Knowledge

Protein family

Source đź“ť

20: 117: 1324: 116: 93:
The term protein family has broad usage and can be applied to large groups of proteins with barely detectable sequence similarity as well as narrow groups of proteins with near identical sequence, function, and structure. To distinguish between these cases, a hierarchical terminology is in use. At
1086:
Gerlt, John A.; Allen, Karen N.; Almo, Steven C.; Armstrong, Richard N.; Babbitt, Patricia C.; Cronan, John E.; Dunaway-Mariano, Debra; Imker, Heidi J.; Jacobson, Matthew P.; Minor, Wladek; Poulter, C. Dale; Raushel, Frank M.; Sali, Andrej; Shoichet, Brian K.; Sweedler, Jonathan V. (2011-11-22).
278:
uses protein families and superfamilies as the basis for development of a sequence/structure-based strategy for large scale functional assignment of enzymes of unknown function. The algorithmic means for establishing protein families on a large scale are based on a notion of similarity.
254: 73:
methods. Proteins that do not share a common ancestor are unlikely to show statistically significant sequence similarity, making sequence alignment a powerful tool for identifying the members of protein families. Families are sometimes grouped together into larger
204:
or polarity of the amino-acid residues. Functionally constrained regions of proteins evolve more slowly than unconstrained regions such as surface loops, giving rise to blocks of conserved sequence when the sequences of a protein family are compared (see
193:. Due to evolutionary shuffling, different domains in a protein have evolved independently. This has led to a focus on families of protein domains. Several online resources are devoted to identifying and cataloging these domains. 217:
According to current consensus, protein families arise in two ways. First, the separation of a parent species into two genetically isolated descendant species allows a gene/protein to independently accumulate variations
69:. Sequence similarity (usually amino-acid sequence) is one of the most common indicators of homology, or common evolutionary ancestry. Some frameworks for evaluating the significance of similarity between sequences use 245:
and for protein domains whose hydrophobic amino acids are further from the optimal degree of dispersion along the primary sequence. This expansion and contraction of protein families is one of the salient features of
209:). These blocks are most commonly referred to as motifs, although many other terms are used (blocks, signatures, fingerprints, etc.). Several online resources are devoted to identifying and cataloging protein motifs. 98:, which group distantly related proteins, often based on their structural similarity. Next are protein families, which refer to proteins with a shared evolutionary origin exhibited by significant 270:
analysis, an effort is ongoing to organize proteins into families and to describe their component domains and motifs. Reliable identification of protein families is critical to
408: 85:
Currently, over 60,000 protein families have been defined, although ambiguity in the definition of "protein family" leads different researchers to highly varying numbers.
200:
of an enzyme requires certain amino-acid residues to be precisely oriented. A protein–protein binding interface may consist of a large surface with constraints on the
230:). Because the original gene is still able to perform its function, the duplicated gene is free to diverge and may acquire new functions (by random mutation). 123: 845:
Holm, Liisa; Heger, Andreas (2013). "Automated Sequence-Based Approaches for Identifying Domain Families". In Orengo, Christine; Bateman, Alex (eds.).
106:
can be defined within families to denote closely related proteins that have similar or identical functions. For example, a superfamily like the
945:
Bateman, Alex (2013). "Sequence Classification of Protein Families: Pfam and other Resources". In Orengo, Christine; Bateman, Alex (eds.).
322:- Library of HMMs representing superfamilies and database of (superfamily and family) annotations for all completely sequenced organisms 177:
Protein families were first recognised when most proteins that were structurally understood were small, single-domain proteins such as
150: 54:, in which each gene encodes a corresponding protein with a 1:1 relationship. The term "protein family" should not be confused with 274:
analysis, functional annotation, and the exploration of the diversity of protein function in a given phylogenetic branch. The
325: 226:
proteins, usually with conserved sequence motifs. Second, a gene duplication may create a second copy of a gene (termed a
1203:"OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy" 1146:"PASS2 version 4: An update to the database of structure-based sequence alignments of structural domain superfamilies" 1356: 1328: 962: 862: 454: 242: 1640: 669:
Dayhoff, MO; McLaughlin, PJ; Barker, WC; Hunt, LT (1975). "Evolution of sequences within protein superfamilies".
138: 535:"A comprehensive review and comparison of different computational methods for protein remote homology detection" 1650: 1512: 740: 189:. Since then, many proteins have been found with multiple independent structural and functional units called 237:, undergo extreme expansions and contractions in the course of evolution, sometimes in concert with whole 206: 275: 580:
Kunin, Victor; Cases, Ildefonso; Enright, Anton J.; de Lorenzo, Victor; Ouzounis, Christos A. (2003).
19: 1645: 1613: 1600: 1587: 1574: 1561: 1548: 1535: 1497: 437:
Orengo, Christine; Bateman, Alex (2013). "Introduction". In Orengo, Christine; Bateman, Alex (eds.).
291:
catalog protein families and allow users to match query sequences to known families. These include:
1507: 1461: 1404: 1635: 1409: 639: 257:
Phylogenetic tree of RAS superfamily: This tree was created using FigTree (free online software).
1430: 1349: 756: 389: 340: 127: 99: 95: 1502: 678: 288: 141:). Below, sequence conservation of 70 members of the C04 protease family: Arrows indicate 8: 1466: 376: 299: 79: 1063: 1038: 682: 1399: 1296: 1261: 1237: 1202: 1178: 1121: 1088: 922: 887: 868: 694: 507: 474: 238: 196:
Different regions of a protein have differing functional constraints. For example, the
70: 1014: 979: 822: 787: 616: 581: 1301: 1283: 1242: 1224: 1183: 1165: 1126: 1108: 1068: 1039:"Differential Retention of Pfam Domains Contributes to Long-term Evolutionary Trends" 1019: 1001: 958: 927: 909: 858: 827: 809: 768: 760: 721: 651: 621: 603: 562: 554: 512: 494: 450: 371: 172: 103: 66: 62: 996: 872: 698: 82:
based on structural similarity, even if there is no identifiable sequence homology.
1445: 1440: 1414: 1342: 1291: 1273: 1232: 1214: 1173: 1157: 1116: 1100: 1058: 1050: 1009: 991: 950: 917: 899: 850: 817: 799: 752: 686: 611: 593: 546: 502: 486: 442: 247: 168: 55: 446: 1492: 1476: 1389: 490: 142: 712:
Dayhoff, MO (August 1976). "The origin and evolution of protein superfamilies".
332:- Classifications of protein structures into superfamilies, families and domains 1530: 904: 201: 190: 164: 61:
Proteins in a family descend from a common ancestor and typically have similar
31: 1278: 1219: 954: 854: 1629: 1435: 1394: 1287: 1228: 1169: 1112: 1054: 1005: 913: 813: 764: 607: 558: 498: 598: 534: 266:
As the total number of sequenced proteins increases and interest expands in
110:
of proteases has less sequence conservation than the C04 family within it.
1384: 1305: 1246: 1187: 1130: 1072: 1023: 931: 831: 772: 625: 566: 516: 271: 186: 1161: 980:"Tools and resources for identifying protein families, domains and motifs" 655: 1608: 1543: 1379: 725: 550: 366: 352: 319: 197: 51: 24: 1262:"OrthoFinder: Phylogenetic orthology inference for comparative genomics" 804: 690: 234: 182: 1145: 1104: 1582: 1556: 316:
PASS2 - Protein Alignment as Structural Superfamilies v2 - PASS2@NCBS
219: 178: 146: 134: 43: 28: 947:
Protein Families: Relating Protein Sequence, Structure, and Function
847:
Protein Families: Relating Protein Sequence, Structure, and Function
441:. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. vii–xi. 439:
Protein Families: Relating Protein Sequence, Structure, and Function
949:. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 25–36. 533:
Chen, Junjie; Guo, Mingyue; Wang, Xiaolong; Liu, Bin (2018-03-01).
413: 310: 267: 223: 886:
Wang, Yan; Zhang, Hang; Zhong, Haolin; Xue, Zhidong (2021-01-01).
849:. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 1–24. 336:
Similarly, many database-searching algorithms exist, for example:
1037:
James, Jennifer E; Nelson, Paul G; Masel, Joanna (4 April 2023).
304: 227: 131: 107: 47: 1595: 1365: 1323: 741:"Protein Families and Their Evolution—A Structural Perspective" 475:"An Introduction to Sequence Similarity ("Homology") Searching" 346: 75: 250:, but its importance and ramifications are currently unclear. 1569: 888:"Protein domain identification methods and online resources" 355:- Method for clustering proteins into families (orthogroups) 307:- Database of protein domains, families and functional sites 668: 642:(December 1974). "Computer analysis of protein sequences". 579: 329: 295: 1334: 253: 241:. Expansions are less likely, and losses more likely, for 1143: 261: 785: 1085: 739:
Orengo, Christine A.; Thornton, Janet M. (2005-06-01).
1144:
Gandhimathi, A.; Nair, Anu G.; Sowdhamini, R. (2012).
50:. In many cases, a protein family has a corresponding 788:"Visualizing Sequence Similarity of Protein Families" 222:) in these two lineages. This results in a family of 786:
Veeramachaneni, Vamsi; Makałowski, Wojciech (2004).
409:"What are protein families? Protein classification" 892:Computational and Structural Biotechnology Journal 885: 582:"Myriads of protein families, and still counting" 1627: 1036: 978:Mulder, Nicola J.; Apweiler, Rolf (2001-12-19). 212: 27:family, as represented by the structures of the 977: 738: 532: 298:- Protein families database of alignments and 1350: 468: 466: 436: 432: 430: 233:Certain gene/protein families, especially in 158: 1260:Emms, David M.; Kelly, Steven (2019-11-14). 1201:Emms, David M.; Kelly, Steven (2015-08-06). 282: 1357: 1343: 632: 528: 526: 463: 427: 1295: 1277: 1259: 1236: 1218: 1200: 1177: 1120: 1062: 1013: 995: 921: 903: 844: 821: 803: 705: 615: 597: 506: 757:10.1146/annurev.biochem.74.082803.133029 252: 94:the highest level of classification are 88: 18: 16:Group of evolutionarily-related proteins 944: 711: 638: 523: 472: 1628: 262:Use and importance of protein families 1338: 349:- Protein sequence similarity search 479:Current Protocols in Bioinformatics 383: 313:- SuperFamily Classification System 13: 145:residues, aligned on the basis of 14: 1662: 1316: 243:intrinsically disordered proteins 1322: 1089:"The Enzyme Function Initiative" 343:- DNA sequence similarity search 115: 1253: 1194: 1137: 1079: 1043:Molecular Biology and Evolution 1030: 997:10.1186/gb-2001-3-1-reviews2001 971: 938: 879: 838: 779: 732: 662: 573: 401: 1: 745:Annual Review of Biochemistry 447:10.1002/9781118743089.fmatter 394: 213:Evolution of protein families 65:, functions, and significant 491:10.1002/0471250953.bi0301s42 473:Pearson, William R. (2013). 63:three-dimensional structures 7: 1364: 539:Briefings in Bioinformatics 359: 207:multiple sequence alignment 58:as it is used in taxonomy. 10: 1669: 905:10.1016/j.csbj.2021.01.041 387: 276:Enzyme Function Initiative 162: 159:Protein domains and motifs 1521: 1513:Michaelis–Menten kinetics 1485: 1454: 1423: 1372: 1279:10.1186/s13059-019-1832-y 1220:10.1186/s13059-015-0721-2 955:10.1002/9781118743089.ch2 855:10.1002/9781118743089.ch1 1405:Diffusion-limited enzyme 283:Protein family resources 671:Die Naturwissenschaften 599:10.1186/gb-2003-4-2-401 1641:Protein classification 1150:Nucleic Acids Research 1055:10.1093/molbev/msad073 714:Federation Proceedings 644:Federation Proceedings 258: 130:of 250 members of the 35: 34:of some of its members 1651:Protein superfamilies 1498:Eadie–Hofstee diagram 1431:Allosteric regulation 390:List of gene families 256: 128:sequence conservation 96:protein superfamilies 89:Terminology and usage 22: 1508:Lineweaver–Burk plot 1331:at Wikimedia Commons 990:(1): reviews2001.1. 289:biological databases 1162:10.1093/nar/gkr1096 683:1975NW.....62..154D 377:Sequence clustering 239:genome duplications 100:sequence similarity 67:sequence similarity 1467:Enzyme superfamily 1400:Enzyme promiscuity 805:10.1101/gr.2079204 691:10.1007/BF00608697 551:10.1093/bib/bbw108 259: 71:sequence alignment 36: 1623: 1622: 1327:Media related to 1156:(D1): D531–D534. 1105:10.1021/bi201312u 1099:(46): 9950–9962. 372:Genome annotation 173:Protein structure 1658: 1646:Protein families 1503:Hanes–Woolf plot 1446:Enzyme activator 1441:Enzyme inhibitor 1415:Enzyme catalysis 1359: 1352: 1345: 1336: 1335: 1329:Protein families 1326: 1310: 1309: 1299: 1281: 1257: 1251: 1250: 1240: 1222: 1198: 1192: 1191: 1181: 1141: 1135: 1134: 1124: 1083: 1077: 1076: 1066: 1034: 1028: 1027: 1017: 999: 975: 969: 968: 942: 936: 935: 925: 907: 883: 877: 876: 842: 836: 835: 825: 807: 798:(6): 1160–1169. 783: 777: 776: 736: 730: 729: 709: 703: 702: 666: 660: 659: 636: 630: 629: 619: 601: 577: 571: 570: 530: 521: 520: 510: 470: 461: 460: 434: 425: 424: 422: 421: 405: 384:Protein families 248:genome evolution 169:Structural motif 119: 1668: 1667: 1661: 1660: 1659: 1657: 1656: 1655: 1626: 1625: 1624: 1619: 1531:Oxidoreductases 1517: 1493:Enzyme kinetics 1481: 1477:List of enzymes 1450: 1419: 1390:Catalytic triad 1368: 1363: 1319: 1314: 1313: 1258: 1254: 1199: 1195: 1142: 1138: 1084: 1080: 1035: 1031: 976: 972: 965: 943: 939: 884: 880: 865: 843: 839: 792:Genome Research 784: 780: 737: 733: 710: 706: 667: 663: 637: 633: 578: 574: 531: 524: 485:: 3.1.1–3.1.8. 471: 464: 457: 435: 428: 419: 417: 407: 406: 402: 397: 392: 386: 381: 362: 285: 264: 215: 175: 161: 156: 155: 154: 143:catalytic triad 125: 120: 91: 17: 12: 11: 5: 1666: 1665: 1654: 1653: 1648: 1643: 1638: 1636:Bioinformatics 1621: 1620: 1618: 1617: 1604: 1591: 1578: 1565: 1552: 1539: 1525: 1523: 1519: 1518: 1516: 1515: 1510: 1505: 1500: 1495: 1489: 1487: 1483: 1482: 1480: 1479: 1474: 1469: 1464: 1458: 1456: 1455:Classification 1452: 1451: 1449: 1448: 1443: 1438: 1433: 1427: 1425: 1421: 1420: 1418: 1417: 1412: 1407: 1402: 1397: 1392: 1387: 1382: 1376: 1374: 1370: 1369: 1362: 1361: 1354: 1347: 1339: 1333: 1332: 1318: 1317:External links 1315: 1312: 1311: 1266:Genome Biology 1252: 1207:Genome Biology 1193: 1136: 1078: 1049:(4): msad073. 1029: 984:Genome Biology 970: 963: 937: 878: 863: 837: 778: 751:(1): 867–900. 731: 720:(10): 2132–8. 704: 677:(4): 154–161. 661: 650:(12): 2314–6. 631: 586:Genome Biology 572: 545:(2): 231–244. 522: 462: 455: 426: 399: 398: 396: 393: 388:Main article: 385: 382: 380: 379: 374: 369: 363: 361: 358: 357: 356: 350: 344: 334: 333: 323: 317: 314: 308: 302: 284: 281: 263: 260: 214: 211: 202:hydrophobicity 165:Protein domain 160: 157: 122: 121: 114: 113: 112: 90: 87: 44:evolutionarily 42:is a group of 40:protein family 15: 9: 6: 4: 3: 2: 1664: 1663: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1633: 1631: 1615: 1611: 1610: 1605: 1602: 1598: 1597: 1592: 1589: 1585: 1584: 1579: 1576: 1572: 1571: 1566: 1563: 1559: 1558: 1553: 1550: 1546: 1545: 1540: 1537: 1533: 1532: 1527: 1526: 1524: 1520: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1494: 1491: 1490: 1488: 1484: 1478: 1475: 1473: 1472:Enzyme family 1470: 1468: 1465: 1463: 1460: 1459: 1457: 1453: 1447: 1444: 1442: 1439: 1437: 1436:Cooperativity 1434: 1432: 1429: 1428: 1426: 1422: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1396: 1395:Oxyanion hole 1393: 1391: 1388: 1386: 1383: 1381: 1378: 1377: 1375: 1371: 1367: 1360: 1355: 1353: 1348: 1346: 1341: 1340: 1337: 1330: 1325: 1321: 1320: 1307: 1303: 1298: 1293: 1289: 1285: 1280: 1275: 1271: 1267: 1263: 1256: 1248: 1244: 1239: 1234: 1230: 1226: 1221: 1216: 1212: 1208: 1204: 1197: 1189: 1185: 1180: 1175: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1140: 1132: 1128: 1123: 1118: 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1082: 1074: 1070: 1065: 1060: 1056: 1052: 1048: 1044: 1040: 1033: 1025: 1021: 1016: 1011: 1007: 1003: 998: 993: 989: 985: 981: 974: 966: 964:9781118743089 960: 956: 952: 948: 941: 933: 929: 924: 919: 915: 911: 906: 901: 898:: 1145–1153. 897: 893: 889: 882: 874: 870: 866: 864:9781118743089 860: 856: 852: 848: 841: 833: 829: 824: 819: 815: 811: 806: 801: 797: 793: 789: 782: 774: 770: 766: 762: 758: 754: 750: 746: 742: 735: 727: 723: 719: 715: 708: 700: 696: 692: 688: 684: 680: 676: 672: 665: 657: 653: 649: 645: 641: 635: 627: 623: 618: 613: 609: 605: 600: 595: 591: 587: 583: 576: 568: 564: 560: 556: 552: 548: 544: 540: 536: 529: 527: 518: 514: 509: 504: 500: 496: 492: 488: 484: 480: 476: 469: 467: 458: 456:9781118743089 452: 448: 444: 440: 433: 431: 416: 415: 410: 404: 400: 391: 378: 375: 373: 370: 368: 365: 364: 354: 351: 348: 345: 342: 339: 338: 337: 331: 327: 324: 321: 318: 315: 312: 309: 306: 303: 301: 297: 294: 293: 292: 290: 280: 277: 273: 269: 255: 251: 249: 244: 240: 236: 231: 229: 225: 221: 210: 208: 203: 199: 194: 192: 188: 184: 180: 174: 170: 166: 152: 148: 144: 140: 136: 133: 129: 124: 118: 111: 109: 105: 101: 97: 86: 83: 81: 80:superfamilies 77: 72: 68: 64: 59: 57: 53: 49: 45: 41: 33: 30: 26: 21: 1609:Translocases 1606: 1593: 1580: 1567: 1554: 1544:Transferases 1541: 1528: 1471: 1385:Binding site 1269: 1265: 1255: 1210: 1206: 1196: 1153: 1149: 1139: 1096: 1093:Biochemistry 1092: 1081: 1046: 1042: 1032: 987: 983: 973: 946: 940: 895: 891: 881: 846: 840: 795: 791: 781: 748: 744: 734: 717: 713: 707: 674: 670: 664: 647: 643: 634: 589: 585: 575: 542: 538: 482: 478: 438: 418:. Retrieved 412: 403: 335: 286: 272:phylogenetic 265: 232: 216: 195: 187:cytochrome c 176: 92: 84: 60: 39: 37: 1380:Active site 640:Dayhoff, MO 367:Gene family 353:OrthoFinder 320:SUPERFAMILY 224:orthologous 198:active site 139:superfamily 104:Subfamilies 52:gene family 25:cyclophilin 1630:Categories 1583:Isomerases 1557:Hydrolases 1424:Regulation 1272:(1): 238. 1213:(1): 157. 592:(2): 401. 420:2023-11-14 395:References 235:eukaryotes 183:hemoglobin 163:See also: 23:The human 1462:EC number 1288:1474-760X 1229:1474-760X 1170:1362-4962 1113:0006-2960 1006:1474-760X 914:2001-0370 814:1088-9051 765:0066-4154 608:1474-760X 559:1477-4054 499:1934-3396 220:mutations 179:myoglobin 147:structure 135:proteases 29:isomerase 1486:Kinetics 1410:Cofactor 1373:Activity 1306:31727128 1247:26243257 1188:22123743 1131:21999478 1073:36947137 1064:10089649 1024:11806833 932:33680357 873:85641264 832:15140831 773:15954844 699:40304076 626:12620116 567:27881430 517:23749753 414:EMBL-EBI 360:See also 268:proteome 48:proteins 46:related 1596:Ligases 1366:Enzymes 1297:6857279 1238:4531804 1179:3245109 1122:3238057 923:7895673 679:Bibcode 656:4435228 508:3820096 305:PROSITE 228:paralog 191:domains 132:PA clan 126:Above, 108:PA clan 78:called 32:domains 1570:Lyases 1304:  1294:  1286:  1245:  1235:  1227:  1186:  1176:  1168:  1129:  1119:  1111:  1071:  1061:  1022:  1015:150457 1012:  1004:  961:  930:  920:  912:  871:  861:  830:  823:419794 820:  812:  771:  763:  726:181273 724:  697:  654:  624:  617:151299 614:  606:  565:  557:  515:  505:  497:  453:  347:BLASTp 185:, and 171:, and 76:clades 56:family 1522:Types 869:S2CID 695:S2CID 341:BLAST 311:PIRSF 287:Many 1614:list 1607:EC7 1601:list 1594:EC6 1588:list 1581:EC5 1575:list 1568:EC4 1562:list 1555:EC3 1549:list 1542:EC2 1536:list 1529:EC1 1302:PMID 1284:ISSN 1243:PMID 1225:ISSN 1184:PMID 1166:ISSN 1127:PMID 1109:ISSN 1069:PMID 1020:PMID 1002:ISSN 959:ISBN 928:PMID 910:ISSN 859:ISBN 828:PMID 810:ISSN 769:PMID 761:ISSN 722:PMID 652:PMID 622:PMID 604:ISSN 563:PMID 555:ISSN 513:PMID 495:ISSN 451:ISBN 330:CATH 328:and 326:SCOP 300:HMMs 296:Pfam 151:DALI 1292:PMC 1274:doi 1233:PMC 1215:doi 1174:PMC 1158:doi 1117:PMC 1101:doi 1059:PMC 1051:doi 1010:PMC 992:doi 951:doi 918:PMC 900:doi 851:doi 818:PMC 800:doi 753:doi 687:doi 612:PMC 594:doi 547:doi 503:PMC 487:doi 443:doi 149:by 1632:: 1300:. 1290:. 1282:. 1270:20 1268:. 1264:. 1241:. 1231:. 1223:. 1211:16 1209:. 1205:. 1182:. 1172:. 1164:. 1154:40 1152:. 1148:. 1125:. 1115:. 1107:. 1097:50 1095:. 1091:. 1067:. 1057:. 1047:40 1045:. 1041:. 1018:. 1008:. 1000:. 986:. 982:. 957:. 926:. 916:. 908:. 896:19 894:. 890:. 867:. 857:. 826:. 816:. 808:. 796:14 794:. 790:. 767:. 759:. 749:74 747:. 743:. 718:35 716:. 693:. 685:. 675:62 673:. 648:33 646:. 620:. 610:. 602:. 588:. 584:. 561:. 553:. 543:19 541:. 537:. 525:^ 511:. 501:. 493:. 481:. 477:. 465:^ 449:. 429:^ 411:. 181:, 167:, 102:. 38:A 1616:) 1612:( 1603:) 1599:( 1590:) 1586:( 1577:) 1573:( 1564:) 1560:( 1551:) 1547:( 1538:) 1534:( 1358:e 1351:t 1344:v 1308:. 1276:: 1249:. 1217:: 1190:. 1160:: 1133:. 1103:: 1075:. 1053:: 1026:. 994:: 988:3 967:. 953:: 934:. 902:: 875:. 853:: 834:. 802:: 775:. 755:: 728:. 701:. 689:: 681:: 658:. 628:. 596:: 590:4 569:. 549:: 519:. 489:: 483:3 459:. 445:: 423:. 218:( 153:. 137:(

Index


cyclophilin
isomerase
domains
evolutionarily
proteins
gene family
family
three-dimensional structures
sequence similarity
sequence alignment
clades
superfamilies
protein superfamilies
sequence similarity
Subfamilies
PA clan


sequence conservation
PA clan
proteases
superfamily
catalytic triad
structure
DALI
Protein domain
Structural motif
Protein structure
myoglobin

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑