Knowledge

r-process

Source 📝

1891: 803: 1574: = 50, 82, and 126 are reached, and neutron capture is temporarily paused. These so-called waiting points are characterized by increased binding energy relative to heavier isotopes, leading to low neutron capture cross sections and a buildup of semi-magic nuclei that are more stable toward beta decay. In addition, nuclei beyond the shell closures are susceptible to quicker beta decay owing to their proximity to the drip line; for these nuclei, beta decay occurs before further neutron capture. Waiting point nuclei are then allowed to beta decay toward stability before further neutron capture can occur, resulting in a slowdown or 3831: 1435: 4430: 816: 1114: 31: 4440: 1877: 1780:). When released from the huge internal pressure of the neutron star, these ejecta expand and form seed heavy nuclei that rapidly capture free neutrons, and radiate detected optical light for about a week. Such duration of luminosity would not be possible without heating by internal radioactive decay, which is provided by 1202:, who hypothesized that conditions in the core of collapsing stars would enable nucleosynthesis of the remainder of the elements via rapid capture of densely packed free neutrons. However, there remained unanswered questions about equilibrium in stars that was required to balance beta-decays and precisely account for 1229:
containing magic numbers of neutrons which were also in abundance, suggesting that radioactive neutron-rich nuclei having the magic neutron numbers but roughly ten fewer protons were formed. These observations also implied that rapid neutron capture occurred faster than
987:. Early studies theorized that 10 free neutrons per cm would be required, for temperatures of about 1 GK, in order to match the waiting points, at which no more neutrons can be captured, with the mass numbers of the abundance peaks for 1362:
building on preexisting iron. Primary stellar nucleosynthesis begins earlier in the galaxy than does secondary nucleosynthesis. Alternatively the high density of neutrons within neutron stars would be available for rapid assembly into
991:-process nuclei. This amounts to almost a gram of free neutrons in every cubic centimeter, an astonishing number requiring extreme locations. Traditionally this suggested the material ejected from the reexpanded core of a 1715:-process material. The ejected material must be relatively neutron-rich, a condition which has been difficult to achieve in models, so that astrophysicists remain uneasy about their adequacy for successful 2038: 1806:-process. Because of these spectroscopic features it has been argued that such nucleosynthesis in the Milky Way has been primarily ejecta from neutron-star mergers rather than from supernovae. 1427:-process thereby derives from observed abundance spectra in old stars that had been born early, when the galactic metallicity was still small, but that nonetheless contain their complement of 1367:-process nuclei if a collision were to eject portions of a neutron star, which then rapidly expands freed from confinement. That sequence could also begin earlier in galactic time than would 1423:-process emerges from quickly evolving massive stars that become supernovae and leave neutron-star remnants that can merge with another neutron star. The primary nature of the early 1350:
The creation of free neutrons by electron capture during the rapid collapse to high density of a supernova core along with quick assembly of some neutron-rich seed nuclei makes the
1589:
may be low enough before 270 such that neutron capture might induce fission instead of continuing up the neutron drip line. After the neutron flux decreases, these highly unstable
1480:-process is responsible for our natural cohort of radioactive elements, such as uranium and thorium, as well as the most neutron-rich isotopes of each heavy element. 1383:
in 1981. He and subsequent astronomers showed that the pattern of heavy-element abundances in the earliest metal-poor stars matched that of the shape of the solar
1084:, meaning that it requires pre-existing heavy isotopes as seed nuclei to be converted into other heavy nuclei by a slow sequence of captures of free neutrons. The 1379:-process enrichment of interstellar gas and of subsequent newly formed stars, as applied to the abundance evolution of the galaxy of stars, was first laid out by 4165: 2391: 1343:-process abundance curve (vs. atomic weight) has provided for many decades the target for theoretical computations of abundances synthesized by the physical 1738:-process material thrown off by the merging neutron stars. The bulk of this material seems to consist of two types: hot blue masses of highly radioactive 2876:
shows this path of captures reaching magic neutron numbers 82 and 126 at smaller values of nuclear charge Z than it does along the stability path.
1060:-process have half-lives long enough to enable their study in laboratory experiments, but this is not typically true for isotopes involved in the 1453:-process abundances because the overall problem is numerically formidable. However, existing results are supportive; in 2017, new data about the 1213:, which was known to almost certainly have a role in element formation, was also seen in a table of abundances of isotopes of heavy elements by 1088:-process scenarios create their own seed nuclei, so they might proceed in massive stars that contain no heavy seed nuclei. Taken together, the 1375:-process abundances in the galaxy. Each of these scenarios is the subject of active theoretical research. Observational evidence of the early 1441:
showing the cosmogenic origin of each element. The elements heavier than iron with origins in supernovae are typically those produced by the
4380: 1655:
nuclides at the line of beta stability before absorbing more neutrons in the next explosion, thus providing a chance to reach neutron-rich
3482: 1734:
to identify the location of the merger, several teams observed and studied optical data of the merger, finding spectroscopic evidence of
1631:-process also occurs in thermonuclear weapons, and was responsible for the initial discovery of neutron-rich almost stable isotopes of 1523:
of matter. This results in an extremely high density of free neutrons which cannot decay, on the order of 10 neutrons per cm, and high
1647:(atomic numbers 99 and 100) in the 1950s. It has been suggested that multiple nuclear explosions would make it possible to reach the 847: 761: 1825:-process fragments. Otherwise they would dim quickly. Such alternative sites were first seriously proposed in 1974 as decompressing 1703:
in the interstellar gas limits the amount each can have ejected. It requires either that only a small fraction of supernovae eject
1651:, as the affected nuclides (starting with uranium-238 as seed nuclei) would not have time to beta decay all the way to the quickly 1246:-process was named for its characteristic slow neutron capture. A table apportioning the heavy isotopes phenomenologically between 3159:
Watson, Darach; Hansen, Camilla J.; Selsing, Jonatan; Koch, Andreas; Malesani, Daniele B.; Andersen, Anja C.; Fynbo, Johan P. U.;
4360: 1449:
Either interpretation, though generally supported by supernova experts, has yet to achieve a totally satisfactory calculation of
1585:-process when its heaviest nuclei become unstable to spontaneous fission, when the total number of nucleons approaches 270. The 3968: 3438: 3163:; Bauswein, Andreas; Covino, Stefano; Grado, Aniello (2019). "Identification of strontium in the merger of two neutron stars". 1315:-process reinforced those temporal features. Seeger et al. were also able to construct more quantitative apportionment between 2933: 975:
arrives to be captured. This sequence can continue up to the limit of stability of the increasingly neutron-rich nuclei (the
3757: 4390: 909:-process can typically synthesize the heaviest four isotopes of every heavy element; of these, the heavier two are called 4375: 1358:, a process that can occur even in a star initially of pure H and He. This in contrast to the BFH designation which is a 110: 2601: 2853: 1203: 4464: 1153: 1072:, where the neutron flux is sufficient to cause neutron captures to recur every 10–100 years, much too slow for the 4160: 2735:
Wang, R.; Chen, L.W. (2015). "Positioning the neutron drip line and the r-process paths in the nuclear landscape".
2439: 1849:. Current astrophysical models suggest that a single neutron star merger event may have generated between 3 and 13 1845:
of two neutron stars that collide). After preliminary identification of these sites, the scenario was confirmed in
1100:
heavier than iron. The historical challenge has been to locate physical settings appropriate to their time scales.
414: 1890: 802: 4196: 3475: 1546:
Three processes which affect the climbing of the neutron drip line are a notable decrease in the neutron-capture
1399:-process abundances were born from that gas, for it requires about 100 million years of galactic history for the 606: 1323:-process of the abundance table of heavy isotopes, thereby establishing a more reliable abundance curve for the 4405: 4137: 3820: 1135: 1097: 311: 1593:
nuclei undergo a rapid succession of beta decays until they reach more stable, neutron-rich nuclei. While the
3330: 3238: 1297:-process abundance distribution. Shorter-time distributions emphasize abundances at atomic weights less than 1052:, the other predominant mechanism for the production of heavy elements, which is nucleosynthesis by means of 840: 4395: 4370: 4181: 3880: 1809:
These results offer a new possibility for clarifying six decades of uncertainty over the site of origin of
2859:, provides a clear technical introduction to these features. A more technical description can be found in 4443: 4400: 3908: 2200:-process heavy-element production solely or at least significantly takes place in the merger environment. 624: 594: 95: 4201: 4191: 3810: 3468: 2663: 2510: 2508:
Truran, J. W. (1981). "A new interpretation of the heavy-element abundances in metal-deficient stars".
2196:-process, and astrophysicists need to estimate the frequency of neutron-star mergers to assess whether 1511:
is blocked. This is because the high electron density fills all available free electron states up to a
1179: 1131: 671: 221: 1221:
in 1956. Their abundance table revealed larger than average abundances of natural isotopes containing
1182:
and Louis R. Henrich who postulated that elements were produced at temperatures between 6×10 and 8×10
3865: 3790: 2929:"Future of superheavy element research: Which nuclei could be synthesized within the next few years?" 2300: 2213: 2029: 1989: 996: 557: 1238:
at magic numbers. This process, rapid neutron capture by neutron-rich isotopes, became known as the
4479: 4474: 4385: 3750: 833: 820: 552: 256: 1604:-process, in neutron-rich predecessor nuclei, creates an abundance of radioactive nuclei about 10 4410: 3815: 3805: 3634: 3599: 3579: 3534: 2545: 2339: 1335:-process isotopic abundances from the total isotopic abundances and attributing the remainder to 1293:-process abundances, but, that when superposed, did achieve a successful characterization of the 1277:-process as described by the BFH paper was first demonstrated in a time-dependent calculation at 1124: 1069: 992: 547: 444: 409: 105: 4415: 4319: 4155: 4028: 4008: 3629: 3619: 1621: 1563: 1263: 1222: 1035: 601: 251: 216: 4365: 2982:"Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger" 2845: 2485:-process abundances whereas Figure 18 shows the calculated abundances for long neutron fluxes. 1520: 905:-process usually synthesizes the most neutron-rich stable isotopes of each heavy element. The 4259: 4206: 3860: 2086:"Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event" 1547: 726: 611: 503: 2886:
Surman, R.; Mumpower, M.; Sinclair, R.; Jones, K. L.; Hix, W. R.; McLaughlin, G. C. (2014).
2718:
Nucleosynthesis in explosive environments: neutron star mergers and core-collapse supernovae
2524: 1174:
in stars, an unknown process responsible for producing heavier elements found on Earth from
666: 4018: 3855: 3624: 3614: 3402: 3339: 3292: 3247: 3182: 3123: 3062: 3005: 2952: 2899: 2807: 2754: 2678: 2622: 2564: 2539:
Abbott, B. P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2017).
2519: 2448: 2400: 2351: 2309: 2270: 2228: 2173: 2109: 2047: 1998: 1462: 1023: 861: 736: 711: 528: 3830: 1331:-process abundances are determined using their technique of subtracting the more reliable 8: 4484: 4433: 4050: 4040: 4023: 3958: 3887: 3743: 3678: 3569: 3549: 3544: 2965: 2928: 2335: 1912: 1708: 1652: 1648: 1555: 1551: 1501: 1395:-process had not yet begun to enrich interstellar gas when these young stars missing the 1004: 631: 510: 404: 347: 340: 330: 271: 266: 100: 3406: 3344: 3296: 3252: 3186: 3127: 3066: 3009: 2956: 2903: 2811: 2758: 2716: 2682: 2626: 2568: 2453: 2405: 2355: 2313: 2274: 2232: 2177: 2113: 2051: 2002: 967:. The captures must be rapid in the sense that the nuclei must not have time to undergo 4186: 4095: 4071: 3963: 3923: 3785: 3392: 3214: 3172: 3113: 3052: 2995: 2942: 2770: 2744: 2694: 2554: 2367: 2163: 2099: 2063: 1656: 1558:, and the degree of nuclear stability in the heavy-isotope region. Neutron captures in 1011:. The relative contribution of each of these sources to the astrophysical abundance of 574: 569: 384: 1492:-process nucleosynthesis where the required conditions are thought to exist: low-mass 4222: 4066: 3996: 3933: 3845: 3795: 3780: 3559: 3529: 3499: 3420: 3359: 3218: 3206: 3198: 3141: 3080: 2849: 2838: 2833: 2819: 2798: 2698: 2690: 2613: 2582: 2371: 2127: 2067: 1590: 1567: 1540: 1497: 1286: 1282: 976: 968: 746: 741: 701: 579: 318: 306: 289: 261: 231: 72: 2774: 1304:, whereas longer-time distributions emphasized those at atomic weights greater than 4469: 4105: 3913: 3903: 3589: 3554: 3539: 3491: 3410: 3383: 3349: 3300: 3283: 3257: 3190: 3160: 3131: 3104: 3070: 3043: 3013: 2986: 2960: 2907: 2815: 2762: 2686: 2630: 2577: 2572: 2540: 2458: 2410: 2359: 2317: 2278: 2236: 2211: 2181: 2117: 2090: 2055: 2006: 1882: 1802:-process yields have been known since the first time dependent calculations of the 1613: 1605: 1516: 1465:
gravitational-wave observatories discovered a merger of two neutron stars ejecting
1195: 876: 766: 756: 686: 439: 357: 325: 145: 77: 2541:"GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral" 1391:-process component were missing. This was consistent with the hypothesis that the 979:) to physically retain neutrons as governed by the short range nuclear force. The 4013: 3918: 3699: 3594: 3564: 1586: 1528: 1434: 1380: 1210: 956: 880: 751: 731: 706: 636: 523: 451: 397: 362: 22: 983:-process therefore must occur in locations where there exists a high density of 4045: 4001: 3975: 3720: 3704: 3279:"Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars" 2766: 2634: 2059: 1923: 1896: 1700: 1438: 884: 807: 661: 656: 535: 468: 276: 211: 188: 175: 162: 62: 40: 3194: 3100:"A kilonova as the electromagnetic counterpart to a gravitational-wave source" 2283: 2258: 2011: 1984: 1507:
Immediately after the severe compression of electrons in a Type II supernova,
1178:
and helium was suspected to exist. One early attempt at explanation came from
4458: 4249: 3609: 3524: 3379:"A 'kilonova' associated with the short-duration gamma-ray burst GRB 130603B" 3202: 2638: 2481:. Figure 16 shows the short-flux calculation and its comparison with natural 2321: 2154: 1837:
in compact binaries. In 1989 (and 1999) this scenario was extended to binary
1830: 1636: 1226: 1191: 786: 781: 776: 771: 721: 379: 352: 196: 135: 88: 67: 4227: 4127: 4100: 4078: 3683: 3424: 3363: 3210: 3145: 3084: 2586: 2131: 2084:
Kasen, D.; Metzger, B.; Barnes, J.; Quataert, E.; Ramirez-Ruiz, E. (2017).
1838: 1826: 1727: 1512: 1000: 984: 960: 887: 716: 691: 676: 421: 369: 226: 2600:
Bartlett, A.; Görres, J.; Mathews, G.J.; Otsuki, K.; Wiescher, W. (2006).
4329: 4237: 4132: 4122: 4110: 4035: 3948: 3509: 1842: 1834: 1777: 1660: 1640: 1620: = 50, 82, and 126—which are about 10 protons removed from the 1524: 1515:
which is greater than the energy of nuclear beta decay. However, nuclear
1218: 1027: 922: 681: 374: 296: 149: 3415: 3378: 3136: 3099: 3075: 3034: 3018: 2981: 2122: 2085: 1600:
creates an abundance of stable nuclei having closed neutron shells, the
1415:-process–rich stellar compositions must have been born earlier than any 4344: 4339: 4334: 4314: 4115: 3991: 3953: 3850: 3660: 3514: 1850: 1532: 1508: 1255: 1231: 1214: 1199: 1198:
at non-negligible abundances. This became the foundation of a study by
1138: in this section. Unsourced material may be challenged and removed. 651: 641: 498: 478: 301: 171: 2912: 2887: 2789: 2363: 2240: 2186: 2149: 1784:-process nuclei near their waiting points. Two distinct mass regions ( 1371:-process nucleosynthesis; so each scenario fits the earlier growth of 4324: 4304: 4299: 4294: 4289: 4244: 3938: 3870: 3800: 3766: 3655: 3647: 3604: 3519: 3305: 3278: 1862: 1750: 1676: 1594: 1493: 1046: 1022:-process-like series of neutron captures occurs to a minor extent in 895: 891: 696: 646: 473: 456: 335: 3460: 1978: 1976: 1974: 1972: 1970: 1968: 1616:
produced from successive beta decays of waiting point nuclei having
1113: 963:, typically beginning with nuclei in the abundance peak centered on 4309: 4274: 4269: 4264: 4088: 3928: 3354: 3321: 3262: 3233: 3177: 3118: 3057: 3000: 2888:"Sensitivity studies for the weak r process: neutron capture rates" 2559: 2463: 2434: 2415: 2386: 2342:; Thielemann, Friedrich-Karl (2019). "The origin of the elements". 2168: 2104: 1983:
Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957).
1846: 1765: 1731: 1663:-291 and -293 which may have half-lives of centuries or millennia. 1632: 1187: 1175: 1167: 1008: 3397: 2947: 2749: 1817:-process is that it is radiogenic power from radioactive decay of 30: 4284: 4254: 4232: 1965: 1773: 1769: 1644: 1562:-process nucleosynthesis leads to the formation of neutron-rich, 1278: 1225:
of neutrons as well as abundance peaks about 10 amu lighter than
1031: 972: 964: 158: 131: 123: 55: 45: 2298:
Suess, H. E.; Urey, H. C. (1956). "Abundances of the Elements".
2032:; et al. (2011). "What are the astrophysical sites for the 1821:-process nuclei that maintains the visibility of these spun off 4279: 4083: 1691:), which may provide the necessary physical conditions for the 1327:-process isotopes than BFH had been able to define. Today, the 1289:, who found that no single temporal snapshot matched the solar 1183: 1171: 50: 2212:
Cowan, John J.; Thielemann, Friedrich-Karl Thielemann (2004).
1570:
as low as 2 MeV. At this stage, closed neutron shells at
1068:-process primarily occurs within ordinary stars, particularly 1015:-process elements is a matter of ongoing research as of 2018. 3735: 3439:"Neutron star mergers may create much of the universe's gold" 3319: 1234:, and the resulting abundance peaks were caused by so-called 1711:, or that each supernova ejects only a very small amount of 890:, the "heavy elements", with the other half produced by the 3943: 2885: 2599: 1982: 1911:
neutrons 1,674,927,471,000,000,000,000,000/cc vs 1 atom/cc
1612:-process peaks. These abundance peaks correspond to stable 1458: 1056:
captures of neutrons. In general, isotopes involved in the
3277:
Eichler, D.; Livio, M.; Piran, T.; Schramm, D. N. (1989).
2083: 3039:-process nucleosynthesis in a double neutron-star merger" 3320:
Freiburghaus, C.; Rosswog, S.; Thielemann, F.-K (1999).
3276: 2334: 4166:
Timeline of white dwarfs, neutron stars, and supernovae
3158: 2392:
Publications of the Astronomical Society of the Pacific
1726:-process was discovered in data from the merger of two 1531:
by still-existing heavy nuclei occurs much faster than
1026:
explosions. These led to the discovery of the elements
2926: 2435:"Nucleosynthesis of heavy elements by neutron capture" 1445:-process, which is powered by supernova neutron bursts 1076:-process, which requires 100 captures per second. The 2710: 2708: 2433:
Seeger, P. A.; Fowler, W. A.; Clayton, D. D. (1965).
1675:-process has long been suggested to be core-collapse 1543:
and highly-unstable neutron-rich nuclei are created.
1872: 1829:
matter. It was proposed such matter is ejected from
2873: 2860: 2840:
Principles of Stellar Evolution and Nucleosynthesis
2787: 2495: 2478: 2432: 1742:-process matter of lower-mass-range heavy nuclei ( 2837: 2794:-process and the synthesis of superheavy elements" 2788:Boleu, R.; Nilsson, S. G.; Sheline, R. K. (1972). 2705: 2192:Nuclear physicists are still working to model the 1407:-process can begin after two million years. These 1262:-process and outlined the physics that guides it. 1190:, though there was no explanation for elements of 2263:Monthly Notices of the Royal Astronomical Society 2036:-process and the production of heavy elements?". 4456: 1730:. Using the gravitational wave data captured in 1209:The need for a physical setting providing rapid 3231: 2927:Zagrebaev, V.; Karpov, A.; Greiner, W. (2013). 1254:-process isotopes was published in 1957 in the 2879: 2387:"Nuclear reactions in stars and nucleogenesis" 1753:) and cooler red masses of higher mass-number 3751: 3476: 2259:"The Synthesis of the Elements from Hydrogen" 1813:-process nuclei. Confirming relevance to the 1695:-process. However, the very low abundance of 913:because they are created exclusively via the 841: 4381:Monte Agliale Supernovae and Asteroid Survey 2024: 2022: 1581:Decreasing nuclear stability terminates the 1488:There are three natural candidate sites for 1186:. Their theory accounted for elements up to 2661: 2147: 3758: 3744: 3483: 3469: 2664:"Reaching the limits of nuclear stability" 2028: 848: 834: 3414: 3396: 3353: 3343: 3304: 3261: 3251: 3176: 3135: 3117: 3074: 3056: 3017: 2999: 2964: 2946: 2920: 2911: 2748: 2576: 2558: 2523: 2462: 2452: 2428: 2426: 2414: 2404: 2297: 2282: 2214:"R-Process Nucleosynthesis in Supernovae" 2185: 2167: 2121: 2103: 2019: 2010: 1722:In 2017, new astronomical data about the 1671:The most probable candidate site for the 1266:also published a smaller study about the 1206:that would be formed in such conditions. 1154:Learn how and when to remove this message 1096:-processes account for almost the entire 3232:Lattimer, J. M.; Schramm, D. N. (1974). 2734: 2728: 2655: 2593: 2150:"The formation of the heaviest elements" 2143: 2141: 2039:Progress in Particle and Nuclear Physics 1470: 1433: 2832: 2724:(Doctoral thesis). University of Basel. 2714: 2602:"Two-neutron capture reactions and the 2384: 2252: 2250: 2079: 2077: 1166:Following pioneering research into the 971:(typically via β decay) before another 4457: 3376: 3097: 2979: 2538: 2532: 2507: 2423: 1666: 959:(hence the name) by one or more heavy 3796:Type II (IIP, IIL, IIn, and IIb) 3739: 3490: 3464: 2934:Journal of Physics: Conference Series 2256: 2138: 4439: 3234:"Black Hole–Neutron Star Collisions" 3032: 2247: 2074: 1985:"Synthesis of the Elements in Stars" 1519:still occurs, and causes increasing 1403:-process to get started whereas the 1136:adding citations to reliable sources 1107: 4376:Katzman Automatic Imaging Telescope 3098:Smartt, S. J.; et al. (2017). 1951: = 90, 138, 208, respectively. 13: 1483: 917:-process. Abundance peaks for the 14: 4496: 3326:-process in Neutron Star Mergers" 3035:"Spectroscopic identification of 2874:Seeger, Fowler & Clayton 1965 2861:Seeger, Fowler & Clayton 1965 2496:Seeger, Fowler & Clayton 1965 2479:Seeger, Fowler & Clayton 1965 2148:Frebel, A.; Beers, T. C. (2018). 1457:-process was discovered when the 952:-process entails a succession of 4438: 4429: 4428: 4161:History of supernova observation 3829: 3377:Tanvir, N.; et al. (2013). 2980:Arcavi, I.; et al. (2017). 2440:Astrophysical Journal Supplement 1889: 1875: 1527:. As this re-expands and cools, 1112: 815: 814: 801: 29: 3431: 3370: 3313: 3270: 3225: 3152: 3091: 3026: 2973: 2866: 2826: 2781: 2501: 2488: 2471: 2378: 2328: 1929: 1517:capture of those free electrons 1356:primary nucleosynthesis process 1339:-process nucleosynthesis. That 1311:. Subsequent treatments of the 1123:needs additional citations for 4406:SuperNova Early Warning System 3821:Common envelope jets supernova 3765: 3033:Pian, E.; et al. (2017). 2966:10.1088/1742-6596/420/1/012001 2671:Reports on Progress in Physics 2578:10.1103/PhysRevLett.119.161101 2291: 2205: 1917: 1905: 1098:abundance of chemical elements 1003:matter thrown off by a binary 1: 3445:. Science AAAS. 20 March 2018 3331:Astrophysical Journal Letters 3239:Astrophysical Journal Letters 1958: 938:(elements Te, I, and Xe) and 883:of approximately half of the 866:rapid neutron-capture process 4396:Supernova/Acceleration Probe 4371:High-Z Supernova Search Team 3969:pulsational pair-instability 2820:10.1016/0370-2693(72)90470-4 1554:, the inhibiting process of 1045:-process contrasts with the 7: 4401:Supernova Cosmology Project 3909:Fast blue optical transient 2790:"On the termination of the 1856: 1568:neutron separation energies 1539:-process runs up along the 1419:-process, showing that the 1270:-process in the same year. 945:(elements Os, Ir, and Pt). 931:(elements Se, Br, and Kr), 595:High-energy nuclear physics 10: 4501: 2767:10.1103/PhysRevC.92.031303 2691:10.1088/0034-4885/67/7/R04 2635:10.1103/PhysRevC.74.015802 2511:Astronomy and Astrophysics 2385:Cameron, A. G. W. (1957). 2060:10.1016/j.ppnp.2011.01.032 1387:-process curve, as if the 1180:Subrahmanyan Chandrasekhar 1103: 4424: 4353: 4215: 4174: 4148: 4059: 3984: 3896: 3838: 3827: 3773: 3713: 3692: 3669: 3578: 3498: 3195:10.1038/s41586-019-1676-3 2844:, Mc-Graw-Hill, pp.  2301:Reviews of Modern Physics 2012:10.1103/RevModPhys.29.547 1990:Reviews of Modern Physics 1947: = 80, 130, 196 and 997:supernova nucleosynthesis 4465:Concepts in astrophysics 4386:Nearby Supernova Factory 2743:(3): 031303–1–031303–5. 2662:Thoennessen, M. (2004). 2322:10.1103/RevModPhys.28.53 1935:Abundance peaks for the 1868: 1653:spontaneously fissioning 1535:. As a consequence, the 879:that is responsible for 4411:Supernova Legacy Survey 3535:Double electron capture 2546:Physical Review Letters 2525:1981A&A....97..391T 2284:10.1093/mnras/106.5.343 1707:-process nuclei to the 1476:Noteworthy is that the 993:core-collapse supernova 106:Interacting boson model 16:Nucleosynthesis pathway 4416:Texas Supernova Search 4391:Sloan Supernova Survey 4009:Luminous blue variable 2715:Eichler, M.A. (2016). 1622:line of beta stability 1550:in nuclei with closed 1446: 1281:by Phillip A. Seeger, 1264:Alastair G. W. Cameron 1242:-process, whereas the 1204:abundances of elements 1036:nuclear weapon fallout 999:, or decompression of 3861:Phillips relationship 1639:and the new elements 1469:-process matter. See 1437: 1170:and the formation of 493:High-energy processes 191:– equal all the above 89:Models of the nucleus 1502:neutron star mergers 1132:improve this article 1024:thermonuclear weapon 921:-process occur near 868:, also known as the 862:nuclear astrophysics 529:nuclear astrophysics 4434:Category:Supernovae 4366:Calán/Tololo Survey 4051:Population III star 3959:Soft gamma repeater 3791:Type Ib and Ic 3679:Photodisintegration 3600:Proton–proton chain 3570:Spontaneous fission 3550:Isomeric transition 3545:Internal conversion 3416:10.1038/nature12505 3407:2013Natur.500..547T 3345:1999ApJ...525L.121F 3297:1989Natur.340..126E 3253:1974ApJ...192L.145L 3187:2019Natur.574..497W 3137:10.1038/nature24303 3128:2017Natur.551...75S 3076:10.1038/nature24298 3067:2017Natur.551...67P 3019:10.1038/nature24291 3010:2017Natur.551...64A 2957:2013JPhCS.420a2001Z 2904:2014AIPA....4d1008S 2812:1972PhLB...40..517B 2759:2015PhRvC..92c1303W 2683:2004RPPh...67.1187T 2627:2006PhRvC..74a5802B 2569:2017PhRvL.119p1101A 2454:1965ApJS...11..121S 2406:1957PASP...69..201C 2356:2019PhT....72b..36W 2314:1956RvMP...28...53S 2275:1946MNRAS.106..343H 2233:2004PhT....57j..47C 2178:2018PhT....71a..30F 2123:10.1038/nature24453 2114:2017Natur.551...80K 2052:2011PrPNP..66..346T 2003:1957RvMP...29..547B 1709:interstellar medium 1667:Astrophysical sites 1649:island of stability 1556:photodisintegration 1471:Astrophysical sites 1258:,  which named the 1005:neutron star merger 511:Photodisintegration 434:Capturing processes 348:Spontaneous fission 341:Internal conversion 272:Valley of stability 267:Island of stability 101:Nuclear shell model 4444:Commons:Supernovae 4096:Stellar black hole 4072:Pulsar wind nebula 3924:Gravitational wave 2257:Hoyle, F. (1946). 1943:-processes are at 1913:interstellar space 1843:binary star system 1498:Type II supernovae 1447: 808:Physics portal 602:Quark–gluon plasma 385:Radiogenic nuclide 4452: 4451: 4067:Supernova remnant 3934:Luminous red nova 3846:Carbon detonation 3733: 3732: 3729: 3728: 3560:Positron emission 3530:Double beta decay 3492:Nuclear processes 3291:(6229): 126–128. 3171:(7779): 497–500. 3161:Arcones, Almudena 2913:10.1063/1.4867191 2898:(41008): 041008. 2799:Physics Letters B 2737:Physical Review C 2614:Physical Review C 2364:10.1063/PT.3.4134 2340:Trimble, Virginia 2241:10.1063/1.1825268 2187:10.1063/pt.3.3815 2030:Thielemann, F.-K. 1757:-process nuclei ( 1719:-process yields. 1578:of the reaction. 1541:neutron drip line 1431:-process nuclei. 1360:secondary process 1287:Donald D. Clayton 1283:William A. Fowler 1164: 1163: 1156: 1034:(element 100) in 1030:(element 99) and 977:neutron drip line 969:radioactive decay 888:heavier than iron 877:nuclear reactions 858: 857: 544: 290:Radioactive decay 246:Nuclear stability 73:Nuclear structure 4492: 4442: 4441: 4432: 4431: 4295:Remnant G1.9+0.3 3914:Fast radio burst 3833: 3811:Pair-instability 3760: 3753: 3746: 3737: 3736: 3690: 3689: 3590:Deuterium fusion 3555:Neutron emission 3540:Electron capture 3485: 3478: 3471: 3462: 3461: 3455: 3454: 3452: 3450: 3435: 3429: 3428: 3418: 3400: 3374: 3368: 3367: 3357: 3347: 3338:(2): L121–L124. 3317: 3311: 3310: 3308: 3306:10.1038/340126a0 3274: 3268: 3267: 3265: 3255: 3229: 3223: 3222: 3180: 3156: 3150: 3149: 3139: 3121: 3095: 3089: 3088: 3078: 3060: 3030: 3024: 3023: 3021: 3003: 2977: 2971: 2970: 2968: 2950: 2924: 2918: 2917: 2915: 2883: 2877: 2870: 2864: 2858: 2843: 2830: 2824: 2823: 2785: 2779: 2778: 2752: 2732: 2726: 2725: 2723: 2712: 2703: 2702: 2677:(7): 1187–1232. 2668: 2659: 2653: 2652: 2650: 2649: 2643: 2637:. Archived from 2610: 2597: 2591: 2590: 2580: 2562: 2536: 2530: 2529: 2527: 2505: 2499: 2492: 2486: 2475: 2469: 2468: 2466: 2456: 2430: 2421: 2420: 2418: 2408: 2382: 2376: 2375: 2332: 2326: 2325: 2295: 2289: 2288: 2286: 2254: 2245: 2244: 2218: 2209: 2203: 2202: 2189: 2171: 2145: 2136: 2135: 2125: 2107: 2081: 2072: 2071: 2026: 2017: 2016: 2014: 1980: 1952: 1933: 1927: 1921: 1915: 1909: 1899: 1894: 1893: 1885: 1883:Astronomy portal 1880: 1879: 1878: 1797: 1790: 1763: 1748: 1679:(spectral types 1533:beta-minus decay 1509:beta-minus decay 1310: 1303: 1256:BFH review paper 1194:heavier than 40 1159: 1152: 1148: 1145: 1139: 1116: 1108: 957:neutron captures 944: 937: 930: 850: 843: 836: 823: 818: 817: 810: 806: 805: 682:Skłodowska-Curie 542: 358:Neutron emission 126:' classification 78:Nuclear reaction 33: 19: 18: 4500: 4499: 4495: 4494: 4493: 4491: 4490: 4489: 4480:Nucleosynthesis 4475:Nuclear physics 4455: 4454: 4453: 4448: 4420: 4349: 4335:SN 2016aps 4315:SN Refsdal 4211: 4170: 4144: 4055: 4041:Wolf–Rayet star 3980: 3919:Gamma-ray burst 3892: 3866:Nucleosynthesis 3834: 3825: 3769: 3764: 3734: 3725: 3709: 3700:Neutron capture 3688: 3671: 3665: 3582:nucleosynthesis 3581: 3574: 3565:Proton emission 3520:Gamma radiation 3501: 3494: 3489: 3459: 3458: 3448: 3446: 3437: 3436: 3432: 3391:(7464): 547–9. 3375: 3371: 3318: 3314: 3275: 3271: 3246:(2): L145–147. 3230: 3226: 3157: 3153: 3112:(7678): 75–79. 3096: 3092: 3051:(7678): 67–70. 3031: 3027: 2994:(7678): 64–66. 2978: 2974: 2925: 2921: 2884: 2880: 2871: 2867: 2856: 2831: 2827: 2786: 2782: 2733: 2729: 2721: 2713: 2706: 2666: 2660: 2656: 2647: 2645: 2641: 2608: 2598: 2594: 2537: 2533: 2506: 2502: 2494:See Table 4 in 2493: 2489: 2476: 2472: 2431: 2424: 2383: 2379: 2333: 2329: 2296: 2292: 2255: 2248: 2216: 2210: 2206: 2146: 2139: 2098:(7678): 80–84. 2082: 2075: 2027: 2020: 1981: 1966: 1961: 1956: 1955: 1934: 1930: 1922: 1918: 1910: 1906: 1895: 1888: 1881: 1876: 1874: 1871: 1859: 1792: 1785: 1758: 1743: 1669: 1587:fission barrier 1529:neutron capture 1486: 1484:Nuclear physics 1411:-process–poor, 1381:James W. Truran 1305: 1298: 1273:The stationary 1211:neutron capture 1160: 1149: 1143: 1140: 1129: 1117: 1106: 939: 932: 925: 854: 813: 800: 799: 792: 791: 627: 617: 616: 597: 587: 586: 531: 527: 524:Nucleosynthesis 516: 515: 494: 486: 485: 435: 427: 426: 400: 398:Nuclear fission 390: 389: 363:Proton emission 292: 282: 281: 247: 239: 238: 140: 127: 116: 115: 91: 23:Nuclear physics 17: 12: 11: 5: 4498: 4488: 4487: 4482: 4477: 4472: 4467: 4450: 4449: 4447: 4446: 4436: 4425: 4422: 4421: 4419: 4418: 4413: 4408: 4403: 4398: 4393: 4388: 4383: 4378: 4373: 4368: 4363: 4357: 4355: 4351: 4350: 4348: 4347: 4342: 4337: 4332: 4327: 4325:SN 2006gy 4322: 4317: 4312: 4307: 4305:SN 2011fe 4302: 4300:SN 2007bi 4297: 4292: 4290:SN 2003fg 4287: 4282: 4277: 4272: 4267: 4262: 4257: 4252: 4247: 4242: 4241: 4240: 4230: 4225: 4223:Barnard's Loop 4219: 4217: 4213: 4212: 4210: 4209: 4204: 4199: 4194: 4189: 4184: 4178: 4176: 4172: 4171: 4169: 4168: 4163: 4158: 4152: 4150: 4146: 4145: 4143: 4142: 4141: 4140: 4138:Orion–Eridanus 4130: 4125: 4120: 4119: 4118: 4113: 4108: 4098: 4093: 4092: 4091: 4086: 4076: 4075: 4074: 4063: 4061: 4057: 4056: 4054: 4053: 4048: 4046:Super-AGB star 4043: 4038: 4033: 4032: 4031: 4026: 4021: 4011: 4006: 4005: 4004: 3999: 3988: 3986: 3982: 3981: 3979: 3978: 3976:Symbiotic nova 3973: 3972: 3971: 3961: 3956: 3951: 3946: 3941: 3936: 3931: 3926: 3921: 3916: 3911: 3906: 3900: 3898: 3894: 3893: 3891: 3890: 3885: 3884: 3883: 3878: 3873: 3863: 3858: 3853: 3848: 3842: 3840: 3836: 3835: 3828: 3826: 3824: 3823: 3818: 3813: 3808: 3803: 3798: 3793: 3788: 3783: 3777: 3775: 3771: 3770: 3763: 3762: 3755: 3748: 3740: 3731: 3730: 3727: 3726: 3724: 3723: 3721:(n-p) reaction 3717: 3715: 3711: 3710: 3708: 3707: 3705:Proton capture 3702: 3696: 3694: 3687: 3686: 3681: 3675: 3673: 3667: 3666: 3664: 3663: 3658: 3653: 3645: 3637: 3632: 3627: 3622: 3617: 3612: 3607: 3602: 3597: 3592: 3586: 3584: 3576: 3575: 3573: 3572: 3567: 3562: 3557: 3552: 3547: 3542: 3537: 3532: 3527: 3522: 3517: 3512: 3506: 3504: 3496: 3495: 3488: 3487: 3480: 3473: 3465: 3457: 3456: 3430: 3369: 3355:10.1086/312343 3312: 3269: 3263:10.1086/181612 3224: 3151: 3090: 3025: 2972: 2919: 2878: 2865: 2855:978-0226109534 2854: 2834:Clayton, D. D. 2825: 2806:(5): 517–521. 2780: 2727: 2704: 2654: 2592: 2553:(16): 161101. 2531: 2500: 2487: 2470: 2464:10.1086/190111 2422: 2416:10.1086/127051 2377: 2327: 2290: 2269:(5): 343–383. 2246: 2204: 2137: 2073: 2046:(2): 346–353. 2018: 1997:(4): 547–650. 1963: 1962: 1960: 1957: 1954: 1953: 1928: 1926:50, 82 and 126 1924:Neutron number 1916: 1903: 1902: 1901: 1900: 1897:Physics portal 1886: 1870: 1867: 1866: 1865: 1858: 1855: 1668: 1665: 1659:nuclides like 1552:neutron shells 1521:neutronization 1485: 1482: 1439:Periodic table 1236:waiting points 1162: 1161: 1120: 1118: 1111: 1105: 1102: 1064:-process. The 875:, is a set of 856: 855: 853: 852: 845: 838: 830: 827: 826: 825: 824: 811: 794: 793: 790: 789: 784: 779: 774: 769: 764: 759: 754: 749: 744: 739: 734: 729: 724: 719: 714: 709: 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 654: 649: 644: 639: 634: 628: 623: 622: 619: 618: 615: 614: 609: 604: 598: 593: 592: 589: 588: 585: 584: 583: 582: 577: 572: 563: 562: 561: 560: 555: 550: 539: 538: 536:Nuclear fusion 532: 522: 521: 518: 517: 514: 513: 508: 507: 506: 495: 492: 491: 488: 487: 484: 483: 482: 481: 476: 466: 465: 464: 459: 449: 448: 447: 436: 433: 432: 429: 428: 425: 424: 419: 418: 417: 407: 401: 396: 395: 392: 391: 388: 387: 382: 377: 372: 366: 365: 360: 355: 350: 345: 344: 343: 338: 328: 323: 322: 321: 316: 315: 314: 299: 293: 288: 287: 284: 283: 280: 279: 277:Stable nuclide 274: 269: 264: 259: 254: 252:Binding energy 248: 245: 244: 241: 240: 237: 236: 235: 234: 224: 219: 214: 208: 207: 193: 192: 185: 184: 168: 167: 155: 154: 142: 141: 128: 122: 121: 118: 117: 114: 113: 108: 103: 98: 92: 87: 86: 83: 82: 81: 80: 75: 70: 65: 63:Nuclear matter 60: 59: 58: 53: 43: 35: 34: 26: 25: 15: 9: 6: 4: 3: 2: 4497: 4486: 4483: 4481: 4478: 4476: 4473: 4471: 4468: 4466: 4463: 4462: 4460: 4445: 4437: 4435: 4427: 4426: 4423: 4417: 4414: 4412: 4409: 4407: 4404: 4402: 4399: 4397: 4394: 4392: 4389: 4387: 4384: 4382: 4379: 4377: 4374: 4372: 4369: 4367: 4364: 4362: 4359: 4358: 4356: 4352: 4346: 4343: 4341: 4338: 4336: 4333: 4331: 4328: 4326: 4323: 4321: 4318: 4316: 4313: 4311: 4310:SN 2014J 4308: 4306: 4303: 4301: 4298: 4296: 4293: 4291: 4288: 4286: 4283: 4281: 4278: 4276: 4275:SN 1994D 4273: 4271: 4270:SN 1987A 4268: 4266: 4265:SN 1885A 4263: 4261: 4258: 4256: 4253: 4251: 4248: 4246: 4243: 4239: 4236: 4235: 4234: 4231: 4229: 4226: 4224: 4221: 4220: 4218: 4214: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4192:Massive stars 4190: 4188: 4185: 4183: 4180: 4179: 4177: 4173: 4167: 4164: 4162: 4159: 4157: 4154: 4153: 4151: 4147: 4139: 4136: 4135: 4134: 4131: 4129: 4126: 4124: 4121: 4117: 4114: 4112: 4109: 4107: 4104: 4103: 4102: 4099: 4097: 4094: 4090: 4087: 4085: 4082: 4081: 4080: 4077: 4073: 4070: 4069: 4068: 4065: 4064: 4062: 4058: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4030: 4027: 4025: 4022: 4020: 4017: 4016: 4015: 4012: 4010: 4007: 4003: 4000: 3998: 3995: 3994: 3993: 3990: 3989: 3987: 3983: 3977: 3974: 3970: 3967: 3966: 3965: 3962: 3960: 3957: 3955: 3952: 3950: 3947: 3945: 3942: 3940: 3937: 3935: 3932: 3930: 3927: 3925: 3922: 3920: 3917: 3915: 3912: 3910: 3907: 3905: 3902: 3901: 3899: 3895: 3889: 3886: 3882: 3879: 3877: 3874: 3872: 3869: 3868: 3867: 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3847: 3844: 3843: 3841: 3837: 3832: 3822: 3819: 3817: 3814: 3812: 3809: 3807: 3806:Superluminous 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3787: 3786:Type Iax 3784: 3782: 3779: 3778: 3776: 3772: 3768: 3761: 3756: 3754: 3749: 3747: 3742: 3741: 3738: 3722: 3719: 3718: 3716: 3712: 3706: 3703: 3701: 3698: 3697: 3695: 3691: 3685: 3682: 3680: 3677: 3676: 3674: 3668: 3662: 3659: 3657: 3654: 3652: 3650: 3646: 3644: 3642: 3638: 3636: 3633: 3631: 3628: 3626: 3623: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3603: 3601: 3598: 3596: 3593: 3591: 3588: 3587: 3585: 3583: 3577: 3571: 3568: 3566: 3563: 3561: 3558: 3556: 3553: 3551: 3548: 3546: 3543: 3541: 3538: 3536: 3533: 3531: 3528: 3526: 3525:Cluster decay 3523: 3521: 3518: 3516: 3513: 3511: 3508: 3507: 3505: 3503: 3497: 3493: 3486: 3481: 3479: 3474: 3472: 3467: 3466: 3463: 3444: 3440: 3434: 3426: 3422: 3417: 3412: 3408: 3404: 3399: 3394: 3390: 3386: 3385: 3380: 3373: 3365: 3361: 3356: 3351: 3346: 3341: 3337: 3333: 3332: 3327: 3325: 3316: 3307: 3302: 3298: 3294: 3290: 3286: 3285: 3280: 3273: 3264: 3259: 3254: 3249: 3245: 3241: 3240: 3235: 3228: 3220: 3216: 3212: 3208: 3204: 3200: 3196: 3192: 3188: 3184: 3179: 3174: 3170: 3166: 3162: 3155: 3147: 3143: 3138: 3133: 3129: 3125: 3120: 3115: 3111: 3107: 3106: 3101: 3094: 3086: 3082: 3077: 3072: 3068: 3064: 3059: 3054: 3050: 3046: 3045: 3040: 3038: 3029: 3020: 3015: 3011: 3007: 3002: 2997: 2993: 2989: 2988: 2983: 2976: 2967: 2962: 2958: 2954: 2949: 2944: 2941:(1): 012001. 2940: 2936: 2935: 2930: 2923: 2914: 2909: 2905: 2901: 2897: 2893: 2889: 2882: 2875: 2872:Figure 10 of 2869: 2862: 2857: 2851: 2847: 2842: 2841: 2835: 2829: 2821: 2817: 2813: 2809: 2805: 2801: 2800: 2795: 2793: 2784: 2776: 2772: 2768: 2764: 2760: 2756: 2751: 2746: 2742: 2738: 2731: 2720: 2719: 2711: 2709: 2700: 2696: 2692: 2688: 2684: 2680: 2676: 2672: 2665: 2658: 2644:on 2020-08-06 2640: 2636: 2632: 2628: 2624: 2621:(1): 015082. 2620: 2616: 2615: 2607: 2605: 2596: 2588: 2584: 2579: 2574: 2570: 2566: 2561: 2556: 2552: 2548: 2547: 2542: 2535: 2526: 2521: 2518:(2): 391–93. 2517: 2513: 2512: 2504: 2497: 2491: 2484: 2480: 2474: 2465: 2460: 2455: 2450: 2446: 2442: 2441: 2436: 2429: 2427: 2417: 2412: 2407: 2402: 2398: 2394: 2393: 2388: 2381: 2373: 2369: 2365: 2361: 2357: 2353: 2349: 2345: 2344:Physics Today 2341: 2337: 2336:Woosley, Stan 2331: 2323: 2319: 2315: 2311: 2307: 2303: 2302: 2294: 2285: 2280: 2276: 2272: 2268: 2264: 2260: 2253: 2251: 2242: 2238: 2234: 2230: 2227:(10): 47–54. 2226: 2222: 2221:Physics Today 2215: 2208: 2201: 2199: 2195: 2188: 2183: 2179: 2175: 2170: 2165: 2161: 2157: 2156: 2155:Physics Today 2151: 2144: 2142: 2133: 2129: 2124: 2119: 2115: 2111: 2106: 2101: 2097: 2093: 2092: 2087: 2080: 2078: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2041: 2040: 2035: 2031: 2025: 2023: 2013: 2008: 2004: 2000: 1996: 1992: 1991: 1986: 1979: 1977: 1975: 1973: 1971: 1969: 1964: 1950: 1946: 1942: 1938: 1932: 1925: 1920: 1914: 1908: 1904: 1898: 1892: 1887: 1884: 1873: 1864: 1861: 1860: 1854: 1852: 1848: 1844: 1840: 1836: 1833:merging with 1832: 1831:neutron stars 1828: 1824: 1820: 1816: 1812: 1807: 1805: 1801: 1795: 1788: 1783: 1779: 1775: 1771: 1767: 1761: 1756: 1752: 1746: 1741: 1737: 1733: 1729: 1728:neutron stars 1725: 1720: 1718: 1714: 1710: 1706: 1702: 1698: 1694: 1690: 1686: 1682: 1678: 1674: 1664: 1662: 1658: 1654: 1650: 1646: 1642: 1638: 1637:plutonium-244 1634: 1630: 1625: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1597: 1592: 1588: 1584: 1579: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1548:cross section 1544: 1542: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1505: 1503: 1499: 1495: 1491: 1481: 1479: 1474: 1472: 1468: 1464: 1460: 1456: 1452: 1444: 1440: 1436: 1432: 1430: 1426: 1422: 1418: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1386: 1382: 1378: 1374: 1370: 1366: 1361: 1357: 1353: 1348: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1319:-process and 1318: 1314: 1308: 1301: 1296: 1292: 1288: 1284: 1280: 1276: 1271: 1269: 1265: 1261: 1257: 1253: 1250:-process and 1249: 1245: 1241: 1237: 1233: 1228: 1227:stable nuclei 1224: 1223:magic numbers 1220: 1216: 1212: 1207: 1205: 1201: 1197: 1193: 1192:atomic weight 1189: 1185: 1181: 1177: 1173: 1169: 1158: 1155: 1147: 1137: 1133: 1127: 1126: 1121:This section 1119: 1115: 1110: 1109: 1101: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1067: 1063: 1059: 1055: 1051: 1049: 1044: 1039: 1037: 1033: 1029: 1025: 1021: 1016: 1014: 1010: 1006: 1002: 998: 995:, as part of 994: 990: 986: 985:free neutrons 982: 978: 974: 970: 966: 962: 958: 955: 951: 946: 942: 935: 928: 924: 920: 916: 912: 911:r-only nuclei 908: 904: 900: 898: 893: 889: 886: 885:atomic nuclei 882: 878: 874: 872: 867: 863: 851: 846: 844: 839: 837: 832: 831: 829: 828: 822: 812: 809: 804: 798: 797: 796: 795: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 653: 650: 648: 645: 643: 640: 638: 635: 633: 630: 629: 626: 621: 620: 613: 610: 608: 605: 603: 600: 599: 596: 591: 590: 581: 578: 576: 573: 571: 568: 567: 565: 564: 559: 556: 554: 551: 549: 546: 545: 541: 540: 537: 534: 533: 530: 525: 520: 519: 512: 509: 505: 504:by cosmic ray 502: 501: 500: 497: 496: 490: 489: 480: 477: 475: 472: 471: 470: 467: 463: 460: 458: 455: 454: 453: 450: 446: 443: 442: 441: 438: 437: 431: 430: 423: 420: 416: 415:pair breaking 413: 412: 411: 408: 406: 403: 402: 399: 394: 393: 386: 383: 381: 380:Decay product 378: 376: 373: 371: 368: 367: 364: 361: 359: 356: 354: 353:Cluster decay 351: 349: 346: 342: 339: 337: 334: 333: 332: 329: 327: 324: 320: 317: 313: 310: 309: 308: 305: 304: 303: 300: 298: 295: 294: 291: 286: 285: 278: 275: 273: 270: 268: 265: 263: 260: 258: 255: 253: 250: 249: 243: 242: 233: 230: 229: 228: 225: 223: 220: 218: 215: 213: 210: 209: 206: 202: 198: 197:Mirror nuclei 195: 194: 190: 187: 186: 183: 182: 179: −  178: 173: 170: 169: 166: 165: 160: 157: 156: 153: 152: 147: 144: 143: 139: 138: 133: 130: 129: 125: 120: 119: 112: 109: 107: 104: 102: 99: 97: 94: 93: 90: 85: 84: 79: 76: 74: 71: 69: 68:Nuclear force 66: 64: 61: 57: 54: 52: 49: 48: 47: 44: 42: 39: 38: 37: 36: 32: 28: 27: 24: 21: 20: 4320:Vela Remnant 4285:SN 1006 4250:SN 1000+0216 4228:Cassiopeia A 4197:Most distant 4128:Local Bubble 4101:Compact star 4079:Neutron star 3875: 3816:Calcium-rich 3781:Type Ia 3684:Photofission 3648: 3640: 3639: 3447:. Retrieved 3442: 3433: 3388: 3382: 3372: 3335: 3329: 3323: 3315: 3288: 3282: 3272: 3243: 3237: 3227: 3168: 3164: 3154: 3109: 3103: 3093: 3048: 3042: 3036: 3028: 2991: 2985: 2975: 2938: 2932: 2922: 2895: 2892:AIP Advances 2891: 2881: 2868: 2839: 2828: 2803: 2797: 2791: 2783: 2740: 2736: 2730: 2717: 2674: 2670: 2657: 2646:. Retrieved 2639:the original 2618: 2612: 2603: 2595: 2550: 2544: 2534: 2515: 2509: 2503: 2490: 2482: 2473: 2444: 2438: 2399:(408): 201. 2396: 2390: 2380: 2350:(2): 36–37. 2347: 2343: 2330: 2308:(1): 53–74. 2305: 2299: 2293: 2266: 2262: 2224: 2220: 2207: 2197: 2193: 2191: 2162:(1): 30–37. 2159: 2153: 2095: 2089: 2043: 2037: 2033: 1994: 1988: 1948: 1944: 1940: 1936: 1931: 1919: 1907: 1851:Earth masses 1839:neutron star 1827:neutron star 1822: 1818: 1814: 1810: 1808: 1803: 1799: 1793: 1786: 1781: 1759: 1754: 1744: 1739: 1735: 1723: 1721: 1716: 1712: 1704: 1696: 1692: 1688: 1684: 1680: 1672: 1670: 1628: 1626: 1617: 1609: 1601: 1595: 1582: 1580: 1575: 1571: 1566:nuclei with 1564:weakly bound 1559: 1545: 1536: 1525:temperatures 1513:Fermi energy 1506: 1489: 1487: 1477: 1475: 1466: 1454: 1450: 1448: 1442: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1400: 1396: 1392: 1388: 1384: 1376: 1372: 1368: 1364: 1359: 1355: 1351: 1349: 1344: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1306: 1299: 1294: 1290: 1274: 1272: 1267: 1259: 1251: 1247: 1243: 1239: 1235: 1208: 1165: 1150: 1144:October 2022 1141: 1130:Please help 1125:verification 1122: 1093: 1089: 1085: 1081: 1080:-process is 1077: 1073: 1065: 1061: 1057: 1053: 1047: 1042: 1040: 1019: 1017: 1012: 1001:neutron star 988: 980: 953: 949: 947: 940: 933: 926: 923:mass numbers 918: 914: 910: 906: 902: 896: 881:the creation 870: 869: 865: 859: 461: 422:Photofission 370:Decay energy 297:Alpha α 204: 200: 180: 176: 163: 150: 136: 4330:ASASSN-15lh 4280:SN 185 4238:Crab Nebula 4133:Superbubble 4123:Zombie star 4106:electroweak 4036:White dwarf 3985:Progenitors 3949:Pulsar kick 3510:Alpha decay 3500:Radioactive 3443:Sid Perkins 1841:mergers (a 1835:black holes 1778:californium 1661:copernicium 1641:einsteinium 1591:radioactive 1354:-process a 1219:Harold Urey 1028:einsteinium 961:seed nuclei 727:Oppenheimer 405:Spontaneous 375:Decay chain 326:K/L capture 302:Beta β 172:Isodiaphers 96:Liquid drop 4485:Supernovae 4459:Categories 4345:SN 2022jli 4340:SN 2018cow 4207:In fiction 4182:Candidates 4156:Guest star 4014:Supergiant 3992:Hypergiant 3954:Quark-nova 3856:Near-Earth 3839:Physics of 3767:Supernovae 3661:rp-process 3635:Si burning 3625:Ne burning 3595:Li burning 3515:Beta decay 3178:1910.10510 3119:1710.05841 3058:1710.05858 3001:1710.05843 2648:2019-06-17 2560:1710.05832 2447:: 121–66. 2169:1801.01190 2105:1710.05463 1959:References 1798:) for the 1764:) rich in 1677:supernovae 1657:superheavy 1608:below the 1576:freeze-out 1494:supernovae 1347:-process. 1232:beta decay 1215:Hans Suess 1200:Fred Hoyle 1018:A limited 757:Strassmann 747:Rutherford 625:Scientists 580:Artificial 575:Cosmogenic 570:Primordial 566:Nuclides: 543:Processes: 499:Spallation 4245:iPTF14hls 4149:Discovery 3939:Micronova 3888:Neutrinos 3881:γ-process 3876:r-process 3871:p-process 3851:Foe/Bethe 3801:Hypernova 3672:processes 3656:p-process 3630:O burning 3620:C burning 3610:α process 3605:CNO cycle 3398:1306.4971 3219:204837882 3203:0028-0836 2948:1207.5700 2750:1410.2498 2699:250790169 2372:186549912 2068:119412716 1863:HD 222925 1853:of gold. 1768:(such as 1766:actinides 1751:strontium 1699:-process 1633:actinides 1082:secondary 1070:AGB stars 892:p-process 762:Świątecki 677:Pi. Curie 672:Fr. Curie 667:Ir. Curie 662:Cockcroft 637:Becquerel 558:Supernova 262:Drip line 257:p–n ratio 232:Borromean 111:Ab initio 4354:Research 4260:Kepler's 4202:Remnants 4089:magnetar 4060:Remnants 3964:Imposter 3929:Kilonova 3714:Exchange 3651:-process 3643:-process 3615:Triple-α 3449:24 March 3425:23912055 3364:10525469 3211:31645733 3146:29094693 3085:29094694 2836:(1968), 2775:59020556 2606:process" 2587:29099225 2132:29094687 1857:See also 1847:GW170817 1796:> 140 1789:< 140 1762:> 140 1749:such as 1747:< 140 1732:GW170817 1598:-process 1188:chlorine 1176:hydrogen 1168:Big Bang 1050:-process 1009:kilonova 899:-process 873:-process 821:Category 722:Oliphant 707:Lawrence 687:Davisson 657:Chadwick 553:Big Bang 440:electron 410:Products 331:Isomeric 222:Even/odd 199: – 174:– equal 161:– equal 159:Isotones 148:– equal 134:– equal 132:Isotopes 124:Nuclides 46:Nucleons 4470:Neutron 4361:ASAS-SN 4255:Tycho's 4233:SN 1054 4216:Notable 4187:Notable 3897:Related 3774:Classes 3693:Capture 3580:Stellar 3403:Bibcode 3340:Bibcode 3293:Bibcode 3248:Bibcode 3183:Bibcode 3124:Bibcode 3063:Bibcode 3006:Bibcode 2953:Bibcode 2900:Bibcode 2808:Bibcode 2755:Bibcode 2679:Bibcode 2623:Bibcode 2565:Bibcode 2520:Bibcode 2449:Bibcode 2401:Bibcode 2352:Bibcode 2310:Bibcode 2271:Bibcode 2229:Bibcode 2174:Bibcode 2110:Bibcode 2048:Bibcode 1999:Bibcode 1774:thorium 1770:uranium 1645:fermium 1614:isobars 1473:below. 1279:Caltech 1104:History 1032:fermium 973:neutron 777:Thomson 767:Szilárd 737:Purcell 717:Meitner 652:N. Bohr 647:A. Bohr 632:Alvarez 548:Stellar 452:neutron 336:Gamma γ 189:Isomers 146:Isobars 41:Nucleus 4111:exotic 4084:pulsar 4029:yellow 3997:yellow 3904:Failed 3423:  3384:Nature 3362:  3284:Nature 3217:  3209:  3201:  3165:Nature 3144:  3105:Nature 3083:  3044:Nature 2987:Nature 2852:  2846:577–91 2773:  2697:  2585:  2370:  2130:  2091:Nature 2066:  1939:- and 1776:, and 1701:nuclei 1500:, and 1172:helium 1092:- and 901:. The 864:, the 819:  787:Wigner 782:Walton 772:Teller 702:Jensen 469:proton 212:Stable 4175:Lists 4116:quark 3670:Other 3502:decay 3393:arXiv 3215:S2CID 3173:arXiv 3114:arXiv 3053:arXiv 2996:arXiv 2943:arXiv 2771:S2CID 2745:arXiv 2722:(PDF) 2695:S2CID 2667:(PDF) 2642:(PDF) 2609:(PDF) 2555:arXiv 2368:S2CID 2217:(PDF) 2164:arXiv 2100:arXiv 2064:S2CID 1869:Notes 1635:like 1463:Virgo 1309:= 140 1302:= 140 1007:in a 954:rapid 943:= 196 936:= 130 752:Soddy 732:Proca 712:Mayer 692:Fermi 642:Bethe 217:Magic 4019:blue 3944:Nova 3451:2018 3421:PMID 3360:PMID 3207:PMID 3199:ISSN 3142:PMID 3081:PMID 2850:ISBN 2583:PMID 2477:See 2128:PMID 1791:and 1687:and 1643:and 1627:The 1461:and 1459:LIGO 1285:and 1217:and 1054:slow 1041:The 948:The 929:= 82 894:and 742:Rabi 697:Hahn 607:RHIC 227:Halo 4024:red 4002:Red 3411:doi 3389:500 3350:doi 3336:525 3301:doi 3289:340 3258:doi 3244:192 3191:doi 3169:574 3132:doi 3110:551 3071:doi 3049:551 3014:doi 2992:551 2961:doi 2939:420 2908:doi 2816:doi 2763:doi 2687:doi 2631:doi 2573:doi 2551:119 2459:doi 2411:doi 2360:doi 2318:doi 2279:doi 2267:106 2237:doi 2182:doi 2118:doi 2096:551 2056:doi 2007:doi 1606:amu 1196:amu 1134:by 860:In 612:LHC 526:and 4461:: 3441:. 3419:. 3409:. 3401:. 3387:. 3381:. 3358:. 3348:. 3334:. 3328:. 3299:. 3287:. 3281:. 3256:. 3242:. 3236:. 3213:. 3205:. 3197:. 3189:. 3181:. 3167:. 3140:. 3130:. 3122:. 3108:. 3102:. 3079:. 3069:. 3061:. 3047:. 3041:. 3012:. 3004:. 2990:. 2984:. 2959:. 2951:. 2937:. 2931:. 2906:. 2894:. 2890:. 2848:, 2814:. 2804:40 2802:. 2796:. 2769:. 2761:. 2753:. 2741:92 2739:. 2707:^ 2693:. 2685:. 2675:67 2673:. 2669:. 2629:. 2619:74 2617:. 2611:. 2581:. 2571:. 2563:. 2549:. 2543:. 2516:97 2514:. 2457:. 2445:11 2443:. 2437:. 2425:^ 2409:. 2397:69 2395:. 2389:. 2366:. 2358:. 2348:72 2346:. 2338:; 2316:. 2306:28 2304:. 2277:. 2265:. 2261:. 2249:^ 2235:. 2225:57 2223:. 2219:. 2190:. 2180:. 2172:. 2160:71 2158:. 2152:. 2140:^ 2126:. 2116:. 2108:. 2094:. 2088:. 2076:^ 2062:. 2054:. 2044:66 2042:. 2021:^ 2005:. 1995:29 1993:. 1987:. 1967:^ 1794:A 1787:A 1772:, 1760:A 1745:A 1689:II 1685:Ic 1683:, 1681:Ib 1624:. 1504:. 1496:, 1038:. 965:Fe 479:rp 445:2× 312:0v 307:2β 203:↔ 3759:e 3752:t 3745:v 3649:s 3641:r 3484:e 3477:t 3470:v 3453:. 3427:. 3413:: 3405:: 3395:: 3366:. 3352:: 3342:: 3324:r 3322:" 3309:. 3303:: 3295:: 3266:. 3260:: 3250:: 3221:. 3193:: 3185:: 3175:: 3148:. 3134:: 3126:: 3116:: 3087:. 3073:: 3065:: 3055:: 3037:r 3022:. 3016:: 3008:: 2998:: 2969:. 2963:: 2955:: 2945:: 2916:. 2910:: 2902:: 2896:4 2863:. 2822:. 2818:: 2810:: 2792:r 2777:. 2765:: 2757:: 2747:: 2701:. 2689:: 2681:: 2651:. 2633:: 2625:: 2604:r 2589:. 2575:: 2567:: 2557:: 2528:. 2522:: 2498:. 2483:r 2467:. 2461:: 2451:: 2419:. 2413:: 2403:: 2374:. 2362:: 2354:: 2324:. 2320:: 2312:: 2287:. 2281:: 2273:: 2243:. 2239:: 2231:: 2198:r 2194:r 2184:: 2176:: 2166:: 2134:. 2120:: 2112:: 2102:: 2070:. 2058:: 2050:: 2034:r 2015:. 2009:: 2001:: 1949:A 1945:A 1941:s 1937:r 1823:r 1819:r 1815:r 1811:r 1804:r 1800:r 1782:r 1755:r 1740:r 1736:r 1724:r 1717:r 1713:r 1705:r 1697:r 1693:r 1673:r 1629:r 1618:N 1610:s 1602:r 1596:s 1583:r 1572:N 1560:r 1537:r 1490:r 1478:r 1467:r 1455:r 1451:r 1443:r 1429:r 1425:r 1421:r 1417:s 1413:r 1409:s 1405:r 1401:s 1397:s 1393:s 1389:s 1385:r 1377:r 1373:r 1369:s 1365:r 1352:r 1345:r 1341:r 1337:r 1333:s 1329:r 1325:r 1321:r 1317:s 1313:r 1307:A 1300:A 1295:r 1291:r 1275:r 1268:r 1260:r 1252:r 1248:s 1244:s 1240:r 1184:K 1157:) 1151:( 1146:) 1142:( 1128:. 1094:s 1090:r 1086:r 1078:s 1074:r 1066:s 1062:r 1058:s 1048:s 1043:r 1020:r 1013:r 989:r 981:r 950:r 941:A 934:A 927:A 919:r 915:r 907:r 903:r 897:s 871:r 849:e 842:t 835:v 474:p 462:r 457:s 319:β 205:N 201:Z 181:Z 177:N 164:N 151:A 137:Z 56:n 51:p

Index

Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones
N
Isodiaphers
N − Z
Isomers
Mirror nuclei
Stable
Magic
Even/odd
Halo

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.