Knowledge

Protein superfamily

Source 📝

94: 267: 140: 2400: 93: 444:
A majority of proteins contain multiple domains. Between 66-80% of eukaryotic proteins have multiple domains while about 40-60% of prokaryotic proteins have multiple domains. Over time, many of the superfamilies of domains have mixed together. In fact, it is very rare to find “consistently isolated
445:
superfamilies”. When domains do combine, the N- to C-terminal domain order (the "domain architecture") is typically well conserved. Additionally, the number of domain combinations seen in nature is small compared to the number of possibilities, suggesting that selection acts on all combinations.
230:
Using sequence similarity to infer homology has several limitations. There is no minimum level of sequence similarity guaranteed to produce identical structures. Over long periods of evolution, related proteins may show no detectable sequence similarity to one another. Sequences with many
329:
is much more evolutionarily conserved than sequence, such that proteins with highly similar structures can have entirely different sequences. Over very long evolutionary timescales, very few residues show detectable amino acid sequence conservation, however
277:(PA clan). The double β-barrel that characterises the superfamily is highlighted in red. Shown are representative structures from several families within the PA superfamily. Note that some proteins show partially modified structural. 380:
specificity may be significantly different. Catalytic residues also tend to occur in the same order in the protein sequence. For the families within the PA clan of proteases, although there has been divergent evolution of the
358:, use the 3D structure of a protein of interest to find proteins with similar folds. However, on rare occasions, related proteins may evolve to be structurally dissimilar and relatedness can only be inferred by other methods. 1037:"SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes" 1171:
Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC (September 2001).
131:
Superfamilies of proteins are identified using a number of methods. Closely related members can be identified by different methods to those needed to group the most evolutionarily divergent members.
2334:
Nagano N, Orengo CA, Thornton JM (August 2002). "One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions".
1173:"The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature" 590: 1729:
Akiva, Eyal; Brown, Shoshana; Almonacid, Daniel E.; Barber, Alan E.; Custer, Ashley F.; Hicks, Michael A.; Huang, Conrad C.; Lauck, Florian; Mashiyama, Susan T. (2013-11-23).
251:. Conversely, the individual families that make up a superfamily are defined on the basis of their sequence alignment, for example the C04 protease family within the PA clan. 254:
Nevertheless, sequence similarity is the most commonly used form of evidence to infer relatedness, since the number of known sequences vastly outnumbers the number of known
393:
multiple times independently, and so form separate superfamilies, and in some superfamilies display a range of different (though often chemically similar) mechanisms.
1320:
Li D, Zhang L, Yin H, Xu H, Satkoski Trask J, Smith DG, Li Y, Yang M, Zhu Q (June 2014). "Evolution of primate α and θ defensins revealed by analysis of genomes".
409:
that is currently possible. They are therefore amongst the most ancient evolutionary events currently studied. Some superfamilies have members present in all
350:. Consequently, protein tertiary structure can be used to detect homology between proteins even when no evidence of relatedness remains in their sequences. 2060:
Bolognesi M, Onesti S, Gatti G, Coda A, Ascenzi P, Brunori M (February 1989). "Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution".
424:
Superfamily members may be in different species, with the ancestral protein being the form of the protein that existed in the ancestral species (
1263:"Cross-Over between Discrete and Continuous Protein Structure Space: Insights into Automatic Classification and Networks of Protein Structures" 100: 2269:"The RelA/SpoT Homolog (RSH) Superfamily: Distribution and Functional Evolution of ppGpp Synthetases and Hydrolases across the Tree of Life" 1845:
Ranea JA, Sillero A, Thornton JM, Orengo CA (October 2006). "Protein superfamily evolution and the last universal common ancestor (LUCA)".
389:
on proteins, peptides or amino acids. However, mechanism alone is not sufficient to infer relatedness. Some catalytic mechanisms have been
215:), so it is a more sensitive detection method. Since some of the amino acids have similar properties (e.g., charge, hydrophobicity, size), 258:. In the absence of structural information, sequence similarity constrains the limits of which proteins can be assigned to a superfamily. 1974: 1456:
Dessailly, Benoit H.; Dawson, Natalie L.; Das, Sayoni; Orengo, Christine A. (2017), "Function Diversity within Folds and Superfamilies",
1645:
Coutinho PM, Deleury E, Davies GJ, Henrissat B (April 2003). "An evolving hierarchical family classification for glycosyltransferases".
691:- Library of HMMs representing superfamilies and database of (superfamily and family) annotations for all completely sequenced organisms 2000:
Mohamed MF, Hollfelder F (January 2013). "Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer".
952: 355: 124: 2095:
Bork P, Holm L, Sander C (September 1994). "The immunoglobulin fold. Structural classification, sequence patterns and common core".
2159:"Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications" 2404: 694: 17: 199:. Sequence similarity is considered a good predictor of relatedness, since similar sequences are more likely the result of 155:. Residues that are conserved across all sequences are highlighted in grey. Below the protein sequences is a key denoting: 1680:
Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C (May 2015).
2044: 989:
Han JH, Batey S, Nickson AA, Teichmann SA, Clarke J (April 2007). "The folding and evolution of multidomain proteins".
223:
to function. The most conserved sequence regions of a protein often correspond to functionally important regions like
2432: 1588:"Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad" 1473: 401:
Protein superfamilies represent the current limits of our ability to identify common ancestry. They are the largest
58:
can then be deduced even if not apparent (due to low sequence similarity). Superfamilies typically contain several
2726: 2731: 418: 2588: 195:
Historically, the similarity of different amino acid sequences has been the most common method of inferring
2711: 1035:
Pandit SB, Gosar D, Abhiman S, Sujatha S, Dixit SS, Mhatre NS, Sowdhamini R, Srinivasan N (January 2002).
428:). Conversely, the proteins may be in the same species, but evolved from a single protein whose gene was 282: 2216:
Vetter IR, Wittinghofer A (November 2001). "The guanine nucleotide-binding switch in three dimensions".
1939:
Nardini M, Dijkstra BW (December 1999). "Alpha/beta hydrolase fold enzymes: the family keeps growing".
526: 255: 2716: 2689: 2676: 2663: 2650: 2637: 2624: 2611: 2573: 294: 2583: 2537: 2480: 596: 377: 2485: 302: 1084:
Orengo CA, Thornton JM (2005). "Protein families and their evolution-a structural perspective".
713: 247:, for example, not a single residue is conserved through the superfamily, not even those in the 2721: 425: 313: 1978: 433: 2506: 2425: 1539:"Handicap-Recover Evolution Leads to a Chemically Versatile, Nucleophile-Permissive Protease" 1097: 767: 615: 343: 216: 167: 960: 2578: 2280: 2225: 2170: 2130:
Brümmendorf T, Rathjen FG (1995). "Cell adhesion molecules 1: immunoglobulin superfamily".
1854: 1599: 1274: 727: 660: 498: 390: 351: 331: 321: 208: 104: 51: 587:
Members share a common catalytic G domain of a 6-strand β sheet surrounded by 5 α-helices.
8: 540: 373: 335: 270: 204: 119:, L indicates loop. Below, sequence conservation for the same alignment. Arrows indicate 2284: 2229: 2174: 1858: 1603: 1278: 2475: 2311: 2268: 2249: 1886: 1799: 1763: 1730: 1706: 1681: 1622: 1587: 1563: 1538: 1514: 1489: 1430: 1405: 1345: 1297: 1262: 1238: 1213: 1145: 1120: 1014: 929: 904: 880: 855: 826: 801: 757: 623: 609: 603: 504: 454: 386: 347: 236: 160: 144: 71: 47: 2382: 2347: 2193: 2158: 1952: 1822: 1787: 1658: 2351: 2316: 2298: 2241: 2198: 2139: 2112: 2077: 2073: 2040: 2017: 1956: 1921: 1878: 1827: 1768: 1750: 1711: 1662: 1627: 1568: 1519: 1469: 1435: 1386: 1337: 1302: 1243: 1194: 1150: 1101: 1066: 1061: 1036: 1006: 934: 885: 831: 752: 742: 706: 568: 488: 410: 326: 266: 196: 190: 55: 1890: 1381: 1364: 1349: 1018: 2521: 2516: 2490: 2418: 2378: 2343: 2306: 2288: 2253: 2233: 2188: 2178: 2104: 2069: 2009: 1948: 1913: 1870: 1862: 1817: 1809: 1758: 1742: 1701: 1693: 1654: 1617: 1607: 1558: 1550: 1509: 1501: 1461: 1425: 1417: 1376: 1329: 1292: 1282: 1233: 1225: 1184: 1140: 1132: 1093: 1056: 1048: 998: 924: 916: 875: 867: 821: 813: 572: 429: 385:
residues used to perform catalysis, all members use a similar mechanism to perform
367: 339: 220: 212: 200: 179: 152: 59: 2568: 2552: 2465: 2293: 2013: 1287: 747: 732: 619: 582: 468: 382: 290: 248: 120: 43: 1465: 701:- Classifications of protein structures into superfamilies, families and domains 211:. Amino acid sequence is typically more conserved than DNA sequence (due to the 2606: 2547: 2163:
Proceedings of the National Academy of Sciences of the United States of America
1917: 1592:
Proceedings of the National Academy of Sciences of the United States of America
737: 1866: 1788:"Protein structure and evolutionary history determine sequence space topology" 1697: 1421: 1333: 856:"MEROPS: the database of proteolytic enzymes, their substrates and inhibitors" 227:
and binding sites, since these regions are less tolerant to sequence changes.
2705: 2511: 2470: 2302: 1754: 544: 2237: 2183: 1612: 1136: 2460: 2355: 2320: 2245: 2108: 2021: 1960: 1925: 1882: 1831: 1772: 1715: 1666: 1631: 1572: 1554: 1523: 1439: 1390: 1341: 1306: 1247: 1198: 1189: 1172: 1154: 1105: 1070: 1052: 1010: 889: 835: 643: 576: 556: 492: 402: 309: 298: 278: 224: 2202: 2143: 2116: 2081: 1746: 938: 709:
for proteins with structural homology to a target structure, for example:
417:, indicating that the last common ancestor of that superfamily was in the 2684: 2619: 2455: 1229: 871: 817: 772: 688: 564: 520: 516: 480: 306: 286: 1505: 560: 536: 1874: 1813: 1537:
Shafee T, Gatti-Lafranconi P, Minter R, Hollfelder F (September 2015).
629: 460: 151:
proteins. The similarity of the sequences implies that they evolved by
54:
and mechanistic similarity, even if no sequence similarity is evident.
1804: 1536: 920: 532: 464: 116: 112: 2658: 2632: 762: 647: 614:
Members share a high-energy, stressed fold which can undergo a large
503:
Members share an αβα sandwich structure as well as performing common
484: 472: 1002: 567:
mechanisms but sequence identity of <10%. The clan contains both
139: 2267:
Atkinson, Gemma C.; Tenson, Tanel; Hauryliuk, Vasili (2011-08-09).
1679: 905:"Updating the sequence-based classification of glycosyl hydrolases" 679: 599: 406: 244: 67: 1904:
Carr PD, Ollis DL (2009). "Alpha/beta hydrolase fold: an update".
716:- Structural alignment based on a distance alignment matrix method 346:
of the protein structure may also be conserved, as is seen in the
1785: 673: 550: 476: 274: 240: 148: 108: 39: 376:
of enzymes within a superfamily is commonly conserved, although
2671: 2441: 2399: 2369:
Farber G (1993). "An α/β-barrel full of evolutionary trouble".
1786:
Shakhnovich BE, Deeds E, Delisi C, Shakhnovich E (March 2005).
1260: 663:
document protein superfamilies and protein folds, for example:
510: 75: 1644: 2645: 2002:
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
1682:"Independent evolution of four heme peroxidase superfamilies" 232: 176: 35: 676:- Database of protein domains, families and functional sites 62:
which show sequence similarity within each family. The term
1490:"Causes of evolutionary rate variation among protein sites" 777: 698: 667: 414: 79: 2410: 1844: 1365:"Structural drift: a possible path to protein fold change" 1170: 1728: 1034: 2059: 1455: 1121:"Sequence evolution correlates with structural dynamics" 988: 685:
PASS2 - Protein Alignment as Structural Superfamilies v2
595:
Members share capability to hydrolyze and/or synthesize
239:
and so identify the homologous sequence regions. In the
2266: 1261:
Pascual-García A, Abia D, Ortiz ÁR, Bastolla U (2009).
1458:
From Protein Structure to Function with Bioinformatics
853: 2333: 1487: 854:Rawlings ND, Barrett AJ, Bateman A (January 2012). 2215: 2129: 670:- Protein families database of alignments and HMMs 1999: 1488:Echave J, Spielman SJ, Wilke CO (February 2016). 543:), and are involved in recognition, binding, and 50:). Usually this common ancestry is inferred from 2703: 902: 654: 2156: 1938: 705:Similarly there are algorithms that search the 642:barrel structure. It is one of the most common 531:Members share a sandwich-like structure of two 471:residues in the same order, activities include 123:residues. Aligned on the basis of structure by 2094: 1585: 1362: 1083: 799: 2426: 896: 2209: 2034: 1932: 1319: 1166: 1164: 396: 2123: 2088: 2433: 2419: 1460:, Springer Netherlands, pp. 295–325, 1403: 1211: 2310: 2292: 2192: 2182: 2157:Bazan JF, Fletterick RJ (November 1988). 1903: 1821: 1803: 1762: 1731:"The Structure–Function Linkage Database" 1705: 1621: 1611: 1562: 1513: 1429: 1380: 1296: 1286: 1237: 1188: 1161: 1144: 1060: 1030: 1028: 928: 879: 825: 802:"Dali server: conservation mapping in 3D" 459:Members share an α/β sheet, containing 8 361: 1586:Buller AR, Townsend CA (February 2013). 1118: 1098:10.1146/annurev.biochem.74.082803.133029 849: 847: 845: 265: 261: 138: 2039:(2nd ed.). New York: Garland Pub. 1686:Archives of Biochemistry and Biophysics 650:of this superfamily is still contested. 14: 2704: 2368: 1025: 984: 982: 980: 978: 134: 2414: 2371:Current Opinion in Structural Biology 1941:Current Opinion in Structural Biology 1451: 1449: 1410:Current Opinion in Structural Biology 1363:Krishna SS, Grishin NV (April 2005). 991:Nature Reviews Molecular Cell Biology 842: 618:, which is typically used to inhibit 903:Henrissat B, Bairoch A (June 1996). 795: 793: 1177:The Journal of Biological Chemistry 975: 682:- SuperFamily Classification System 235:can also sometimes be difficult to 24: 1446: 800:Holm L, Rosenström P (July 2010). 439: 338:motifs are highly conserved. Some 173:. semi-conservative mutations, and 107:conservation of 80 members of the 25: 2743: 2392: 2037:Introduction to protein structure 1404:Bryan PN, Orban J (August 2010). 1119:Liu Y, Bahar I (September 2012). 790: 303:snake venom plasminogen activator 85: 2398: 499:Alkaline phosphatase superfamily 387:covalent, nucleophilic catalysis 219:that interchange them are often 92: 2362: 2327: 2260: 2150: 2053: 2028: 1993: 1967: 1897: 1838: 1779: 1722: 1673: 1638: 1579: 1530: 1481: 1397: 1356: 1313: 1254: 1212:Holm L, Laakso LM (July 2016). 1205: 1125:Molecular Biology and Evolution 1847:Journal of Molecular Evolution 1112: 1077: 945: 626:by disrupting their structure. 419:last universal common ancestor 13: 1: 2383:10.1016/S0959-440X(05)80114-9 2348:10.1016/s0022-2836(02)00649-6 1953:10.1016/S0959-440X(99)00037-8 1659:10.1016/S0022-2836(03)00307-3 1382:10.1093/bioinformatics/bti227 1086:Annual Review of Biochemistry 784: 655:Protein superfamily resources 2336:Journal of Molecular Biology 2294:10.1371/journal.pone.0023479 2097:Journal of Molecular Biology 2074:10.1016/0022-2836(89)90224-6 2062:Journal of Molecular Biology 2014:10.1016/j.bbapap.2012.07.015 1647:Journal of Molecular Biology 1406:"Proteins that switch folds" 1288:10.1371/journal.pcbi.1000331 812:(Web Server issue): W545–9. 207:, rather than the result of 7: 2440: 2035:Branden C, Tooze J (1999). 1906:Protein and Peptide Letters 1466:10.1007/978-94-024-1069-3_9 866:(Database issue): D343–50. 720: 448: 283:tobacco etch virus protease 111:(superfamily). H indicates 74:superfamilies based on the 10: 2748: 1918:10.2174/092986609789071298 1267:PLOS Computational Biology 527:Immunoglobulin superfamily 365: 319: 188: 180:non-conservative mutations 2597: 2589:Michaelis–Menten kinetics 2561: 2530: 2499: 2448: 1867:10.1007/s00239-005-0289-7 1698:10.1016/j.abb.2014.12.025 1422:10.1016/j.sbi.2010.06.002 1334:10.1007/s11033-014-3253-z 1322:Molecular Biology Reports 455:α/β hydrolase superfamily 405:grouping based on direct 397:Evolutionary significance 34:is the largest grouping ( 2481:Diffusion-limited enzyme 1494:Nature Reviews. Genetics 233:insertions and deletions 82:classification systems. 2238:10.1126/science.1062023 2184:10.1073/pnas.85.21.7872 1613:10.1073/pnas.1221050110 909:The Biochemical Journal 634:Members share a large α 213:degenerate genetic code 2727:Protein classification 2109:10.1006/jmbi.1994.1582 1735:Nucleic Acids Research 1555:10.1002/cbic.201500295 1218:Nucleic Acids Research 1190:10.1074/jbc.R100016200 1041:Nucleic Acids Research 953:"Clustal FAQ #Symbols" 860:Nucleic Acids Research 806:Nucleic Acids Research 630:TIM barrel superfamily 507:by a common mechanism. 362:Mechanistic similarity 344:conformational changes 317: 314:equine arteritis virus 217:conservative mutations 186: 168:conservative mutations 2732:Protein superfamilies 2574:Eadie–Hofstee diagram 2507:Allosteric regulation 2405:Protein superfamilies 1137:10.1093/molbev/mss097 768:List of gene families 616:conformational change 505:promiscuous reactions 269: 262:Structural similarity 142: 66:is commonly used for 46:can be inferred (see 18:Protein superfamilies 2584:Lineweaver–Burk plot 2407:at Wikimedia Commons 1214:"Dali server update" 1053:10.1093/nar/30.1.289 728:Structural alignment 661:biological databases 421:of all life (LUCA). 391:convergently evolved 352:Structural alignment 332:secondary structural 322:Structural alignment 209:convergent evolution 105:secondary structural 52:structural alignment 27:Grouping of proteins 2712:Molecular evolution 2285:2011PLoSO...623479A 2230:2001Sci...294.1299V 2175:1988PNAS...85.7872B 1859:2006JMolE..63..513R 1747:10.1093/nar/gkt1130 1604:2013PNAS..110E.653B 1506:10.1038/nrg.2015.18 1279:2009PLSCB...5E0331P 515:Members share an 8- 374:catalytic mechanism 336:tertiary structural 271:Structural homology 256:tertiary structures 205:divergent evolution 135:Sequence similarity 72:glycosyl hydrolases 32:protein superfamily 2543:Enzyme superfamily 2476:Enzyme promiscuity 2224:(5545): 1299–304. 1814:10.1101/gr.3133605 1230:10.1093/nar/gkw357 963:on 24 October 2016 872:10.1093/nar/gkr987 818:10.1093/nar/gkq366 758:Homology (biology) 624:cysteine proteases 610:Serpin superfamily 604:stringent response 511:Globin superfamily 489:epoxide hydrolases 354:programs, such as 348:serpin superfamily 318: 187: 161:conserved sequence 145:sequence alignment 2699: 2698: 2403:Media related to 1741:(D1): D521–D530. 1549:(13): 1866–1869. 921:10.1042/bj3160695 753:Protein structure 743:Protein subfamily 563:fold and similar 293:protease (1fp7), 191:Sequence homology 56:Sequence homology 16:(Redirected from 2739: 2717:Protein families 2579:Hanes–Woolf plot 2522:Enzyme activator 2517:Enzyme inhibitor 2491:Enzyme catalysis 2435: 2428: 2421: 2412: 2411: 2402: 2387: 2386: 2366: 2360: 2359: 2331: 2325: 2324: 2314: 2296: 2264: 2258: 2257: 2213: 2207: 2206: 2196: 2186: 2154: 2148: 2147: 2127: 2121: 2120: 2092: 2086: 2085: 2057: 2051: 2050: 2032: 2026: 2025: 1997: 1991: 1990: 1988: 1986: 1977:. Archived from 1971: 1965: 1964: 1936: 1930: 1929: 1901: 1895: 1894: 1842: 1836: 1835: 1825: 1807: 1783: 1777: 1776: 1766: 1726: 1720: 1719: 1709: 1677: 1671: 1670: 1642: 1636: 1635: 1625: 1615: 1583: 1577: 1576: 1566: 1534: 1528: 1527: 1517: 1485: 1479: 1478: 1453: 1444: 1443: 1433: 1401: 1395: 1394: 1384: 1360: 1354: 1353: 1317: 1311: 1310: 1300: 1290: 1258: 1252: 1251: 1241: 1209: 1203: 1202: 1192: 1168: 1159: 1158: 1148: 1116: 1110: 1109: 1081: 1075: 1074: 1064: 1032: 1023: 1022: 986: 973: 972: 970: 968: 959:. Archived from 949: 943: 942: 932: 900: 894: 893: 883: 851: 840: 839: 829: 797: 573:serine proteases 555:Members share a 535:of antiparallel 368:Enzyme mechanism 340:protein dynamics 316:protease (1mbm). 295:exfoliatin toxin 201:gene duplication 153:gene duplication 109:PA protease clan 96: 60:protein families 21: 2747: 2746: 2742: 2741: 2740: 2738: 2737: 2736: 2702: 2701: 2700: 2695: 2607:Oxidoreductases 2593: 2569:Enzyme kinetics 2557: 2553:List of enzymes 2526: 2495: 2466:Catalytic triad 2444: 2439: 2395: 2390: 2367: 2363: 2332: 2328: 2265: 2261: 2214: 2210: 2155: 2151: 2138:(9): 963–1108. 2132:Protein Profile 2128: 2124: 2093: 2089: 2058: 2054: 2047: 2033: 2029: 1998: 1994: 1984: 1982: 1981:on 29 July 2014 1973: 1972: 1968: 1937: 1933: 1912:(10): 1137–48. 1902: 1898: 1843: 1839: 1792:Genome Research 1784: 1780: 1727: 1723: 1678: 1674: 1643: 1639: 1584: 1580: 1535: 1531: 1486: 1482: 1476: 1454: 1447: 1402: 1398: 1361: 1357: 1318: 1314: 1273:(3): e1000331. 1259: 1255: 1210: 1206: 1183:(36): 33293–6. 1169: 1162: 1117: 1113: 1082: 1078: 1033: 1026: 1003:10.1038/nrm2144 987: 976: 966: 964: 951: 950: 946: 915:(Pt 2): 695–6. 901: 897: 852: 843: 798: 791: 787: 782: 748:Protein mimetic 733:Protein domains 723: 657: 641: 637: 591:RSH superfamily 583:Ras superfamily 469:catalytic triad 451: 442: 440:Diversification 432:in the genome ( 399: 383:catalytic triad 370: 364: 324: 291:west nile virus 264: 249:catalytic triad 225:catalytic sites 193: 185: 137: 129: 128: 127: 121:catalytic triad 102: 97: 88: 44:common ancestry 28: 23: 22: 15: 12: 11: 5: 2745: 2735: 2734: 2729: 2724: 2719: 2714: 2697: 2696: 2694: 2693: 2680: 2667: 2654: 2641: 2628: 2615: 2601: 2599: 2595: 2594: 2592: 2591: 2586: 2581: 2576: 2571: 2565: 2563: 2559: 2558: 2556: 2555: 2550: 2545: 2540: 2534: 2532: 2531:Classification 2528: 2527: 2525: 2524: 2519: 2514: 2509: 2503: 2501: 2497: 2496: 2494: 2493: 2488: 2483: 2478: 2473: 2468: 2463: 2458: 2452: 2450: 2446: 2445: 2438: 2437: 2430: 2423: 2415: 2409: 2408: 2394: 2393:External links 2391: 2389: 2388: 2377:(3): 409–412. 2361: 2326: 2259: 2208: 2169:(21): 7872–6. 2149: 2122: 2087: 2052: 2046:978-0815323051 2045: 2027: 1992: 1966: 1931: 1896: 1837: 1778: 1721: 1672: 1637: 1598:(8): E653–61. 1578: 1529: 1480: 1474: 1445: 1396: 1375:(8): 1308–10. 1369:Bioinformatics 1355: 1328:(6): 3859–66. 1312: 1253: 1224:(W1): W351–5. 1204: 1160: 1131:(9): 2253–63. 1111: 1092:(1): 867–900. 1076: 1024: 974: 944: 895: 841: 788: 786: 783: 781: 780: 775: 770: 765: 760: 755: 750: 745: 740: 738:Protein family 735: 730: 724: 722: 719: 718: 717: 703: 702: 692: 686: 683: 677: 671: 656: 653: 652: 651: 639: 635: 632: 627: 612: 607: 593: 588: 585: 580: 553: 548: 529: 524: 513: 508: 501: 496: 457: 450: 447: 441: 438: 398: 395: 366:Main article: 363: 360: 320:Main article: 275:PA superfamily 263: 260: 189:Main article: 184: 183: 174: 171: 164: 156: 136: 133: 115:, E indicates 99: 98: 91: 90: 89: 87: 86:Identification 84: 26: 9: 6: 4: 3: 2: 2744: 2733: 2730: 2728: 2725: 2723: 2722:Protein folds 2720: 2718: 2715: 2713: 2710: 2709: 2707: 2691: 2687: 2686: 2681: 2678: 2674: 2673: 2668: 2665: 2661: 2660: 2655: 2652: 2648: 2647: 2642: 2639: 2635: 2634: 2629: 2626: 2622: 2621: 2616: 2613: 2609: 2608: 2603: 2602: 2600: 2596: 2590: 2587: 2585: 2582: 2580: 2577: 2575: 2572: 2570: 2567: 2566: 2564: 2560: 2554: 2551: 2549: 2548:Enzyme family 2546: 2544: 2541: 2539: 2536: 2535: 2533: 2529: 2523: 2520: 2518: 2515: 2513: 2512:Cooperativity 2510: 2508: 2505: 2504: 2502: 2498: 2492: 2489: 2487: 2484: 2482: 2479: 2477: 2474: 2472: 2471:Oxyanion hole 2469: 2467: 2464: 2462: 2459: 2457: 2454: 2453: 2451: 2447: 2443: 2436: 2431: 2429: 2424: 2422: 2417: 2416: 2413: 2406: 2401: 2397: 2396: 2384: 2380: 2376: 2372: 2365: 2357: 2353: 2349: 2345: 2342:(5): 741–65. 2341: 2337: 2330: 2322: 2318: 2313: 2308: 2304: 2300: 2295: 2290: 2286: 2282: 2279:(8): e23479. 2278: 2274: 2270: 2263: 2255: 2251: 2247: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2212: 2204: 2200: 2195: 2190: 2185: 2180: 2176: 2172: 2168: 2164: 2160: 2153: 2145: 2141: 2137: 2133: 2126: 2118: 2114: 2110: 2106: 2103:(4): 309–20. 2102: 2098: 2091: 2083: 2079: 2075: 2071: 2068:(3): 529–44. 2067: 2063: 2056: 2048: 2042: 2038: 2031: 2023: 2019: 2015: 2011: 2008:(1): 417–24. 2007: 2003: 1996: 1980: 1976: 1970: 1962: 1958: 1954: 1950: 1946: 1942: 1935: 1927: 1923: 1919: 1915: 1911: 1907: 1900: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1853:(4): 513–25. 1852: 1848: 1841: 1833: 1829: 1824: 1819: 1815: 1811: 1806: 1805:q-bio/0404040 1801: 1798:(3): 385–92. 1797: 1793: 1789: 1782: 1774: 1770: 1765: 1760: 1756: 1752: 1748: 1744: 1740: 1736: 1732: 1725: 1717: 1713: 1708: 1703: 1699: 1695: 1691: 1687: 1683: 1676: 1668: 1664: 1660: 1656: 1653:(2): 307–17. 1652: 1648: 1641: 1633: 1629: 1624: 1619: 1614: 1609: 1605: 1601: 1597: 1593: 1589: 1582: 1574: 1570: 1565: 1560: 1556: 1552: 1548: 1544: 1540: 1533: 1525: 1521: 1516: 1511: 1507: 1503: 1500:(2): 109–21. 1499: 1495: 1491: 1484: 1477: 1475:9789402410679 1471: 1467: 1463: 1459: 1452: 1450: 1441: 1437: 1432: 1427: 1423: 1419: 1415: 1411: 1407: 1400: 1392: 1388: 1383: 1378: 1374: 1370: 1366: 1359: 1351: 1347: 1343: 1339: 1335: 1331: 1327: 1323: 1316: 1308: 1304: 1299: 1294: 1289: 1284: 1280: 1276: 1272: 1268: 1264: 1257: 1249: 1245: 1240: 1235: 1231: 1227: 1223: 1219: 1215: 1208: 1200: 1196: 1191: 1186: 1182: 1178: 1174: 1167: 1165: 1156: 1152: 1147: 1142: 1138: 1134: 1130: 1126: 1122: 1115: 1107: 1103: 1099: 1095: 1091: 1087: 1080: 1072: 1068: 1063: 1058: 1054: 1050: 1047:(1): 289–93. 1046: 1042: 1038: 1031: 1029: 1020: 1016: 1012: 1008: 1004: 1000: 997:(4): 319–30. 996: 992: 985: 983: 981: 979: 962: 958: 954: 948: 940: 936: 931: 926: 922: 918: 914: 910: 906: 899: 891: 887: 882: 877: 873: 869: 865: 861: 857: 850: 848: 846: 837: 833: 828: 823: 819: 815: 811: 807: 803: 796: 794: 789: 779: 776: 774: 771: 769: 766: 764: 761: 759: 756: 754: 751: 749: 746: 744: 741: 739: 736: 734: 731: 729: 726: 725: 715: 712: 711: 710: 708: 700: 696: 693: 690: 687: 684: 681: 678: 675: 672: 669: 666: 665: 664: 662: 649: 648:monophylicity 645: 644:protein folds 633: 631: 628: 625: 621: 617: 613: 611: 608: 605: 601: 598: 594: 592: 589: 586: 584: 581: 578: 574: 570: 566: 562: 559:-like double 558: 554: 552: 549: 546: 542: 538: 534: 530: 528: 525: 522: 518: 514: 512: 509: 506: 502: 500: 497: 494: 493:dehalogenases 490: 486: 482: 478: 474: 470: 466: 463:connected by 462: 458: 456: 453: 452: 446: 437: 435: 431: 427: 422: 420: 416: 412: 408: 404: 394: 392: 388: 384: 379: 375: 369: 359: 357: 353: 349: 345: 341: 337: 334:elements and 333: 328: 323: 315: 311: 308: 304: 300: 299:HtrA protease 296: 292: 288: 284: 280: 276: 272: 268: 259: 257: 252: 250: 246: 242: 238: 234: 228: 226: 222: 218: 214: 210: 206: 202: 198: 192: 181: 178: 175: 172: 169: 165: 162: 158: 157: 154: 150: 147:of mammalian 146: 141: 132: 126: 122: 118: 114: 110: 106: 101: 95: 83: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 2685:Translocases 2682: 2669: 2656: 2643: 2630: 2620:Transferases 2617: 2604: 2542: 2461:Binding site 2374: 2370: 2364: 2339: 2335: 2329: 2276: 2272: 2262: 2221: 2217: 2211: 2166: 2162: 2152: 2135: 2131: 2125: 2100: 2096: 2090: 2065: 2061: 2055: 2036: 2030: 2005: 2001: 1995: 1983:. Retrieved 1979:the original 1969: 1947:(6): 732–7. 1944: 1940: 1934: 1909: 1905: 1899: 1850: 1846: 1840: 1795: 1791: 1781: 1738: 1734: 1724: 1689: 1685: 1675: 1650: 1646: 1640: 1595: 1591: 1581: 1546: 1542: 1532: 1497: 1493: 1483: 1457: 1416:(4): 482–8. 1413: 1409: 1399: 1372: 1368: 1358: 1325: 1321: 1315: 1270: 1266: 1256: 1221: 1217: 1207: 1180: 1176: 1128: 1124: 1114: 1089: 1085: 1079: 1044: 1040: 994: 990: 965:. Retrieved 961:the original 956: 947: 912: 908: 898: 863: 859: 809: 805: 704: 658: 577:nucleophiles 557:chymotrypsin 443: 423: 403:evolutionary 400: 371: 325: 279:Chymotrypsin 253: 229: 194: 130: 64:protein clan 63: 31: 29: 2456:Active site 1875:10261/78338 1543:ChemBioChem 773:SUPERFAMILY 689:SUPERFAMILY 575:(different 565:proteolysis 521:globin fold 517:alpha helix 481:peroxidases 312:(4fln) and 307:chloroplast 287:calicivirin 2706:Categories 2659:Isomerases 2633:Hydrolases 2500:Regulation 1692:: 108–19. 967:8 December 785:References 430:duplicated 42:for which 2538:EC number 2303:1932-6203 1755:0305-1048 763:Interolog 600:alarmones 537:β strands 519:globular 485:esterases 473:proteases 426:orthology 378:substrate 327:Structure 245:proteases 2562:Kinetics 2486:Cofactor 2449:Activity 2356:12206759 2321:21858139 2273:PLOS ONE 2246:11701921 2022:22885024 1961:10607665 1926:19508187 1891:25258028 1883:17021929 1832:15741509 1773:24271399 1716:25575902 1667:12691742 1632:23382230 1573:26097079 1524:26781812 1440:20591649 1391:15604105 1350:14936647 1342:24557891 1307:19325884 1248:27131377 1199:11435447 1155:22427707 1106:15954844 1071:11752317 1019:13762291 1011:17356578 890:22086950 836:20457744 721:See also 659:Several 646:and the 569:cysteine 561:β-barrel 545:adhesion 449:Examples 434:paralogy 411:kingdoms 407:evidence 310:protease 305:(1bqy), 301:(1l1j), 297:(1exf), 289:(1wqs), 285:(1lvm), 281:(1gg6), 197:homology 166: : 68:protease 48:homology 40:proteins 2672:Ligases 2442:Enzymes 2312:3153485 2281:Bibcode 2254:6636339 2226:Bibcode 2218:Science 2203:3186696 2171:Bibcode 2144:8574878 2117:7932691 2082:2926816 1855:Bibcode 1764:3965090 1707:4420034 1623:3581919 1600:Bibcode 1564:4576821 1515:4724262 1431:2928869 1298:2654728 1275:Bibcode 1239:4987910 1146:3424413 957:Clustal 939:8687420 930:1217404 881:3245014 827:2896194 674:PROSITE 602:in the 551:PA clan 541:Ig-fold 477:lipases 467:, with 465:helices 461:strands 273:in the 241:PA clan 221:neutral 149:histone 117:β-sheet 113:α-helix 103:Above, 2646:Lyases 2354:  2319:  2309:  2301:  2252:  2244:  2201:  2194:282299 2191:  2142:  2115:  2080:  2043:  2020:  1985:28 May 1975:"SCOP" 1959:  1924:  1889:  1881:  1830:  1823:551565 1820:  1771:  1761:  1753:  1714:  1704:  1665:  1630:  1620:  1571:  1561:  1522:  1512:  1472:  1438:  1428:  1389:  1348:  1340:  1305:  1295:  1246:  1236:  1197:  1153:  1143:  1104:  1069:  1059:  1017:  1009:  937:  927:  888:  878:  834:  824:  620:serine 533:sheets 76:MEROPS 2598:Types 2250:S2CID 1887:S2CID 1800:arXiv 1346:S2CID 1062:99061 1015:S2CID 680:PIRSF 597:ppGpp 237:align 38:) of 36:clade 2690:list 2683:EC7 2677:list 2670:EC6 2664:list 2657:EC5 2651:list 2644:EC4 2638:list 2631:EC3 2625:list 2618:EC2 2612:list 2605:EC1 2352:PMID 2317:PMID 2299:ISSN 2242:PMID 2199:PMID 2140:PMID 2113:PMID 2078:PMID 2041:ISBN 2018:PMID 2006:1834 1987:2014 1957:PMID 1922:PMID 1879:PMID 1828:PMID 1769:PMID 1751:ISSN 1712:PMID 1663:PMID 1628:PMID 1569:PMID 1520:PMID 1470:ISBN 1436:PMID 1387:PMID 1338:PMID 1303:PMID 1244:PMID 1195:PMID 1151:PMID 1102:PMID 1067:PMID 1007:PMID 969:2014 935:PMID 886:PMID 832:PMID 778:CATH 714:DALI 699:CATH 697:and 695:SCOP 668:Pfam 622:and 571:and 491:and 415:life 372:The 356:DALI 342:and 203:and 125:DALI 80:CAZy 78:and 70:and 2379:doi 2344:doi 2340:321 2307:PMC 2289:doi 2234:doi 2222:294 2189:PMC 2179:doi 2105:doi 2101:242 2070:doi 2066:205 2010:doi 1949:doi 1914:doi 1871:hdl 1863:doi 1818:PMC 1810:doi 1759:PMC 1743:doi 1702:PMC 1694:doi 1690:574 1655:doi 1651:328 1618:PMC 1608:doi 1596:110 1559:PMC 1551:doi 1510:PMC 1502:doi 1462:doi 1426:PMC 1418:doi 1377:doi 1330:doi 1293:PMC 1283:doi 1234:PMC 1226:doi 1185:doi 1181:276 1141:PMC 1133:doi 1094:doi 1057:PMC 1049:doi 999:doi 925:PMC 917:doi 913:316 876:PMC 868:doi 822:PMC 814:doi 707:PDB 436:). 413:of 243:of 170:, 163:, 2708:: 2373:. 2350:. 2338:. 2315:. 2305:. 2297:. 2287:. 2275:. 2271:. 2248:. 2240:. 2232:. 2220:. 2197:. 2187:. 2177:. 2167:85 2165:. 2161:. 2134:. 2111:. 2099:. 2076:. 2064:. 2016:. 2004:. 1955:. 1943:. 1920:. 1910:16 1908:. 1885:. 1877:. 1869:. 1861:. 1851:63 1849:. 1826:. 1816:. 1808:. 1796:15 1794:. 1790:. 1767:. 1757:. 1749:. 1739:42 1737:. 1733:. 1710:. 1700:. 1688:. 1684:. 1661:. 1649:. 1626:. 1616:. 1606:. 1594:. 1590:. 1567:. 1557:. 1547:16 1545:. 1541:. 1518:. 1508:. 1498:17 1496:. 1492:. 1468:, 1448:^ 1434:. 1424:. 1414:20 1412:. 1408:. 1385:. 1373:21 1371:. 1367:. 1344:. 1336:. 1326:41 1324:. 1301:. 1291:. 1281:. 1269:. 1265:. 1242:. 1232:. 1222:44 1220:. 1216:. 1193:. 1179:. 1175:. 1163:^ 1149:. 1139:. 1129:29 1127:. 1123:. 1100:. 1090:74 1088:. 1065:. 1055:. 1045:30 1043:. 1039:. 1027:^ 1013:. 1005:. 993:. 977:^ 955:. 933:. 923:. 911:. 907:. 884:. 874:. 864:40 862:. 858:. 844:^ 830:. 820:. 810:38 808:. 804:. 792:^ 606:. 579:). 487:, 483:, 479:, 475:, 159:* 143:A 30:A 2692:) 2688:( 2679:) 2675:( 2666:) 2662:( 2653:) 2649:( 2640:) 2636:( 2627:) 2623:( 2614:) 2610:( 2434:e 2427:t 2420:v 2385:. 2381:: 2375:3 2358:. 2346:: 2323:. 2291:: 2283:: 2277:6 2256:. 2236:: 2228:: 2205:. 2181:: 2173:: 2146:. 2136:2 2119:. 2107:: 2084:. 2072:: 2049:. 2024:. 2012:: 1989:. 1963:. 1951:: 1945:9 1928:. 1916:: 1893:. 1873:: 1865:: 1857:: 1834:. 1812:: 1802:: 1775:. 1745:: 1718:. 1696:: 1669:. 1657:: 1634:. 1610:: 1602:: 1575:. 1553:: 1526:. 1504:: 1464:: 1442:. 1420:: 1393:. 1379:: 1352:. 1332:: 1309:. 1285:: 1277:: 1271:5 1250:. 1228:: 1201:. 1187:: 1157:. 1135:: 1108:. 1096:: 1073:. 1051:: 1021:. 1001:: 995:8 971:. 941:. 919:: 892:. 870:: 838:. 816:: 640:8 638:β 636:8 547:. 539:( 523:. 495:. 182:. 177:␣ 20:)

Index

Protein superfamilies
clade
proteins
common ancestry
homology
structural alignment
Sequence homology
protein families
protease
glycosyl hydrolases
MEROPS
CAZy


secondary structural
PA protease clan
α-helix
β-sheet
catalytic triad
DALI

sequence alignment
histone
gene duplication
conserved sequence
conservative mutations

non-conservative mutations
Sequence homology
homology

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.