Knowledge

Radiogenic nuclide

Source 📝

811: 1034:; it decays to xenon-129, a stable isotope of xenon which appears in excess relative to other xenon isotopes. It is found in meteorites that condensed from the primordial Solar System dust cloud and trapped primordial iodine-129 (half life 15.7 million years) sometime in a relative short period (probably less than 20 million years) between the iodine-129's creation in a supernova, and the formation of the Solar System by condensation of this dust. The trapped iodine-129 now appears as a relative excess of xenon-129. Iodine-129 was the first extinct radionuclide to be inferred, in 1960. Others are 824: 39: 1011:. The global supply of helium (which occurs in gas wells as well as the atmosphere) is mainly (about 90%–99%) radiogenic, as shown by its factor of 10 to 100 times enrichment in radiogenic helium-4 relative to the primordial ratio of helium-4 to helium-3. This latter ratio is known from extraterrestrial sources, such as some 961:. Specifically, Pb is formed from U, Pb from U, and Pb from Th. In rocks that contain uranium and thorium, the excess amounts of the three heavier lead isotopes allows the rocks to be "dated", thus providing a time estimate for when the rock solidified and the mineral held the ratio of isotopes fixed and in place. 927:
Some naturally occurring isotopes are entirely radiogenic, but all those are radioactive isotopes, with half-lives too short to have occurred primordially and still exist today. Thus, they are only present as radiogenic daughters of either ongoing decay processes, or else cosmogenic (cosmic ray
1018:
As noted in the case of lead-204, a radiogenic nuclide is often not radioactive. In this case, if its precursor nuclide has a half-life too short to have survived from primordial times, then the parent nuclide will be gone, and known now entirely by a relative excess of its stable daughter. In
1002:
are stable, and small amounts were trapped in the crust of the Earth as it formed. Helium-3 is almost entirely primordial (a small amount is formed by natural nuclear reactions in the crust). Helium-3 can also be produced as the decay product of
994:, both of which form during the decay of heavier elements in bedrock. Radon is entirely radiogenic, since it has too short a half-life to have occurred primordially. Helium, however, occurs in the crust of the Earth primordially, since both 939:, a primordial fraction is always present, since all sufficiently long-lived and stable isotopes do in fact naturally occur primordially. An additional fraction of some of these isotopes may also occur radiogenically. 1499:
Note: this not the half-life of K, but rather the half-life that would correspond to the decay constant for decay to Ar. About 89% of the K decays to Ca.
1050:
of the radioactive parent isotope. The values given for half-life and decay constant are the current consensus values in the Isotope Geology community.
899:
In comparison with the quantity of the radioactive 'parent isotope' in a system, the quantity of the radiogenic 'daughter product' is used as a
1599:
Government supply of radionuclides; information on isotopes; coordination and management of isotope production, availability, and distribution
910:
In comparison with the quantity of a non-radiogenic isotope of the same element, the quantity of the radiogenic isotope is used to define its
855: 769: 1019:
practice, this occurs for all radionuclides with half lives less than about 50 to 100 million years. Such nuclides are formed in
983:(half-life around 5700 years), but the carbon-14 was formed some time earlier from nitrogen-14 by the action of cosmic rays. 118: 1046:
The following table lists some of the most important radiogenic isotope systems used in geology, in order of decreasing
422: 810: 1381: 1369: 614: 319: 848: 632: 602: 103: 679: 229: 17: 972:. Almost all the argon in the Earth's atmosphere is radiogenic, whereas primordial argon is argon-36. 565: 1388:. Most of the radiogenic heating in the Earth results from the decay of the daughter nuclei in the 953:
present primordially, while the other three isotopes may also occur as radiogenic decay products of
1536: 841: 828: 560: 264: 904: 555: 452: 417: 113: 1605:
U.S. Department of Energy program for isotope production and production research and development
1618: 1385: 928:
induced) processes that produce them in nature freshly. A few others are naturally produced by
609: 259: 224: 1510: 734: 619: 511: 674: 1567: 1024: 915: 744: 719: 536: 8: 1544: 1015:
and meteorites, which are relatively free of parental sources for helium-3 and helium-4.
949:(Pb, Pb, Pb, and Pb) are present primordially, in known and fixed ratios. However, Pb is 895:) form some of the most important tools in geology. They are used in two principal ways: 639: 518: 412: 355: 348: 338: 279: 274: 108: 1467: 1418: 911: 900: 582: 577: 1365: 877: 754: 749: 709: 587: 326: 314: 297: 269: 239: 80: 1482: 1448: 1373: 946: 774: 764: 694: 447: 365: 333: 153: 85: 932:
processes (natural nuclear reactions of other types, such as neutron absorption).
1377: 1008: 759: 739: 714: 644: 531: 459: 405: 370: 30: 1602: 1486: 1423: 936: 885: 815: 669: 664: 543: 476: 284: 219: 196: 183: 170: 70: 48: 1612: 794: 789: 784: 779: 729: 387: 360: 204: 143: 96: 75: 1401: 1035: 914:(e.g. Pb/Pb). This technique is discussed in more detail under the heading 881: 724: 699: 684: 429: 377: 234: 1603:
Isotope Development & Production for Research and Applications (IDPRA)
1452: 1372:(resulting from planetary accretion), radiogenic heating occurring in the 1038:(also inferred from extra magnesium-26 found in meteorites), and iron-60. 1413: 1397: 1393: 1389: 929: 689: 382: 304: 157: 1368:
during the production of radiogenic nuclides. Along with heat from the
1031: 1012: 659: 649: 506: 486: 309: 179: 1047: 1020: 980: 969: 704: 654: 481: 469: 464: 343: 1466:
Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021).
999: 995: 976: 38: 1004: 958: 954: 945:
is perhaps the best example of a partly radiogenic substance, as
873: 166: 139: 131: 63: 53: 991: 58: 935:
For radiogenic isotopes that decay slowly enough, or that are
1568:"Geoneutrinos make their debut; Radiogenic heat in the Earth" 987: 965: 1007:(H) which is a product of some nuclear reactions, including 942: 1596: 1027:, since they are not seen directly on the Earth today. 1364:
occurs as a result of the release of heat energy from
1041: 1508: 1465: 986:
Other important examples of radiogenic elements are
891:Radiogenic nuclides (more commonly referred to as 1468:"The NUBASE2020 evaluation of nuclear properties" 1610: 1056:indicates ultimate decay product of a series. 849: 1442: 979:-14 is radiogenic, coming from the decay of 856: 842: 1459: 1030:An example of an extinct radionuclide is 14: 1611: 1509:Allaby, Alisa; Michael Allaby (1999). 964:Another notable radiogenic nuclide is 1528: 1502: 1356: 1565: 1597:National Isotope Development Center 1559: 1042:Radiogenic nuclides used in geology 24: 1534: 880:. It may itself be radioactive (a 25: 1630: 1590: 876:that is produced by a process of 1541:Introduction to Earth Sciences I 823: 822: 809: 37: 1547:. p. 3.2 Mantle convection 947:all four of its stable isotopes 1515:A Dictionary of Earth Sciences 1493: 1447:. Cambridge University Press. 1436: 13: 1: 1429: 968:-40, formed from radioactive 1566:Dumé, Belle (27 July 2005). 1537:"The Earth as a Heat Engine" 7: 1407: 922: 603:High-energy nuclear physics 10: 1635: 1445:Radiogenic Isotope Geology 1067:kyr = kiloyear = 10 years 905:uranium–lead geochronology 1065:Myr = megayear = 10 years 1063:Gyr = gigayear = 10 years 1487:10.1088/1674-1137/abddae 1382:two main sources of heat 1060:Units used in this table 114:Interacting boson model 1574:. Institute of Physics 1453:10.1017/9781316163009 1443:Dickin, A.P. (2018). 1025:extinct radionuclides 501:High-energy processes 199:– equal all the above 97:Models of the nucleus 1511:"radiogenic heating" 1079:Decay constant (yr) 916:isotope geochemistry 537:nuclear astrophysics 1545:Columbia University 1023:, but are known as 893:radiogenic isotopes 519:Photodisintegration 442:Capturing processes 356:Spontaneous fission 349:Internal conversion 280:Valley of stability 275:Island of stability 109:Nuclear shell model 1419:Radiometric dating 1362:Radiogenic heating 1357:Radiogenic heating 912:isotopic signature 901:radiometric dating 870:radiogenic nuclide 816:Physics portal 610:Quark–gluon plasma 393:Radiogenic nuclide 1475:Chinese Physics C 1366:radioactive decay 1354: 1353: 1076:Daughter nuclide 878:radioactive decay 866: 865: 552: 298:Radioactive decay 254:Nuclear stability 81:Nuclear structure 16:(Redirected from 1626: 1584: 1583: 1581: 1579: 1563: 1557: 1556: 1554: 1552: 1535:Mutter, John C. 1532: 1526: 1525: 1523: 1521: 1506: 1500: 1497: 1491: 1490: 1472: 1463: 1457: 1456: 1440: 1386:Earth's interior 1070: 1069: 858: 851: 844: 831: 826: 825: 818: 814: 813: 690:Skłodowska-Curie 550: 366:Neutron emission 134:' classification 86:Nuclear reaction 41: 27: 26: 21: 1634: 1633: 1629: 1628: 1627: 1625: 1624: 1623: 1609: 1608: 1593: 1588: 1587: 1577: 1575: 1564: 1560: 1550: 1548: 1533: 1529: 1519: 1517: 1507: 1503: 1498: 1494: 1470: 1464: 1460: 1441: 1437: 1432: 1410: 1370:Primordial Heat 1359: 1273: 1073:Parent nuclide 1066: 1064: 1062: 1055: 1044: 1009:ternary fission 937:stable isotopes 925: 884:) or stable (a 862: 821: 808: 807: 800: 799: 635: 625: 624: 605: 595: 594: 539: 535: 532:Nucleosynthesis 524: 523: 502: 494: 493: 443: 435: 434: 408: 406:Nuclear fission 398: 397: 371:Proton emission 300: 290: 289: 255: 247: 246: 148: 135: 124: 123: 99: 31:Nuclear physics 23: 22: 15: 12: 11: 5: 1632: 1622: 1621: 1607: 1606: 1600: 1592: 1591:External links 1589: 1586: 1585: 1558: 1527: 1501: 1492: 1458: 1434: 1433: 1431: 1428: 1427: 1426: 1424:Stable nuclide 1421: 1416: 1409: 1406: 1358: 1355: 1352: 1351: 1348: 1345: 1342: 1338: 1337: 1334: 1331: 1328: 1324: 1323: 1320: 1317: 1314: 1310: 1309: 1306: 1303: 1300: 1296: 1295: 1292: 1289: 1286: 1282: 1281: 1278: 1275: 1270: 1266: 1265: 1262: 1259: 1256: 1252: 1251: 1248: 1245: 1242: 1238: 1237: 1234: 1231: 1228: 1224: 1223: 1220: 1217: 1214: 1210: 1209: 1206: 1203: 1200: 1196: 1195: 1192: 1189: 1186: 1182: 1181: 1178: 1175: 1172: 1168: 1167: 1164: 1161: 1158: 1154: 1153: 1150: 1147: 1144: 1140: 1139: 1136: 1133: 1130: 1126: 1125: 1122: 1119: 1116: 1112: 1111: 1108: 1105: 1102: 1098: 1097: 1094: 1091: 1088: 1084: 1083: 1080: 1077: 1074: 1053: 1043: 1040: 924: 921: 920: 919: 908: 886:stable nuclide 864: 863: 861: 860: 853: 846: 838: 835: 834: 833: 832: 819: 802: 801: 798: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 712: 707: 702: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 647: 642: 636: 631: 630: 627: 626: 623: 622: 617: 612: 606: 601: 600: 597: 596: 593: 592: 591: 590: 585: 580: 571: 570: 569: 568: 563: 558: 547: 546: 544:Nuclear fusion 540: 530: 529: 526: 525: 522: 521: 516: 515: 514: 503: 500: 499: 496: 495: 492: 491: 490: 489: 484: 474: 473: 472: 467: 457: 456: 455: 444: 441: 440: 437: 436: 433: 432: 427: 426: 425: 415: 409: 404: 403: 400: 399: 396: 395: 390: 385: 380: 374: 373: 368: 363: 358: 353: 352: 351: 346: 336: 331: 330: 329: 324: 323: 322: 307: 301: 296: 295: 292: 291: 288: 287: 285:Stable nuclide 282: 277: 272: 267: 262: 260:Binding energy 256: 253: 252: 249: 248: 245: 244: 243: 242: 232: 227: 222: 216: 215: 201: 200: 193: 192: 176: 175: 163: 162: 150: 149: 136: 130: 129: 126: 125: 122: 121: 116: 111: 106: 100: 95: 94: 91: 90: 89: 88: 83: 78: 73: 71:Nuclear matter 68: 67: 66: 61: 51: 43: 42: 34: 33: 9: 6: 4: 3: 2: 1631: 1620: 1619:Radioactivity 1617: 1616: 1614: 1604: 1601: 1598: 1595: 1594: 1573: 1572:Physics World 1569: 1562: 1546: 1542: 1538: 1531: 1516: 1512: 1505: 1496: 1488: 1484: 1481:(3): 030001. 1480: 1476: 1469: 1462: 1454: 1450: 1446: 1439: 1435: 1425: 1422: 1420: 1417: 1415: 1412: 1411: 1405: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1349: 1346: 1343: 1340: 1339: 1335: 1332: 1329: 1326: 1325: 1321: 1318: 1315: 1312: 1311: 1307: 1304: 1301: 1298: 1297: 1293: 1290: 1287: 1284: 1283: 1279: 1276: 1271: 1268: 1267: 1263: 1260: 1257: 1254: 1253: 1249: 1246: 1243: 1240: 1239: 1235: 1232: 1229: 1226: 1225: 1221: 1218: 1215: 1212: 1211: 1207: 1204: 1201: 1198: 1197: 1193: 1190: 1187: 1184: 1183: 1179: 1176: 1173: 1170: 1169: 1165: 1162: 1159: 1156: 1155: 1151: 1148: 1145: 1142: 1141: 1137: 1134: 1131: 1128: 1127: 1123: 1120: 1117: 1114: 1113: 1109: 1106: 1103: 1100: 1099: 1095: 1092: 1089: 1086: 1085: 1081: 1078: 1075: 1072: 1071: 1068: 1061: 1057: 1051: 1049: 1039: 1037: 1033: 1028: 1026: 1022: 1016: 1014: 1010: 1006: 1001: 997: 993: 989: 984: 982: 978: 973: 971: 967: 962: 960: 956: 952: 948: 944: 940: 938: 933: 931: 917: 913: 909: 906: 902: 898: 897: 896: 894: 889: 887: 883: 879: 875: 871: 859: 854: 852: 847: 845: 840: 839: 837: 836: 830: 820: 817: 812: 806: 805: 804: 803: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 646: 643: 641: 638: 637: 634: 629: 628: 621: 618: 616: 613: 611: 608: 607: 604: 599: 598: 589: 586: 584: 581: 579: 576: 575: 573: 572: 567: 564: 562: 559: 557: 554: 553: 549: 548: 545: 542: 541: 538: 533: 528: 527: 520: 517: 513: 512:by cosmic ray 510: 509: 508: 505: 504: 498: 497: 488: 485: 483: 480: 479: 478: 475: 471: 468: 466: 463: 462: 461: 458: 454: 451: 450: 449: 446: 445: 439: 438: 431: 428: 424: 423:pair breaking 421: 420: 419: 416: 414: 411: 410: 407: 402: 401: 394: 391: 389: 388:Decay product 386: 384: 381: 379: 376: 375: 372: 369: 367: 364: 362: 361:Cluster decay 359: 357: 354: 350: 347: 345: 342: 341: 340: 337: 335: 332: 328: 325: 321: 318: 317: 316: 313: 312: 311: 308: 306: 303: 302: 299: 294: 293: 286: 283: 281: 278: 276: 273: 271: 268: 266: 263: 261: 258: 257: 251: 250: 241: 238: 237: 236: 233: 231: 228: 226: 223: 221: 218: 217: 214: 210: 206: 205:Mirror nuclei 203: 202: 198: 195: 194: 191: 190: 187: −  186: 181: 178: 177: 174: 173: 168: 165: 164: 161: 160: 155: 152: 151: 147: 146: 141: 138: 137: 133: 128: 127: 120: 117: 115: 112: 110: 107: 105: 102: 101: 98: 93: 92: 87: 84: 82: 79: 77: 76:Nuclear force 74: 72: 69: 65: 62: 60: 57: 56: 55: 52: 50: 47: 46: 45: 44: 40: 36: 35: 32: 29: 28: 19: 1576:. Retrieved 1571: 1561: 1549:. Retrieved 1540: 1530: 1518:. Retrieved 1514: 1504: 1495: 1478: 1474: 1461: 1444: 1438: 1402:potassium-40 1390:decay chains 1380:make up the 1361: 1360: 1191:1.55125 ×10 1059: 1058: 1052: 1045: 1036:aluminium-26 1029: 1017: 985: 974: 963: 950: 941: 934: 926: 892: 890: 882:radionuclide 869: 867: 430:Photofission 392: 378:Decay energy 305:Alpha α 212: 208: 188: 184: 171: 158: 144: 1578:23 November 1551:23 November 1520:24 November 1414:Geoneutrino 1398:thorium-232 1394:uranium-238 1333:1.2097 ×10 1305:9.1577 ×10 1294:245.25 kyr 1222:0.7038 Gyr 1219:9.8485 ×10 1163:4.9475 ×10 930:nucleogenic 903:tool (e.g. 735:Oppenheimer 413:Spontaneous 383:Decay chain 334:K/L capture 310:Beta β 180:Isodiaphers 104:Liquid drop 1430:References 1322:32.76 kyr 1319:2.116 ×10 1308:75.69 kyr 1291:2.826 ×10 1208:1.397 Gyr 1205:4.962 ×10 1194:4.468 Gyr 1180:11.93 Gyr 1166:14.01 Gyr 1149:1.867 ×10 1135:1.666 ×10 1124:49.44 Gyr 1121:1.402 ×10 1093:1.477 ×10 1082:Half-life 1032:iodine-129 1021:supernovas 1013:Moon rocks 765:Strassmann 755:Rutherford 633:Scientists 588:Artificial 583:Cosmogenic 578:Primordial 574:Nuclides: 551:Processes: 507:Spallation 18:Radiogenic 1347:4.33 ×10 1277:2.24 ×10 1264:0.70 Myr 1177:5.81 ×10 1152:37.1 Gyr 1138:41.6 Gyr 1107:6.54 ×10 1048:half-life 981:carbon-14 970:potassium 770:Świątecki 685:Pi. Curie 680:Fr. Curie 675:Ir. Curie 670:Cockcroft 645:Becquerel 566:Supernova 270:Drip line 265:p–n ratio 240:Borromean 119:Ab initio 1613:Category 1408:See also 1350:1600 yr 1336:5730 yr 1280:310 kyr 1272:Ar (98%) 1261:9.9 ×10 1250:1.5 Myr 1247:4.6 ×10 1233:4.3 ×10 1110:106 Gyr 1096:483 Gyr 1000:helium-4 996:helium-3 977:nitrogen 923:Examples 829:Category 730:Oliphant 715:Lawrence 695:Davisson 665:Chadwick 561:Big Bang 448:electron 418:Products 339:Isomeric 230:Even/odd 207: – 182:– equal 169:– equal 167:Isotones 156:– equal 142:– equal 140:Isotopes 132:Nuclides 54:Nucleons 1384:in the 1274:S (2%) 1236:16 Myr 1005:tritium 959:thorium 955:uranium 874:nuclide 785:Thomson 775:Szilárd 745:Purcell 725:Meitner 660:N. Bohr 655:A. Bohr 640:Alvarez 556:Stellar 460:neutron 344:Gamma γ 197:Isomers 154:Isobars 49:Nucleus 1400:, and 1374:mantle 992:helium 827:  795:Wigner 790:Walton 780:Teller 710:Jensen 477:proton 220:Stable 1471:(PDF) 1378:crust 1216:Pb** 1188:Pb** 1160:Pb** 988:radon 975:Some 966:argon 872:is a 760:Soddy 740:Proca 720:Mayer 700:Fermi 650:Bethe 225:Magic 1580:2013 1553:2013 1522:2013 1396:and 1376:and 998:and 990:and 957:and 951:only 943:Lead 750:Rabi 705:Hahn 615:RHIC 235:Halo 1483:doi 1449:doi 1392:of 1344:Rn 1341:Ra 1316:Ac 1313:Pa 1302:Ra 1299:Th 1288:Th 1269:Cl 1258:Mg 1255:Al 1241:Be 1230:Xe 1202:Ca 1174:Ar 1157:Th 1146:Hf 1143:Lu 1132:Os 1129:Re 1118:Sr 1115:Rb 1104:Nd 1101:Sm 1090:Os 1087:Pt 888:). 620:LHC 534:and 1615:: 1570:. 1543:. 1539:. 1513:. 1479:45 1477:. 1473:. 1404:. 1330:N 1327:C 1285:U 1244:B 1227:I 1213:U 1199:K 1185:U 1171:K 1054:** 907:). 868:A 487:rp 453:2× 320:0v 315:2β 211:↔ 1582:. 1555:. 1524:. 1489:. 1485:: 1455:. 1451:: 918:. 857:e 850:t 843:v 482:p 470:r 465:s 327:β 213:N 209:Z 189:Z 185:N 172:N 159:A 145:Z 64:n 59:p 20:)

Index

Radiogenic
Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones
N
Isodiaphers
N − Z
Isomers
Mirror nuclei
Stable
Magic
Even/odd

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.