Knowledge

Protein superfamily

Source 📝

83: 256: 129: 2389: 82: 433:
A majority of proteins contain multiple domains. Between 66-80% of eukaryotic proteins have multiple domains while about 40-60% of prokaryotic proteins have multiple domains. Over time, many of the superfamilies of domains have mixed together. In fact, it is very rare to find “consistently isolated
434:
superfamilies”. When domains do combine, the N- to C-terminal domain order (the "domain architecture") is typically well conserved. Additionally, the number of domain combinations seen in nature is small compared to the number of possibilities, suggesting that selection acts on all combinations.
219:
Using sequence similarity to infer homology has several limitations. There is no minimum level of sequence similarity guaranteed to produce identical structures. Over long periods of evolution, related proteins may show no detectable sequence similarity to one another. Sequences with many
318:
is much more evolutionarily conserved than sequence, such that proteins with highly similar structures can have entirely different sequences. Over very long evolutionary timescales, very few residues show detectable amino acid sequence conservation, however
266:(PA clan). The double β-barrel that characterises the superfamily is highlighted in red. Shown are representative structures from several families within the PA superfamily. Note that some proteins show partially modified structural. 369:
specificity may be significantly different. Catalytic residues also tend to occur in the same order in the protein sequence. For the families within the PA clan of proteases, although there has been divergent evolution of the
347:, use the 3D structure of a protein of interest to find proteins with similar folds. However, on rare occasions, related proteins may evolve to be structurally dissimilar and relatedness can only be inferred by other methods. 1026:"SUPFAM--a database of potential protein superfamily relationships derived by comparing sequence-based and structure-based families: implications for structural genomics and function annotation in genomes" 1160:
Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O'Donnell E, Salvesen GS, Travis J, Whisstock JC (September 2001).
120:
Superfamilies of proteins are identified using a number of methods. Closely related members can be identified by different methods to those needed to group the most evolutionarily divergent members.
2323:
Nagano N, Orengo CA, Thornton JM (August 2002). "One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions".
1162:"The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature" 579: 1718:
Akiva, Eyal; Brown, Shoshana; Almonacid, Daniel E.; Barber, Alan E.; Custer, Ashley F.; Hicks, Michael A.; Huang, Conrad C.; Lauck, Florian; Mashiyama, Susan T. (2013-11-23).
240:. Conversely, the individual families that make up a superfamily are defined on the basis of their sequence alignment, for example the C04 protease family within the PA clan. 243:
Nevertheless, sequence similarity is the most commonly used form of evidence to infer relatedness, since the number of known sequences vastly outnumbers the number of known
382:
multiple times independently, and so form separate superfamilies, and in some superfamilies display a range of different (though often chemically similar) mechanisms.
1309:
Li D, Zhang L, Yin H, Xu H, Satkoski Trask J, Smith DG, Li Y, Yang M, Zhu Q (June 2014). "Evolution of primate α and θ defensins revealed by analysis of genomes".
398:
that is currently possible. They are therefore amongst the most ancient evolutionary events currently studied. Some superfamilies have members present in all
339:. Consequently, protein tertiary structure can be used to detect homology between proteins even when no evidence of relatedness remains in their sequences. 2049:
Bolognesi M, Onesti S, Gatti G, Coda A, Ascenzi P, Brunori M (February 1989). "Aplysia limacina myoglobin. Crystallographic analysis at 1.6 A resolution".
413:
Superfamily members may be in different species, with the ancestral protein being the form of the protein that existed in the ancestral species (
1252:"Cross-Over between Discrete and Continuous Protein Structure Space: Insights into Automatic Classification and Networks of Protein Structures" 89: 2258:"The RelA/SpoT Homolog (RSH) Superfamily: Distribution and Functional Evolution of ppGpp Synthetases and Hydrolases across the Tree of Life" 1834:
Ranea JA, Sillero A, Thornton JM, Orengo CA (October 2006). "Protein superfamily evolution and the last universal common ancestor (LUCA)".
378:
on proteins, peptides or amino acids. However, mechanism alone is not sufficient to infer relatedness. Some catalytic mechanisms have been
204:), so it is a more sensitive detection method. Since some of the amino acids have similar properties (e.g., charge, hydrophobicity, size), 247:. In the absence of structural information, sequence similarity constrains the limits of which proteins can be assigned to a superfamily. 1963: 1445:
Dessailly, Benoit H.; Dawson, Natalie L.; Das, Sayoni; Orengo, Christine A. (2017), "Function Diversity within Folds and Superfamilies",
1634:
Coutinho PM, Deleury E, Davies GJ, Henrissat B (April 2003). "An evolving hierarchical family classification for glycosyltransferases".
680:- Library of HMMs representing superfamilies and database of (superfamily and family) annotations for all completely sequenced organisms 1989:
Mohamed MF, Hollfelder F (January 2013). "Efficient, crosswise catalytic promiscuity among enzymes that catalyze phosphoryl transfer".
941: 344: 113: 2084:
Bork P, Holm L, Sander C (September 1994). "The immunoglobulin fold. Structural classification, sequence patterns and common core".
2148:"Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications" 2393: 683: 188:. Sequence similarity is considered a good predictor of relatedness, since similar sequences are more likely the result of 144:. Residues that are conserved across all sequences are highlighted in grey. Below the protein sequences is a key denoting: 1669:
Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C (May 2015).
2033: 978:
Han JH, Batey S, Nickson AA, Teichmann SA, Clarke J (April 2007). "The folding and evolution of multidomain proteins".
212:
to function. The most conserved sequence regions of a protein often correspond to functionally important regions like
2421: 1577:"Intrinsic evolutionary constraints on protease structure, enzyme acylation, and the identity of the catalytic triad" 1462: 390:
Protein superfamilies represent the current limits of our ability to identify common ancestry. They are the largest
47:
can then be deduced even if not apparent (due to low sequence similarity). Superfamilies typically contain several
2715: 2720: 407: 2577: 184:
Historically, the similarity of different amino acid sequences has been the most common method of inferring
2700: 1024:
Pandit SB, Gosar D, Abhiman S, Sujatha S, Dixit SS, Mhatre NS, Sowdhamini R, Srinivasan N (January 2002).
417:). Conversely, the proteins may be in the same species, but evolved from a single protein whose gene was 271: 2205:
Vetter IR, Wittinghofer A (November 2001). "The guanine nucleotide-binding switch in three dimensions".
1928:
Nardini M, Dijkstra BW (December 1999). "Alpha/beta hydrolase fold enzymes: the family keeps growing".
515: 244: 2705: 2678: 2665: 2652: 2639: 2626: 2613: 2600: 2562: 283: 2572: 2526: 2469: 585: 366: 2474: 291: 1073:
Orengo CA, Thornton JM (2005). "Protein families and their evolution-a structural perspective".
702: 236:, for example, not a single residue is conserved through the superfamily, not even those in the 2710: 414: 302: 1967: 422: 2495: 2414: 1528:"Handicap-Recover Evolution Leads to a Chemically Versatile, Nucleophile-Permissive Protease" 1086: 756: 604: 332: 205: 156: 949: 2567: 2269: 2214: 2159: 2119:
Brümmendorf T, Rathjen FG (1995). "Cell adhesion molecules 1: immunoglobulin superfamily".
1843: 1588: 1263: 716: 649: 487: 379: 340: 320: 310: 197: 93: 40: 576:
Members share a common catalytic G domain of a 6-strand β sheet surrounded by 5 α-helices.
8: 529: 362: 324: 259: 193: 108:, L indicates loop. Below, sequence conservation for the same alignment. Arrows indicate 2273: 2218: 2163: 1847: 1592: 1267: 2464: 2300: 2257: 2238: 1875: 1788: 1752: 1719: 1695: 1670: 1611: 1576: 1552: 1527: 1503: 1478: 1419: 1394: 1334: 1286: 1251: 1227: 1202: 1134: 1109: 1003: 918: 893: 869: 844: 815: 790: 746: 612: 598: 592: 493: 443: 375: 336: 225: 149: 133: 60: 36: 2371: 2336: 2182: 2147: 1941: 1811: 1776: 1647: 2340: 2305: 2287: 2230: 2187: 2128: 2101: 2066: 2062: 2029: 2006: 1945: 1910: 1867: 1816: 1757: 1739: 1700: 1651: 1616: 1557: 1508: 1458: 1424: 1375: 1326: 1291: 1232: 1183: 1139: 1090: 1055: 1050: 1025: 995: 923: 874: 820: 741: 731: 695: 557: 477: 399: 315: 255: 185: 179: 44: 1879: 1370: 1353: 1338: 1007: 2510: 2505: 2479: 2407: 2367: 2332: 2295: 2277: 2242: 2222: 2177: 2167: 2093: 2058: 1998: 1937: 1902: 1859: 1851: 1806: 1798: 1747: 1731: 1690: 1682: 1643: 1606: 1596: 1547: 1539: 1498: 1490: 1450: 1414: 1406: 1365: 1318: 1281: 1271: 1222: 1214: 1173: 1129: 1121: 1082: 1045: 1037: 987: 913: 905: 864: 856: 810: 802: 561: 418: 374:
residues used to perform catalysis, all members use a similar mechanism to perform
356: 328: 209: 201: 189: 168: 141: 48: 2557: 2541: 2454: 2282: 2002: 1276: 736: 721: 608: 571: 457: 371: 279: 237: 109: 32: 1454: 690:- Classifications of protein structures into superfamilies, families and domains 200:. Amino acid sequence is typically more conserved than DNA sequence (due to the 2595: 2536: 2152:
Proceedings of the National Academy of Sciences of the United States of America
1906: 1581:
Proceedings of the National Academy of Sciences of the United States of America
726: 1855: 1777:"Protein structure and evolutionary history determine sequence space topology" 1686: 1410: 1322: 845:"MEROPS: the database of proteolytic enzymes, their substrates and inhibitors" 216:
and binding sites, since these regions are less tolerant to sequence changes.
2694: 2500: 2459: 2291: 1743: 533: 2226: 2172: 1601: 1125: 2449: 2344: 2309: 2234: 2097: 2010: 1949: 1914: 1871: 1820: 1761: 1704: 1655: 1620: 1561: 1543: 1512: 1428: 1379: 1330: 1295: 1236: 1187: 1178: 1161: 1143: 1094: 1059: 1041: 999: 878: 824: 632: 565: 545: 481: 391: 298: 287: 267: 213: 2191: 2132: 2105: 2070: 1735: 927: 698:
for proteins with structural homology to a target structure, for example:
406:, indicating that the last common ancestor of that superfamily was in the 2673: 2608: 2444: 1218: 860: 806: 761: 677: 553: 509: 505: 469: 295: 275: 1494: 549: 525: 1863: 1802: 1526:
Shafee T, Gatti-Lafranconi P, Minter R, Hollfelder F (September 2015).
618: 449: 140:
proteins. The similarity of the sequences implies that they evolved by
43:
and mechanistic similarity, even if no sequence similarity is evident.
1793: 1525: 909: 521: 453: 105: 101: 2647: 2621: 751: 636: 603:
Members share a high-energy, stressed fold which can undergo a large
492:
Members share an αβα sandwich structure as well as performing common
473: 461: 991: 556:
mechanisms but sequence identity of <10%. The clan contains both
128: 2256:
Atkinson, Gemma C.; Tenson, Tanel; Hauryliuk, Vasili (2011-08-09).
1668: 894:"Updating the sequence-based classification of glycosyl hydrolases" 668: 588: 395: 233: 56: 1893:
Carr PD, Ollis DL (2009). "Alpha/beta hydrolase fold: an update".
705:- Structural alignment based on a distance alignment matrix method 335:
of the protein structure may also be conserved, as is seen in the
1774: 662: 539: 465: 263: 229: 137: 97: 28: 365:
of enzymes within a superfamily is commonly conserved, although
2660: 2430: 2388: 2358:
Farber G (1993). "An α/β-barrel full of evolutionary trouble".
1775:
Shakhnovich BE, Deeds E, Delisi C, Shakhnovich E (March 2005).
1249: 652:
document protein superfamilies and protein folds, for example:
499: 64: 1633: 2634: 1991:
Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics
1671:"Independent evolution of four heme peroxidase superfamilies" 221: 165: 24: 665:- Database of protein domains, families and functional sites 51:
which show sequence similarity within each family. The term
1479:"Causes of evolutionary rate variation among protein sites" 766: 687: 656: 403: 68: 2399: 1833: 1354:"Structural drift: a possible path to protein fold change" 1159: 1717: 1023: 2048: 1444: 1110:"Sequence evolution correlates with structural dynamics" 977: 674:
PASS2 - Protein Alignment as Structural Superfamilies v2
584:
Members share capability to hydrolyze and/or synthesize
228:
and so identify the homologous sequence regions. In the
2255: 1250:
Pascual-García A, Abia D, Ortiz ÁR, Bastolla U (2009).
1447:
From Protein Structure to Function with Bioinformatics
842: 2322: 1476: 843:Rawlings ND, Barrett AJ, Bateman A (January 2012). 2204: 2118: 659:- Protein families database of alignments and HMMs 1988: 1477:Echave J, Spielman SJ, Wilke CO (February 2016). 532:), and are involved in recognition, binding, and 39:). Usually this common ancestry is inferred from 2692: 891: 643: 2145: 1927: 694:Similarly there are algorithms that search the 631:barrel structure. It is one of the most common 520:Members share a sandwich-like structure of two 460:residues in the same order, activities include 112:residues. Aligned on the basis of structure by 2083: 1574: 1351: 1072: 788: 2415: 885: 2198: 2023: 1921: 1308: 1155: 1153: 385: 2112: 2077: 2422: 2408: 1449:, Springer Netherlands, pp. 295–325, 1392: 1200: 2299: 2281: 2181: 2171: 2146:Bazan JF, Fletterick RJ (November 1988). 1892: 1810: 1792: 1751: 1720:"The Structure–Function Linkage Database" 1694: 1610: 1600: 1551: 1502: 1418: 1369: 1285: 1275: 1226: 1177: 1150: 1133: 1049: 1019: 1017: 917: 868: 814: 791:"Dali server: conservation mapping in 3D" 448:Members share an α/β sheet, containing 8 350: 1575:Buller AR, Townsend CA (February 2013). 1107: 1087:10.1146/annurev.biochem.74.082803.133029 838: 836: 834: 254: 250: 127: 2028:(2nd ed.). New York: Garland Pub. 1675:Archives of Biochemistry and Biophysics 639:of this superfamily is still contested. 2693: 2357: 1014: 973: 971: 969: 967: 123: 2403: 2360:Current Opinion in Structural Biology 1930:Current Opinion in Structural Biology 1440: 1438: 1399:Current Opinion in Structural Biology 1352:Krishna SS, Grishin NV (April 2005). 980:Nature Reviews Molecular Cell Biology 831: 607:, which is typically used to inhibit 892:Henrissat B, Bairoch A (June 1996). 784: 782: 1166:The Journal of Biological Chemistry 964: 671:- SuperFamily Classification System 224:can also sometimes be difficult to 13: 1435: 789:Holm L, Rosenström P (July 2010). 428: 327:motifs are highly conserved. Some 162:. semi-conservative mutations, and 96:conservation of 80 members of the 14: 2732: 2381: 2026:Introduction to protein structure 1393:Bryan PN, Orban J (August 2010). 1108:Liu Y, Bahar I (September 2012). 779: 292:snake venom plasminogen activator 74: 2387: 488:Alkaline phosphatase superfamily 376:covalent, nucleophilic catalysis 208:that interchange them are often 81: 2351: 2316: 2249: 2139: 2042: 2017: 1982: 1956: 1886: 1827: 1768: 1711: 1662: 1627: 1568: 1519: 1470: 1386: 1345: 1302: 1243: 1201:Holm L, Laakso LM (July 2016). 1194: 1114:Molecular Biology and Evolution 1836:Journal of Molecular Evolution 1101: 1066: 934: 615:by disrupting their structure. 408:last universal common ancestor 1: 2372:10.1016/S0959-440X(05)80114-9 2337:10.1016/s0022-2836(02)00649-6 1942:10.1016/S0959-440X(99)00037-8 1648:10.1016/S0022-2836(03)00307-3 1371:10.1093/bioinformatics/bti227 1075:Annual Review of Biochemistry 773: 644:Protein superfamily resources 2325:Journal of Molecular Biology 2283:10.1371/journal.pone.0023479 2086:Journal of Molecular Biology 2063:10.1016/0022-2836(89)90224-6 2051:Journal of Molecular Biology 2003:10.1016/j.bbapap.2012.07.015 1636:Journal of Molecular Biology 1395:"Proteins that switch folds" 1277:10.1371/journal.pcbi.1000331 801:(Web Server issue): W545–9. 196:, rather than the result of 7: 2429: 2024:Branden C, Tooze J (1999). 1895:Protein and Peptide Letters 1455:10.1007/978-94-024-1069-3_9 855:(Database issue): D343–50. 709: 437: 272:tobacco etch virus protease 100:(superfamily). H indicates 63:superfamilies based on the 10: 2737: 1907:10.2174/092986609789071298 1256:PLOS Computational Biology 516:Immunoglobulin superfamily 354: 308: 177: 169:non-conservative mutations 2586: 2578:Michaelis–Menten kinetics 2550: 2519: 2488: 2437: 1856:10.1007/s00239-005-0289-7 1687:10.1016/j.abb.2014.12.025 1411:10.1016/j.sbi.2010.06.002 1323:10.1007/s11033-014-3253-z 1311:Molecular Biology Reports 444:α/β hydrolase superfamily 394:grouping based on direct 386:Evolutionary significance 23:is the largest grouping ( 2470:Diffusion-limited enzyme 1483:Nature Reviews. Genetics 222:insertions and deletions 71:classification systems. 2227:10.1126/science.1062023 2173:10.1073/pnas.85.21.7872 1602:10.1073/pnas.1221050110 898:The Biochemical Journal 623:Members share a large α 202:degenerate genetic code 2716:Protein classification 2098:10.1006/jmbi.1994.1582 1724:Nucleic Acids Research 1544:10.1002/cbic.201500295 1207:Nucleic Acids Research 1179:10.1074/jbc.R100016200 1030:Nucleic Acids Research 942:"Clustal FAQ #Symbols" 849:Nucleic Acids Research 795:Nucleic Acids Research 619:TIM barrel superfamily 496:by a common mechanism. 351:Mechanistic similarity 333:conformational changes 306: 303:equine arteritis virus 206:conservative mutations 175: 157:conservative mutations 2721:Protein superfamilies 2563:Eadie–Hofstee diagram 2496:Allosteric regulation 2394:Protein superfamilies 1126:10.1093/molbev/mss097 757:List of gene families 605:conformational change 494:promiscuous reactions 258: 251:Structural similarity 131: 55:is commonly used for 35:can be inferred (see 2573:Lineweaver–Burk plot 2396:at Wikimedia Commons 1203:"Dali server update" 1042:10.1093/nar/30.1.289 717:Structural alignment 650:biological databases 410:of all life (LUCA). 380:convergently evolved 341:Structural alignment 321:secondary structural 311:Structural alignment 198:convergent evolution 94:secondary structural 41:structural alignment 16:Grouping of proteins 2701:Molecular evolution 2274:2011PLoSO...623479A 2219:2001Sci...294.1299V 2164:1988PNAS...85.7872B 1848:2006JMolE..63..513R 1736:10.1093/nar/gkt1130 1593:2013PNAS..110E.653B 1495:10.1038/nrg.2015.18 1268:2009PLSCB...5E0331P 504:Members share an 8- 363:catalytic mechanism 325:tertiary structural 260:Structural homology 245:tertiary structures 194:divergent evolution 124:Sequence similarity 61:glycosyl hydrolases 21:protein superfamily 2532:Enzyme superfamily 2465:Enzyme promiscuity 2213:(5545): 1299–304. 1803:10.1101/gr.3133605 1219:10.1093/nar/gkw357 952:on 24 October 2016 861:10.1093/nar/gkr987 807:10.1093/nar/gkq366 747:Homology (biology) 613:cysteine proteases 599:Serpin superfamily 593:stringent response 500:Globin superfamily 478:epoxide hydrolases 343:programs, such as 337:serpin superfamily 307: 176: 150:conserved sequence 134:sequence alignment 2688: 2687: 2392:Media related to 1730:(D1): D521–D530. 1538:(13): 1866–1869. 910:10.1042/bj3160695 742:Protein structure 732:Protein subfamily 552:fold and similar 282:protease (1fp7), 180:Sequence homology 45:Sequence homology 2728: 2706:Protein families 2568:Hanes–Woolf plot 2511:Enzyme activator 2506:Enzyme inhibitor 2480:Enzyme catalysis 2424: 2417: 2410: 2401: 2400: 2391: 2376: 2375: 2355: 2349: 2348: 2320: 2314: 2313: 2303: 2285: 2253: 2247: 2246: 2202: 2196: 2195: 2185: 2175: 2143: 2137: 2136: 2116: 2110: 2109: 2081: 2075: 2074: 2046: 2040: 2039: 2021: 2015: 2014: 1986: 1980: 1979: 1977: 1975: 1966:. Archived from 1960: 1954: 1953: 1925: 1919: 1918: 1890: 1884: 1883: 1831: 1825: 1824: 1814: 1796: 1772: 1766: 1765: 1755: 1715: 1709: 1708: 1698: 1666: 1660: 1659: 1631: 1625: 1624: 1614: 1604: 1572: 1566: 1565: 1555: 1523: 1517: 1516: 1506: 1474: 1468: 1467: 1442: 1433: 1432: 1422: 1390: 1384: 1383: 1373: 1349: 1343: 1342: 1306: 1300: 1299: 1289: 1279: 1247: 1241: 1240: 1230: 1198: 1192: 1191: 1181: 1157: 1148: 1147: 1137: 1105: 1099: 1098: 1070: 1064: 1063: 1053: 1021: 1012: 1011: 975: 962: 961: 959: 957: 948:. Archived from 938: 932: 931: 921: 889: 883: 882: 872: 840: 829: 828: 818: 786: 562:serine proteases 544:Members share a 524:of antiparallel 357:Enzyme mechanism 329:protein dynamics 305:protease (1mbm). 284:exfoliatin toxin 190:gene duplication 142:gene duplication 98:PA protease clan 85: 49:protein families 2736: 2735: 2731: 2730: 2729: 2727: 2726: 2725: 2691: 2690: 2689: 2684: 2596:Oxidoreductases 2582: 2558:Enzyme kinetics 2546: 2542:List of enzymes 2515: 2484: 2455:Catalytic triad 2433: 2428: 2384: 2379: 2356: 2352: 2321: 2317: 2254: 2250: 2203: 2199: 2144: 2140: 2127:(9): 963–1108. 2121:Protein Profile 2117: 2113: 2082: 2078: 2047: 2043: 2036: 2022: 2018: 1987: 1983: 1973: 1971: 1970:on 29 July 2014 1962: 1961: 1957: 1926: 1922: 1901:(10): 1137–48. 1891: 1887: 1832: 1828: 1781:Genome Research 1773: 1769: 1716: 1712: 1667: 1663: 1632: 1628: 1573: 1569: 1524: 1520: 1475: 1471: 1465: 1443: 1436: 1391: 1387: 1350: 1346: 1307: 1303: 1262:(3): e1000331. 1248: 1244: 1199: 1195: 1172:(36): 33293–6. 1158: 1151: 1106: 1102: 1071: 1067: 1022: 1015: 992:10.1038/nrm2144 976: 965: 955: 953: 940: 939: 935: 904:(Pt 2): 695–6. 890: 886: 841: 832: 787: 780: 776: 771: 737:Protein mimetic 722:Protein domains 712: 646: 630: 626: 580:RSH superfamily 572:Ras superfamily 458:catalytic triad 440: 431: 429:Diversification 421:in the genome ( 388: 372:catalytic triad 359: 353: 313: 280:west nile virus 253: 238:catalytic triad 214:catalytic sites 182: 174: 126: 118: 117: 116: 110:catalytic triad 91: 86: 77: 33:common ancestry 17: 12: 11: 5: 2734: 2724: 2723: 2718: 2713: 2708: 2703: 2686: 2685: 2683: 2682: 2669: 2656: 2643: 2630: 2617: 2604: 2590: 2588: 2584: 2583: 2581: 2580: 2575: 2570: 2565: 2560: 2554: 2552: 2548: 2547: 2545: 2544: 2539: 2534: 2529: 2523: 2521: 2520:Classification 2517: 2516: 2514: 2513: 2508: 2503: 2498: 2492: 2490: 2486: 2485: 2483: 2482: 2477: 2472: 2467: 2462: 2457: 2452: 2447: 2441: 2439: 2435: 2434: 2427: 2426: 2419: 2412: 2404: 2398: 2397: 2383: 2382:External links 2380: 2378: 2377: 2366:(3): 409–412. 2350: 2315: 2248: 2197: 2158:(21): 7872–6. 2138: 2111: 2076: 2041: 2035:978-0815323051 2034: 2016: 1981: 1955: 1920: 1885: 1826: 1767: 1710: 1661: 1626: 1587:(8): E653–61. 1567: 1518: 1469: 1463: 1434: 1385: 1364:(8): 1308–10. 1358:Bioinformatics 1344: 1317:(6): 3859–66. 1301: 1242: 1213:(W1): W351–5. 1193: 1149: 1120:(9): 2253–63. 1100: 1081:(1): 867–900. 1065: 1013: 963: 933: 884: 830: 777: 775: 772: 770: 769: 764: 759: 754: 749: 744: 739: 734: 729: 727:Protein family 724: 719: 713: 711: 708: 707: 706: 692: 691: 681: 675: 672: 666: 660: 645: 642: 641: 640: 628: 624: 621: 616: 601: 596: 582: 577: 574: 569: 542: 537: 518: 513: 502: 497: 490: 485: 446: 439: 436: 430: 427: 387: 384: 355:Main article: 352: 349: 309:Main article: 264:PA superfamily 252: 249: 178:Main article: 173: 172: 163: 160: 153: 145: 125: 122: 104:, E indicates 88: 87: 80: 79: 78: 76: 75:Identification 73: 15: 9: 6: 4: 3: 2: 2733: 2722: 2719: 2717: 2714: 2712: 2711:Protein folds 2709: 2707: 2704: 2702: 2699: 2698: 2696: 2680: 2676: 2675: 2670: 2667: 2663: 2662: 2657: 2654: 2650: 2649: 2644: 2641: 2637: 2636: 2631: 2628: 2624: 2623: 2618: 2615: 2611: 2610: 2605: 2602: 2598: 2597: 2592: 2591: 2589: 2585: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2555: 2553: 2549: 2543: 2540: 2538: 2537:Enzyme family 2535: 2533: 2530: 2528: 2525: 2524: 2522: 2518: 2512: 2509: 2507: 2504: 2502: 2501:Cooperativity 2499: 2497: 2494: 2493: 2491: 2487: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2460:Oxyanion hole 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2442: 2440: 2436: 2432: 2425: 2420: 2418: 2413: 2411: 2406: 2405: 2402: 2395: 2390: 2386: 2385: 2373: 2369: 2365: 2361: 2354: 2346: 2342: 2338: 2334: 2331:(5): 741–65. 2330: 2326: 2319: 2311: 2307: 2302: 2297: 2293: 2289: 2284: 2279: 2275: 2271: 2268:(8): e23479. 2267: 2263: 2259: 2252: 2244: 2240: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2201: 2193: 2189: 2184: 2179: 2174: 2169: 2165: 2161: 2157: 2153: 2149: 2142: 2134: 2130: 2126: 2122: 2115: 2107: 2103: 2099: 2095: 2092:(4): 309–20. 2091: 2087: 2080: 2072: 2068: 2064: 2060: 2057:(3): 529–44. 2056: 2052: 2045: 2037: 2031: 2027: 2020: 2012: 2008: 2004: 2000: 1997:(1): 417–24. 1996: 1992: 1985: 1969: 1965: 1959: 1951: 1947: 1943: 1939: 1935: 1931: 1924: 1916: 1912: 1908: 1904: 1900: 1896: 1889: 1881: 1877: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1842:(4): 513–25. 1841: 1837: 1830: 1822: 1818: 1813: 1808: 1804: 1800: 1795: 1794:q-bio/0404040 1790: 1787:(3): 385–92. 1786: 1782: 1778: 1771: 1763: 1759: 1754: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1721: 1714: 1706: 1702: 1697: 1692: 1688: 1684: 1680: 1676: 1672: 1665: 1657: 1653: 1649: 1645: 1642:(2): 307–17. 1641: 1637: 1630: 1622: 1618: 1613: 1608: 1603: 1598: 1594: 1590: 1586: 1582: 1578: 1571: 1563: 1559: 1554: 1549: 1545: 1541: 1537: 1533: 1529: 1522: 1514: 1510: 1505: 1500: 1496: 1492: 1489:(2): 109–21. 1488: 1484: 1480: 1473: 1466: 1464:9789402410679 1460: 1456: 1452: 1448: 1441: 1439: 1430: 1426: 1421: 1416: 1412: 1408: 1404: 1400: 1396: 1389: 1381: 1377: 1372: 1367: 1363: 1359: 1355: 1348: 1340: 1336: 1332: 1328: 1324: 1320: 1316: 1312: 1305: 1297: 1293: 1288: 1283: 1278: 1273: 1269: 1265: 1261: 1257: 1253: 1246: 1238: 1234: 1229: 1224: 1220: 1216: 1212: 1208: 1204: 1197: 1189: 1185: 1180: 1175: 1171: 1167: 1163: 1156: 1154: 1145: 1141: 1136: 1131: 1127: 1123: 1119: 1115: 1111: 1104: 1096: 1092: 1088: 1084: 1080: 1076: 1069: 1061: 1057: 1052: 1047: 1043: 1039: 1036:(1): 289–93. 1035: 1031: 1027: 1020: 1018: 1009: 1005: 1001: 997: 993: 989: 986:(4): 319–30. 985: 981: 974: 972: 970: 968: 951: 947: 943: 937: 929: 925: 920: 915: 911: 907: 903: 899: 895: 888: 880: 876: 871: 866: 862: 858: 854: 850: 846: 839: 837: 835: 826: 822: 817: 812: 808: 804: 800: 796: 792: 785: 783: 778: 768: 765: 763: 760: 758: 755: 753: 750: 748: 745: 743: 740: 738: 735: 733: 730: 728: 725: 723: 720: 718: 715: 714: 704: 701: 700: 699: 697: 689: 685: 682: 679: 676: 673: 670: 667: 664: 661: 658: 655: 654: 653: 651: 638: 637:monophylicity 634: 633:protein folds 622: 620: 617: 614: 610: 606: 602: 600: 597: 594: 590: 587: 583: 581: 578: 575: 573: 570: 567: 563: 559: 555: 551: 548:-like double 547: 543: 541: 538: 535: 531: 527: 523: 519: 517: 514: 511: 507: 503: 501: 498: 495: 491: 489: 486: 483: 482:dehalogenases 479: 475: 471: 467: 463: 459: 455: 452:connected by 451: 447: 445: 442: 441: 435: 426: 424: 420: 416: 411: 409: 405: 401: 397: 393: 383: 381: 377: 373: 368: 364: 358: 348: 346: 342: 338: 334: 330: 326: 323:elements and 322: 317: 312: 304: 300: 297: 293: 289: 288:HtrA protease 285: 281: 277: 273: 269: 265: 261: 257: 248: 246: 241: 239: 235: 231: 227: 223: 217: 215: 211: 207: 203: 199: 195: 191: 187: 181: 170: 167: 164: 161: 158: 154: 151: 147: 146: 143: 139: 136:of mammalian 135: 130: 121: 115: 111: 107: 103: 99: 95: 90: 84: 72: 70: 66: 62: 58: 54: 50: 46: 42: 38: 34: 30: 26: 22: 2674:Translocases 2671: 2658: 2645: 2632: 2619: 2609:Transferases 2606: 2593: 2531: 2450:Binding site 2363: 2359: 2353: 2328: 2324: 2318: 2265: 2261: 2251: 2210: 2206: 2200: 2155: 2151: 2141: 2124: 2120: 2114: 2089: 2085: 2079: 2054: 2050: 2044: 2025: 2019: 1994: 1990: 1984: 1972:. Retrieved 1968:the original 1958: 1936:(6): 732–7. 1933: 1929: 1923: 1898: 1894: 1888: 1839: 1835: 1829: 1784: 1780: 1770: 1727: 1723: 1713: 1678: 1674: 1664: 1639: 1635: 1629: 1584: 1580: 1570: 1535: 1531: 1521: 1486: 1482: 1472: 1446: 1405:(4): 482–8. 1402: 1398: 1388: 1361: 1357: 1347: 1314: 1310: 1304: 1259: 1255: 1245: 1210: 1206: 1196: 1169: 1165: 1117: 1113: 1103: 1078: 1074: 1068: 1033: 1029: 983: 979: 954:. Retrieved 950:the original 945: 936: 901: 897: 887: 852: 848: 798: 794: 693: 647: 566:nucleophiles 546:chymotrypsin 432: 412: 392:evolutionary 389: 360: 314: 268:Chymotrypsin 242: 218: 183: 119: 53:protein clan 52: 20: 18: 2445:Active site 1864:10261/78338 1532:ChemBioChem 762:SUPERFAMILY 678:SUPERFAMILY 564:(different 554:proteolysis 510:globin fold 506:alpha helix 470:peroxidases 301:(4fln) and 296:chloroplast 276:calicivirin 2695:Categories 2648:Isomerases 2622:Hydrolases 2489:Regulation 1681:: 108–19. 956:8 December 774:References 419:duplicated 31:for which 2527:EC number 2292:1932-6203 1744:0305-1048 752:Interolog 589:alarmones 526:β strands 508:globular 474:esterases 462:proteases 415:orthology 367:substrate 316:Structure 234:proteases 2551:Kinetics 2475:Cofactor 2438:Activity 2345:12206759 2310:21858139 2262:PLOS ONE 2235:11701921 2011:22885024 1950:10607665 1915:19508187 1880:25258028 1872:17021929 1821:15741509 1762:24271399 1705:25575902 1656:12691742 1621:23382230 1562:26097079 1513:26781812 1429:20591649 1380:15604105 1339:14936647 1331:24557891 1296:19325884 1237:27131377 1188:11435447 1144:22427707 1095:15954844 1060:11752317 1008:13762291 1000:17356578 879:22086950 825:20457744 710:See also 648:Several 635:and the 558:cysteine 550:β-barrel 534:adhesion 438:Examples 423:paralogy 400:kingdoms 396:evidence 299:protease 294:(1bqy), 290:(1l1j), 286:(1exf), 278:(1wqs), 274:(1lvm), 270:(1gg6), 186:homology 155: : 57:protease 37:homology 29:proteins 2661:Ligases 2431:Enzymes 2301:3153485 2270:Bibcode 2243:6636339 2215:Bibcode 2207:Science 2192:3186696 2160:Bibcode 2133:8574878 2106:7932691 2071:2926816 1844:Bibcode 1753:3965090 1696:4420034 1612:3581919 1589:Bibcode 1553:4576821 1504:4724262 1420:2928869 1287:2654728 1264:Bibcode 1228:4987910 1135:3424413 946:Clustal 928:8687420 919:1217404 870:3245014 816:2896194 663:PROSITE 591:in the 540:PA clan 530:Ig-fold 466:lipases 456:, with 454:helices 450:strands 262:in the 230:PA clan 210:neutral 138:histone 106:β-sheet 102:α-helix 92:Above, 2635:Lyases 2343:  2308:  2298:  2290:  2241:  2233:  2190:  2183:282299 2180:  2131:  2104:  2069:  2032:  2009:  1974:28 May 1964:"SCOP" 1948:  1913:  1878:  1870:  1819:  1812:551565 1809:  1760:  1750:  1742:  1703:  1693:  1654:  1619:  1609:  1560:  1550:  1511:  1501:  1461:  1427:  1417:  1378:  1337:  1329:  1294:  1284:  1235:  1225:  1186:  1142:  1132:  1093:  1058:  1048:  1006:  998:  926:  916:  877:  867:  823:  813:  609:serine 522:sheets 65:MEROPS 2587:Types 2239:S2CID 1876:S2CID 1789:arXiv 1335:S2CID 1051:99061 1004:S2CID 669:PIRSF 586:ppGpp 226:align 27:) of 25:clade 2679:list 2672:EC7 2666:list 2659:EC6 2653:list 2646:EC5 2640:list 2633:EC4 2627:list 2620:EC3 2614:list 2607:EC2 2601:list 2594:EC1 2341:PMID 2306:PMID 2288:ISSN 2231:PMID 2188:PMID 2129:PMID 2102:PMID 2067:PMID 2030:ISBN 2007:PMID 1995:1834 1976:2014 1946:PMID 1911:PMID 1868:PMID 1817:PMID 1758:PMID 1740:ISSN 1701:PMID 1652:PMID 1617:PMID 1558:PMID 1509:PMID 1459:ISBN 1425:PMID 1376:PMID 1327:PMID 1292:PMID 1233:PMID 1184:PMID 1140:PMID 1091:PMID 1056:PMID 996:PMID 958:2014 924:PMID 875:PMID 821:PMID 767:CATH 703:DALI 688:CATH 686:and 684:SCOP 657:Pfam 611:and 560:and 480:and 404:life 361:The 345:DALI 331:and 192:and 114:DALI 69:CAZy 67:and 59:and 2368:doi 2333:doi 2329:321 2296:PMC 2278:doi 2223:doi 2211:294 2178:PMC 2168:doi 2094:doi 2090:242 2059:doi 2055:205 1999:doi 1938:doi 1903:doi 1860:hdl 1852:doi 1807:PMC 1799:doi 1748:PMC 1732:doi 1691:PMC 1683:doi 1679:574 1644:doi 1640:328 1607:PMC 1597:doi 1585:110 1548:PMC 1540:doi 1499:PMC 1491:doi 1451:doi 1415:PMC 1407:doi 1366:doi 1319:doi 1282:PMC 1272:doi 1223:PMC 1215:doi 1174:doi 1170:276 1130:PMC 1122:doi 1083:doi 1046:PMC 1038:doi 988:doi 914:PMC 906:doi 902:316 865:PMC 857:doi 811:PMC 803:doi 696:PDB 425:). 402:of 232:of 159:, 152:, 2697:: 2362:. 2339:. 2327:. 2304:. 2294:. 2286:. 2276:. 2264:. 2260:. 2237:. 2229:. 2221:. 2209:. 2186:. 2176:. 2166:. 2156:85 2154:. 2150:. 2123:. 2100:. 2088:. 2065:. 2053:. 2005:. 1993:. 1944:. 1932:. 1909:. 1899:16 1897:. 1874:. 1866:. 1858:. 1850:. 1840:63 1838:. 1815:. 1805:. 1797:. 1785:15 1783:. 1779:. 1756:. 1746:. 1738:. 1728:42 1726:. 1722:. 1699:. 1689:. 1677:. 1673:. 1650:. 1638:. 1615:. 1605:. 1595:. 1583:. 1579:. 1556:. 1546:. 1536:16 1534:. 1530:. 1507:. 1497:. 1487:17 1485:. 1481:. 1457:, 1437:^ 1423:. 1413:. 1403:20 1401:. 1397:. 1374:. 1362:21 1360:. 1356:. 1333:. 1325:. 1315:41 1313:. 1290:. 1280:. 1270:. 1258:. 1254:. 1231:. 1221:. 1211:44 1209:. 1205:. 1182:. 1168:. 1164:. 1152:^ 1138:. 1128:. 1118:29 1116:. 1112:. 1089:. 1079:74 1077:. 1054:. 1044:. 1034:30 1032:. 1028:. 1016:^ 1002:. 994:. 982:. 966:^ 944:. 922:. 912:. 900:. 896:. 873:. 863:. 853:40 851:. 847:. 833:^ 819:. 809:. 799:38 797:. 793:. 781:^ 595:. 568:). 476:, 472:, 468:, 464:, 148:* 132:A 19:A 2681:) 2677:( 2668:) 2664:( 2655:) 2651:( 2642:) 2638:( 2629:) 2625:( 2616:) 2612:( 2603:) 2599:( 2423:e 2416:t 2409:v 2374:. 2370:: 2364:3 2347:. 2335:: 2312:. 2280:: 2272:: 2266:6 2245:. 2225:: 2217:: 2194:. 2170:: 2162:: 2135:. 2125:2 2108:. 2096:: 2073:. 2061:: 2038:. 2013:. 2001:: 1978:. 1952:. 1940:: 1934:9 1917:. 1905:: 1882:. 1862:: 1854:: 1846:: 1823:. 1801:: 1791:: 1764:. 1734:: 1707:. 1685:: 1658:. 1646:: 1623:. 1599:: 1591:: 1564:. 1542:: 1515:. 1493:: 1453:: 1431:. 1409:: 1382:. 1368:: 1341:. 1321:: 1298:. 1274:: 1266:: 1260:5 1239:. 1217:: 1190:. 1176:: 1146:. 1124:: 1097:. 1085:: 1062:. 1040:: 1010:. 990:: 984:8 960:. 930:. 908:: 881:. 859:: 827:. 805:: 629:8 627:β 625:8 536:. 528:( 512:. 484:. 171:. 166:␣

Index

clade
proteins
common ancestry
homology
structural alignment
Sequence homology
protein families
protease
glycosyl hydrolases
MEROPS
CAZy


secondary structural
PA protease clan
α-helix
β-sheet
catalytic triad
DALI

sequence alignment
histone
gene duplication
conserved sequence
conservative mutations

non-conservative mutations
Sequence homology
homology
gene duplication

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.