: 4112: 4108: 4107: 4101: 4097: 4093: 4088: 4083: 4079: 4075: 4074: 4069: 4068:Seymour, Paul 4065: 4061: 4057: 4053: 4049: 4045: 4040: 4035: 4031: 4027: 4026: 4020: 4016: 4012: 4008: 4004: 4000: 3996: 3992: 3988: 3984: 3980: 3976: 3971: 3967: 3963: 3959: 3955: 3951: 3946: 3942: 3938: 3934: 3930: 3926: 3921: 3917: 3913: 3908: 3903: 3899: 3895: 3894: 3889: 3885: 3881: 3877: 3873: 3869: 3864: 3859: 3855: 3851: 3850: 3845: 3844:Khachiyan, L. 3841: 3837: 3833: 3829: 3824: 3820: 3816: 3812: 3808: 3804: 3800: 3799: 3794: 3790: 3786: 3782: 3778: 3774: 3770: 3766: 3762: 3758: 3757: 3751: 3747: 3743: 3739: 3735: 3731: 3727: 3722: 3718: 3714: 3710: 3706: 3702: 3697: 3693: 3689: 3684: 3679: 3675: 3671: 3670: 3664: 3660: 3656: 3652: 3648: 3643: 3639: 3635: 3631: 3627: 3623: 3619: 3618: 3613: 3612:Edmonds, Jack 3609: 3605: 3601: 3596: 3591: 3587: 3583: 3579: 3575: 3574:Edmonds, Jack 3571: 3567: 3563: 3559: 3555: 3551: 3547: 3546: 3540: 3536: 3532: 3528: 3524: 3520: 3516: 3515: 3514:Combinatorica 3510: 3506: 3502: 3498: 3494: 3490: 3486: 3482: 3477: 3473: 3469: 3465: 3460: 3456: 3452: 3447: 3442: 3438: 3433: 3429: 3425: 3421: 3417: 3413: 3409: 3408: 3403: 3402:Frieze, A. M. 3399: 3398:Broder, A. Z. 3394: 3393: 3381: 3377: 3373: 3369: 3368:Lovász (1981) 3364: 3357: 3353: 3349: 3345: 3340: 3318: 3313: 3306: 3296: 3295:Vámos matroid 3277: 3272: 3265: 3256: 3252: 3249:. Results of 3248: 3243: 3236: 3219: 3210: 3206: 3202: 3196: 3189: 3185: 3180: 3178: 3170: 3166: 3161: 3154: 3149: 3142: 3137: 3130: 3125: 3118: 3113: 3093: 3090: 3087: 3065: 3056: 3039: 3030: 3025: 3018: 3014: 3009: 3002: 2997: 2995: 2987: 2982: 2980: 2972: 2968: 2964: 2959: 2952: 2948: 2943: 2936: 2931: 2924: 2920: 2916: 2912: 2909: 2905: 2899: 2892: 2888: 2883: 2881: 2879: 2877: 2875: 2873: 2865: 2861: 2857: 2853: 2849: 2848:Lovász (1981) 2844: 2837: 2833: 2829: 2823: 2816: 2811: 2809: 2801: 2797: 2793: 2789: 2784: 2777: 2776:Mayhew (2008) 2772: 2765: 2760: 2758: 2756: 2754: 2752: 2744: 2739: 2737: 2729: 2725: 2721: 2716: 2714: 2709: 2699: 2696: 2694: 2690: 2687: 2686: 2680: 2665: 2643: 2630: 2626: 2623: 2619: 2615: 2611: 2607: 2603: 2600: 2596: 2593: 2589: 2585: 2491: 2469: 2460: 2457: 2456: 2455: 2452: 2437: 2434: 2410: 2406: 2399: 2395: 2391: 2385: 2372: 2368: 2364: 2361: 2355: 2352: 2323: 2319: 2296: 2293: 2284: 2265: 2261: 2233: 2229: 2225: 2222: 2216: 2213: 2190: 2187: 2164: 2140: 2136: 2113: 2104: 2084: 2078: 2075: 2038: 2034: 2030: 2027: 2021: 2018: 2008: 2004: 1990: 1984: 1981: 1966: 1965: 1964: 1948: 1945: 1922: 1913: 1909: 1891: 1885: 1879: 1875: 1869: 1862: 1850: 1846: 1842: 1838: 1823: 1822: 1821: 1806: 1802: 1798: 1775: 1772: 1749: 1727: 1705: 1701: 1697: 1675: 1652: 1649: 1624: 1620: 1616: 1611: 1604: 1582: 1574:be even, let 1560: 1551: 1546: 1530: 1527: 1504: 1482: 1459: 1456: 1433: 1410: 1407: 1384: 1352: 1330: 1308: 1299: 1295: 1292: 1289: 1285: 1281: 1277: 1274: 1270: 1266: 1250: 1247: 1244: 1235: 1218: 1209: 1206: 1202: 1199: 1195: 1191: 1190: 1189: 1187: 1177: 1157: 1153: 1149: 1141: 1138: 1135: 1131: 1127: 1091: 1083: 1060: 1051: 1047: 1042: 1038: 1019: 1013: 1007: 998: 976: 973: 970: 948: 923: 917: 914: 905: 888: 879: 874: 859: 837: 815: 793: 784: 780: 776: 759: 737: 715: 706: 689: 658: 636: 627: 623: 604: 595: 591: 588: 584: 581: 577: 574: 570: 566: 563: 559: 555: 552: 548: 545: 541: 538: 534: 530: 526: 525:Boolean value 522: 518: 517: 516: 508: 504: 501: 497: 493: 488: 486: 482: 465: 440: 434: 431: 422: 405: 383: 374: 369: 367: 350: 328: 306: 297: 287: 285: 281: 278:from graphs, 277: 273: 269: 265: 260: 236: 230: 227: 224: 220: 216: 213: 209: 203: 199: 194: 186: 185: 184: 182: 165: 143: 121: 112: 102: 100: 96: 92: 88: 84: 80: 76: 71: 69: 64: 59: 57: 52: 50: 46: 42: 38: 34: 31:may access a 30: 26: 22: 4400: 4394: 4391:Tutte, W. T. 4377: 4351: 4347: 4322: 4318: 4293:(1): 75–78, 4290: 4284: 4251:(1): 29–45, 4248: 4244: 4215: 4211: 4175: 4171: 4143: 4139: 4110: 4109:, Series B, 4104: 4077: 4076:, Series B, 4071: 4064:Oum, Sang-il 4039:math/0702567 4029: 4023: 4006: 3978: 3974: 3949: 3924: 3897: 3896:, Series A, 3891: 3853: 3847: 3827: 3802: 3796: 3760: 3754: 3729: 3725: 3700: 3673: 3667: 3650: 3646: 3621: 3615: 3585: 3581: 3549: 3543: 3518: 3512: 3484: 3463: 3436: 3411: 3405: 3363: 3339: 3293:minor and a 3242: 3195: 3160: 3148: 3136: 3124: 3112: 3024: 3008: 2958: 2942: 2930: 2898: 2843: 2822: 2796:Knuth (1974) 2783: 2771: 2693:group theory 2634: 2453: 2285:, with size 2101:denotes the 2066: 1910: 1907: 1547: 1374: 1183: 1043: 1039: 875: 782: 704: 680: 625: 594:girth oracle 593: 586: 579: 568: 557: 550: 544:basis oracle 543: 520: 514: 505: 489: 484: 370: 293: 261: 258: 110: 108: 105:Why oracles? 83:lower bounds 79:oracle model 72: 60: 55: 53: 41:vector space 20: 18: 4218:: 300–320, 4113:: 241–245, 3900:: 398–400, 3624:: 127–136, 3414:(1): 9–11, 2828:Rado (1957) 2792:Piff (1973) 2610:transversal 2583:as a minor. 1518:to permute 1278:Finding an 626:port oracle 569:rank oracle 296:Rado (1942) 4431:Categories 4003:Lovász, L. 3789:Upfal, Eli 3396:Azar, Y.; 3389:References 2622:orientable 1640:, and let 1286:Finding a 1234:Tutte 1966 1196:, using a 1180:Algorithms 990:, whether 773:and takes 63:algorithms 25:subroutine 4178:: 83–89, 4146:: 55–56, 3981:: 21–25, 3858:CiteSeerX 3732:: 49–56, 3588:: 67–72, 3446:1206.6270 3091:≥ 2902:E.g. see 2614:bipartite 2606:self-dual 2356:⁡ 2217:⁡ 2079:⁡ 2022:⁡ 2005:∑ 1985:⁡ 1866:Ω 1248:≤ 1139:⁡ 1119:Ω 1014:∪ 1002:∖ 974:∈ 918:∪ 904:empty set 608:∞ 435:∪ 214:− 29:algorithm 4208:Rado, R. 4168:Rado, R. 3576:(1965), 3382:problem. 2683:See also 2618:Eulerian 2599:matching 2191:′ 1949:′ 1776:′ 1653:′ 1531:′ 1460:′ 1411:′ 1283:circuit. 537:gammoids 284:matrices 276:gammoids 111:succinct 4419:0205880 4368:0679212 4339:0609098 4307:0602418 4273:0549295 4253:Bibcode 4232:0088459 4200:0008250 4180:Bibcode 4160:0282867 4127:0316282 4096:2305892 4056:2399359 4015:0642059 3995:0098701 3966:0652740 3941:0500689 3916:0335312 3880:2206374 3836:1269136 3819:0950432 3777:0646772 3746:0101848 3717:0600125 3692:0523316 3659:1337446 3638:0297357 3604:0190025 3566:0861361 3535:1401892 3501:1411698 3472:0538038 3451:Bibcode 3428:1279491 1550:uniform 1273:regular 1269:graphic 421:circuit 290:History 95:uniform 43:or the 33:matroid 4417:  4366:  4337:  4305:  4271:  4230:  4198:  4158:  4125:  4094:  4054:  4013:  3993:  3964:  3939:  3914:  3878:  3860:  3834:  3817:  3775:  3744:  3715:  3690:  3657:  3636:  3602:  3564:  3533:  3499:  3470:  3426:  2921:, and 2834:, and 2588:binary 2205:, and 1236:) for 274:, and 99:minors 91:binary 87:P ≠ NP 77:, the 4382:(PDF) 4034:arXiv 3441:arXiv 2705:Notes 2620:, or 2592:field 2339:with 282:from 61:Many 49:graph 47:of a 23:is a 3253:and 1936:and 1398:and 807:and 573:rank 556:The 494:and 4405:doi 4356:doi 4327:doi 4295:doi 4261:doi 4220:doi 4188:doi 4148:doi 4115:doi 4082:doi 4044:doi 3983:doi 3954:doi 3929:doi 3902:doi 3868:doi 3807:doi 3765:doi 3734:doi 3705:doi 3678:doi 3626:doi 3590:doi 3586:69B 3554:doi 3523:doi 3489:doi 3416:doi 2353:fix 2214:fix 2178:to 2105:of 2076:aut 2019:fix 1982:aut 1271:or 1136:log 560:of 519:An 423:in 183:as 93:or 73:In 4433:: 4415:MR 4413:, 4401:18 4399:, 4364:MR 4362:, 4350:, 4335:MR 4333:, 4323:23 4303:MR 4301:, 4289:, 4269:MR 4267:, 4259:, 4249:87 4247:, 4228:MR 4226:, 4196:MR 4194:, 4186:, 4176:13 4156:MR 4154:, 4142:, 4123:MR 4121:, 4111:14 4092:MR 4090:, 4078:97 4066:; 4052:MR 4050:, 4042:, 4030:22 4028:, 4011:MR 3991:MR 3989:, 3979:33 3962:MR 3960:, 3937:MR 3935:, 3912:MR 3910:, 3898:16 3876:MR 3874:, 3866:, 3854:19 3852:, 3832:MR 3815:MR 3813:, 3803:36 3801:, 3791:; 3787:; 3773:MR 3771:, 3761:11 3759:, 3742:MR 3740:, 3730:34 3713:MR 3711:, 3688:MR 3686:, 3674:24 3672:, 3655:MR 3651:38 3649:, 3634:MR 3632:, 3620:, 3600:MR 3598:, 3584:, 3580:, 3562:MR 3560:, 3550:15 3548:, 3531:MR 3529:, 3519:16 3517:, 3497:MR 3495:, 3468:MR 3449:, 3439:, 3424:MR 3422:, 3412:50 3410:, 3400:; 3370:; 3211:, 3186:; 3176:^ 3171:). 3015:; 2993:^ 2978:^ 2969:; 2965:; 2949:; 2917:, 2913:, 2906:, 2889:; 2871:^ 2862:; 2858:; 2854:; 2850:; 2830:, 2807:^ 2798:; 2794:; 2790:; 2750:^ 2735:^ 2726:; 2722:; 2712:^ 2616:, 2612:, 2608:, 2451:. 2127:, 1545:. 873:. 624:A 592:A 585:A 567:A 549:A 542:A 535:, 531:, 270:, 101:. 4422:. 4407:: 4386:. 4371:. 4358:: 4352:3 4342:. 4329:: 4310:. 4297:: 4291:1 4276:. 4263:: 4255:: 4235:. 4222:: 4216:7 4203:. 4190:: 4182:: 4163:. 4150:: 4144:3 4130:. 4117:: 4099:. 4084:: 4059:. 4046:: 4036:: 4018:. 3998:. 3985:: 3969:. 3956:: 3944:. 3931:: 3919:. 3904:: 3883:. 3870:: 3839:. 3822:. 3809:: 3780:. 3767:: 3749:. 3736:: 3720:. 3707:: 3695:. 3680:: 3662:. 3641:. 3628:: 3622:1 3607:. 3592:: 3569:. 3556:: 3538:. 3525:: 3504:. 3491:: 3475:. 3458:. 3453:: 3443:: 3431:. 3418:: 3319:2 3314:4 3307:U 3278:2 3273:4 3266:U 3220:M 3190:. 3155:. 3143:. 3131:. 3119:. 3094:4 3088:k 3066:k 3040:k 3019:. 3003:. 2988:. 2973:. 2953:. 2937:. 2925:. 2893:. 2866:. 2838:. 2817:. 2802:. 2778:. 2766:. 2745:. 2730:. 2666:n 2644:n 2624:. 2568:H 2542:H 2516:H 2492:H 2470:H 2438:! 2435:n 2411:2 2407:! 2403:) 2400:2 2396:/ 2392:n 2389:( 2386:= 2382:| 2378:) 2373:i 2369:Q 2365:, 2362:M 2359:( 2349:| 2324:i 2320:Q 2297:! 2294:n 2266:i 2262:Q 2239:) 2234:i 2230:Q 2226:, 2223:M 2220:( 2188:M 2165:M 2141:i 2137:Q 2114:M 2088:) 2085:M 2082:( 2048:| 2044:) 2039:i 2035:Q 2031:, 2028:M 2025:( 2015:| 2009:i 1998:| 1994:) 1991:M 1988:( 1978:| 1946:M 1923:M 1892:) 1886:n 1880:n 1876:2 1870:( 1863:= 1857:) 1851:2 1847:/ 1843:n 1839:n 1834:( 1807:2 1803:/ 1799:n 1773:M 1750:M 1728:M 1706:2 1702:/ 1698:n 1676:M 1650:M 1625:2 1621:/ 1617:n 1612:n 1605:U 1583:M 1561:n 1528:M 1505:M 1483:M 1457:M 1434:M 1408:M 1385:M 1353:r 1331:r 1309:n 1275:. 1264:. 1251:3 1245:k 1219:k 1200:. 1163:) 1158:3 1154:/ 1150:1 1146:) 1142:n 1132:/ 1128:n 1125:( 1122:( 1097:) 1092:n 1087:( 1084:O 1061:n 1023:} 1020:x 1017:{ 1011:} 1008:y 1005:{ 999:I 977:I 971:y 949:n 927:} 924:x 921:{ 915:I 889:n 860:Y 838:X 816:Y 794:X 760:Y 738:X 716:Y 690:X 659:x 637:x 605:+ 466:x 444:} 441:x 438:{ 432:I 406:x 384:I 351:0 329:1 307:I 240:) 237:1 234:( 231:o 228:+ 225:2 221:/ 217:3 210:n 204:n 200:2 195:2 166:n 144:n 122:n

Index

subroutine
algorithm
matroid
linear dependencies
vector space
spanning trees
graph
algorithms
greedy algorithm
computational complexity theory
oracle model
lower bounds
P ≠ NP
binary
uniform
minors
doubly exponentially
uniform matroids
graphic matroids
bicircular matroids
gammoids
linear matroids
matrices
Rado (1942)
indicator function
Edmonds (1965)
circuit
Edmonds (1971)
Korte & Hausmann (1978)
Hausmann & Korte (1978)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.