Knowledge

Biomolecular structure

Source đź“ť

94: 139: 150: 105: 940: 763: 994: 883:, provides an approximation for the stability of given structure. The most straightforward way to find the lowest free energy structure would be to generate all possible structures and calculate the free energy for them, but the number of possible structures for a sequence increases exponentially with the length of the molecule. For longer molecules, the number of possible secondary structures is vast. 36: 452: 481:. Secondary structure is formally defined by the hydrogen bonds of the biopolymer, as observed in an atomic-resolution structure. In proteins, the secondary structure is defined by patterns of hydrogen bonds between backbone amine and carboxyl groups (sidechain–mainchain and sidechain–sidechain hydrogen bonds are irrelevant), where the 244:. This useful distinction among scales is often expressed as a decomposition of molecular structure into four levels: primary, secondary, tertiary, and quaternary. The scaffold for this multiscale organization of the molecule arises at the secondary level, where the fundamental structural elements are the molecule's various 733:
B-DNA form' is most common under the conditions found in cells, it is not a well-defined conformation but a family or fuzzy set of DNA conformations that occur at the high hydration levels present in a wide variety of living cells. Their corresponding X-ray diffraction & scattering patterns are
680:
Structure probing is the process by which biochemical techniques are used to determine biomolecular structure. This analysis can be used to define the patterns that can be used to infer the molecular structure, experimental analysis of molecular structure and function, and further understanding on
608:
is its three-dimensional structure, as defined by the atomic coordinates. Proteins and nucleic acids fold into complex three-dimensional structures which result in the molecules' functions. While such structures are diverse and complex, they are often composed of recurring, recognizable tertiary
859:
research directed at the RNA structure prediction problem. A common problem for researchers working with RNA is to determine the three-dimensional structure of the molecule given only the nucleic acid sequence. However, in the case of RNA, much of the final structure is determined by the
681:
development of smaller molecules for further biological research. Structure probing analysis can be done through many different methods, which include chemical probing, hydroxyl radical probing, nucleotide analog interference mapping (NAIM), and in-line probing.
920:
Biomolecular design can be considered the inverse of structure prediction. In structure prediction, the structure is determined from a known sequence, whereas, in protein or nucleic acid design, a sequence that will form a desired structure is generated.
539:
interactions within one molecule or set of interacting molecules. The secondary structure of biological RNA's can often be uniquely decomposed into stems and loops. Often, these elements or combinations of them can be further classified, e.g.
727:. An alternate analysis was then proposed by Wilkins et al. in 1953 for B-DNA X-ray diffraction and scattering patterns of hydrated, bacterial-oriented DNA fibers and trout sperm heads in terms of squares of 495:
For proteins, however, the hydrogen bonding is correlated with other structural features, which has given rise to less formal definitions of secondary structure. For example, helices can adopt backbone
801:(base) sequence. In other words, it is the prediction of secondary and tertiary structure from its primary structure. Structure prediction is the inverse of biomolecular design, as in 1865: 145: 143: 144: 1174:"The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation" 142: 236:, and that is important to its function. The structure of these molecules may be considered at any of several length scales ranging from the level of individual 100: 98: 99: 898:
indicates the presence of a structurally required hydrogen bond between those positions. The general problem of pseudoknot prediction has been shown to be
1392:
Sipski ML, Wagner TE (March 1977). "Probing DNA quaternary ordering with circular dichroism spectroscopy: studies of equine sperm chromosomal fibers".
560:(tRNA) cloverleaf. There is a minor industry of researchers attempting to determine the secondary structure of RNA molecules. Approaches include both 97: 1362: 609:
structure motifs and domains that serve as molecular building blocks. Tertiary structure is considered to be largely determined by the biomolecule's
508:, regardless of whether it has the correct hydrogen bonds. Many other less formal definitions have been proposed, often applying concepts from the 2023: 477:
of the biopolymers, but does not describe the global structure of specific atomic positions in three-dimensional space, which are considered to be
1847: 1012: 381:. The nucleic acid sequence refers to the exact sequence of nucleotides that comprise the whole molecule. Often, the primary structure encodes 771:
tRNA-Phe structure space: the energies and structures were calculated using RNAsubopt and the structure distances computed using RNAdistance.
1591:"The Structure of Sodium Thymonucleate Fibres (I. The Influence of Water Content, and II. The Cylindrically Symmetrical Patterson Function)" 1873: 1022: 569: 111: 880: 1566: 1541: 2121: 2016: 675: 561: 1320:
Bogenhagen DF, Brown DD (April 1981). "Nucleotide sequences in Xenopus 5S DNA required for transcription termination".
890:
RNA sequences with related but dissimilar sequences. These methods analyze the covariation of individual base sites in
723:
transforms that provided only a limited amount of structural information for oriented fibers of DNA isolated from calf
738:
with a significant degree of disorder (over 20%), and the structure is not tractable using only the standard analysis.
552:. There are many secondary structure elements of functional importance to biological RNA. Famous examples include the 2126: 2116: 2068: 780: 634: 565: 76: 2106: 532: 489: 446: 17: 520:. Structural biologists solving a new atomic-resolution structure will sometimes assign its secondary structure 2111: 2009: 585: 525: 871:
Secondary structure of small nucleic acid molecules is determined largely by strong, local interactions such as
318:
is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including
951: 289: 2073: 2063: 776: 630: 2136: 2053: 1125:"The snoRNA box C/D motif directs nucleolar targeting and also couples snoRNA synthesis and localization" 716: 473:
is the pattern of hydrogen bonds in a biopolymer. These determine the general three-dimensional form of
470: 442: 58: 1727:
Leslie AG, Arnott S, Chandrasekaran R, Ratliff RL (October 1980). "Polymorphism of DNA double helices".
864:
or intra-molecular base-pairing interactions of the molecule. This is shown by the high conservation of
2058: 596: 581: 478: 414: 2192: 2048: 646:
For nucleic acids, the term is less common, but can refer to the higher-level organization of DNA in
358: 305: 164: 1676:
Wilkins MH, Stokes AR, Wilson HR (April 1953). "Molecular structure of deoxypentose nucleic acids".
1590: 1974: 814: 767: 426: 54: 422: 643:
refers to the number and arrangement of multiple protein molecules in a multi-subunit complex.
385:
that are of functional importance. Some examples of such motifs are: the C/D and H/ACA boxes of
2093: 2083: 1969: 418: 257: 160: 2213: 2101: 825: 696: 553: 509: 370: 309: 785:
Biomolecular structure prediction is the prediction of the three-dimensional structure of a
1821: 1685: 1634: 1483: 1229: 589: 1762:
Baianu, I. C. (1980). "Structural Order and Partial Disorder in Biological systems".
8: 2162: 2131: 1625:
Franklin RE, Gosling RG (April 1953). "Molecular configuration in sodium thymonucleate".
1534:
RNA Structure Probing: Biochemical structure analysis of autoimmune-related RNA molecules
1071: 915: 861: 810: 410: 406: 402: 398: 394: 351: 347: 293: 46: 1825: 1689: 1638: 1487: 1448: 1233: 1942: 1779: 1709: 1658: 1417: 1345: 1253: 1149: 1124: 887: 720: 517: 430: 1297: 1272: 886:
Sequence covariation methods rely on the existence of a data set composed of multiple
2040: 1987: 1946: 1907: 1783: 1744: 1740: 1701: 1650: 1582: 1562: 1537: 1511: 1506: 1471: 1452: 1409: 1337: 1333: 1302: 1245: 1195: 1154: 743: 708: 671: 610: 501: 457: 253: 181: 124: 115: 1421: 1372: 2187: 1979: 1960:
Lyngsø RB, Pedersen CN (2000). "RNA pseudoknot prediction in energy-based models".
1934: 1899: 1866:"X-Ray Diffraction Patterns of Double-Helical Deoxyribonucleic Acid (DNA) Crystals" 1829: 1771: 1736: 1713: 1693: 1662: 1642: 1605: 1501: 1491: 1444: 1401: 1376: 1367: 1349: 1329: 1292: 1284: 1257: 1237: 1185: 1144: 1136: 692: 691:
structures can be determined using either nuclear magnetic resonance spectroscopy (
482: 241: 1586: 899: 802: 754:, is still routinely used to analyze A-DNA and Z-DNA X-ray diffraction patterns. 751: 747: 735: 728: 712: 378: 319: 1048: 455:
Secondary (inset) and tertiary structure of tRNA demonstrating coaxial stacking
2157: 2078: 1983: 1812:
Baianu IC (1978). "X-ray scattering by partially disordered membrane systems".
1476:
Proceedings of the National Academy of Sciences of the United States of America
1405: 1140: 1087: 1027: 1017: 999: 971: 911: 856: 821: 806: 497: 382: 374: 1903: 1833: 1610: 2207: 1890:
Mathews DH (June 2006). "Revolutions in RNA secondary structure prediction".
1472:"RNA tertiary interactions in the large ribosomal subunit: the A-minor motif" 1371:, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) " 1288: 1217: 930: 876: 872: 837: 605: 245: 1925:
Zuker M, Sankoff D (1984). "RNA secondary structures and their prediction".
1380: 1062: 2172: 1991: 1911: 1705: 1654: 1515: 1496: 1220:(March 1975). "Determinant of cistron specificity in bacterial ribosomes". 1007: 820:
Protein structure prediction is one of the most important goals pursued by
794: 688: 557: 269: 1748: 1456: 1341: 1306: 1273:"An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs" 1199: 1158: 844:). Every two years, the performance of current methods is assessed in the 504:; thus, a segment of residues with such dihedral angles is often called a 2001: 1413: 1249: 1190: 1173: 833: 659: 342:), the primary structure is equivalent to specifying the sequence of its 261: 168: 939: 2167: 1938: 1775: 1213: 975: 895: 798: 790: 762: 618: 614: 545: 366: 362: 323: 315: 265: 176: 172: 894:; maintenance at two widely separated sites of a pair of base-pairing 461: 205: 201: 197: 193: 189: 185: 128: 1697: 1646: 1241: 891: 865: 647: 549: 541: 536: 513: 369:, while the primary structure of DNA or RNA molecule is known as the 220:
is the intricate folded, three-dimensional shape that is formed by a
1559:
Probing RNA Structure, Function, and History by Comparative Analysis
993: 829: 655: 327: 221: 982:, can also have higher-order structure of biological consequence. 492:
is defined by the hydrogen bonding between the nitrogenous bases.
2152: 1726: 879:. Summing the free energy for such interactions, usually using a 786: 684: 651: 601: 343: 331: 225: 27:
3D conformation of a biological sequence, like DNA, RNA, proteins
1470:
Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (April 2001).
149: 104: 841: 724: 700: 386: 1122: 1123:
Samarsky DA, Fournier MJ, Singer RH, Bertrand E (July 1998).
979: 451: 849: 654:, or to the interactions between separate RNA units in the 237: 119: 1171: 272:, bulges, and internal loops for nucleic acids. The terms 2182: 2177: 704: 390: 339: 335: 233: 229: 1848:"Bessel functions and diffraction by helical structures" 1561:. Cold Spring Harbor Laboratory Press. pp. 113–17. 828:. Protein structure prediction is of high importance in 1469: 163:(primary, secondary, tertiary, and quaternary) using 989: 1675: 1172:Ganot P, Caizergues-Ferrer M, Kiss T (April 1997). 846:
Critical Assessment of protein Structure Prediction
742:In contrast, the standard analysis, involving only 524:and record their assignments in the corresponding 260:, including such secondary-structure features as 2205: 1527: 1525: 1435:Noller HF (1984). "Structure of ribosomal RNA". 393:binding site found in spliceosomal RNAs such as 1624: 1581: 1556: 1319: 141: 96: 1959: 1796: 1013:Comparison of nucleic acid simulation software 2017: 1522: 1212: 699:or single-particle cryo electron microscopy ( 322:). For a typical unbranched, un-crosslinked 1924: 1885: 1883: 1391: 855:There has also been a significant amount of 57:. There might be a discussion about this on 2031: 2024: 2010: 1618: 1313: 665: 1973: 1880: 1609: 1531: 1505: 1495: 1296: 1189: 1148: 1023:List of RNA structure prediction software 570:List of RNA structure prediction software 485:definition of a hydrogen bond is used. 77:Learn how and when to remove this message 1953: 1799:Direct analysis of diffraction by matter 1264: 761: 450: 153:The image above contains clickable links 137: 108:The image above contains clickable links 92: 1918: 1889: 1669: 757: 719:—and also B-DNA—used analyses based on 624: 14: 2206: 1811: 1761: 1532:Teunissen, A. W. M. (1979). 1434: 436: 2005: 1557:Pace NR, Thomas BC, Woese CR (1999). 1270: 924: 840:(for example, in the design of novel 575: 533:secondary structure of a nucleic acid 490:secondary structure of a nucleic acid 292:in his 1951 Lane Medical Lectures at 248:. This leads to several recognizable 1801:. Amsterdam/New York: North-Holland. 934: 676:Nucleic acid structure determination 361:is reported starting from the amino 299: 29: 1449:10.1146/annurev.bi.53.070184.001003 703:). The first published reports for 24: 1368:Compendium of Chemical Terminology 650:, including its interactions with 240:to the relationships among entire 148: 103: 25: 2225: 781:Nucleic acid structure prediction 635:Nucleic acid quaternary structure 1962:Journal of Computational Biology 992: 938: 471:secondary structure of a protein 447:Nucleic acid secondary structure 34: 1858: 1840: 1805: 1790: 1755: 1720: 1575: 1550: 1463: 586:Nucleic acid tertiary structure 1797:Hosemann R, Bagchi RN (1962). 1428: 1385: 1356: 1206: 1165: 1116: 1040: 359:primary structure of a protein 13: 1: 1437:Annual Review of Biochemistry 1109: 1060:interaction". Etymologically 431:RNA polymerase III terminator 1892:Journal of Molecular Biology 1741:10.1016/0022-2836(80)90124-2 1729:Journal of Molecular Biology 1334:10.1016/0092-8674(81)90522-5 970:Other biomolecules, such as 777:Protein structure prediction 734:characteristic of molecular 641:protein quaternary structure 631:Protein quaternary structure 7: 985: 443:Protein secondary structure 330:of a typical intracellular 314:The primary structure of a 10: 2230: 1984:10.1089/106652700750050862 1406:10.1002/bip.1977.360160308 928: 909: 774: 717:X-ray diffraction patterns 669: 628: 582:Protein tertiary structure 579: 554:Rho-independent terminator 440: 303: 290:Kaj Ulrik Linderstrøm-Lang 114:(which is interactive) of 2193:Nucleic acid double helix 2145: 2092: 2039: 1904:10.1016/j.jmb.2006.01.067 1834:10.1107/s0567739478001540 1611:10.1107/s0365110x53001939 905: 306:Protein primary structure 1271:Kozak M (October 1987). 1141:10.1093/emboj/17.13.3747 1033: 868:across diverse species. 815:biomolecular engineering 768:Saccharomyces cerevisiae 427:Kozak consensus sequence 1381:10.1351/goldbook.T06282 1178:Genes & Development 1102:is standard in biology. 881:nearest-neighbor method 666:Structure determination 535:molecule refers to the 500:in some regions of the 423:Shine-Dalgarno sequence 2094:Nucleic acid structure 2033:Biomolecular structure 1497:10.1073/pnas.081082398 1289:10.1093/nar/15.20.8125 1277:Nucleic Acids Research 1086:is derived from Latin 1070:is derived from Latin 772: 568:methods (see also the 466: 258:nucleic acid structure 218:Biomolecular structure 210: 167:and examples from the 161:nucleic acid structure 154: 133: 109: 929:Further information: 910:Further information: 826:theoretical chemistry 775:Further information: 765: 697:X-ray crystallography 670:Further information: 629:Further information: 580:Further information: 510:differential geometry 454: 441:Further information: 371:nucleic acid sequence 310:Nucleic acid sequence 152: 147: 107: 102: 1191:10.1101/gad.11.7.941 1072:distributive numbers 758:Structure prediction 625:Quaternary structure 590:Structural alignment 286:quaternary structure 47:confusing or unclear 2163:Protein engineering 1826:1978AcCrA..34..751B 1814:Acta Crystallogr. A 1690:1953Natur.171..738W 1639:1953Natur.171..740F 1488:2001PNAS...98.4899N 1234:1975Natur.254...34S 916:Nucleic acid design 862:secondary structure 811:nucleic acid design 556:stem loops and the 512:of curves, such as 437:Secondary structure 294:Stanford University 288:were introduced by 55:clarify the article 1939:10.1007/BF02459506 1776:10.1007/BF02462372 1373:tertiary structure 950:. You can help by 925:Other biomolecules 793:sequence, or of a 773: 744:Fourier transforms 721:Patterson function 715:in 1953) of A-DNA 597:tertiary structure 576:Tertiary structure 479:tertiary structure 467: 373:reported from the 346:subunits, such as 268:for proteins, and 211: 155: 134: 110: 2201: 2200: 2041:Protein structure 1870:planetphysics.org 1852:planetphysics.org 1568:978-0-87969-589-7 1543:978-90-901323-4-1 1536:. pp. 1–27. 1056:structure", not " 968: 967: 832:(for example, in 709:Rosalind Franklin 672:Protein structure 613:(its sequence of 611:primary structure 526:Protein Data Bank 502:Ramachandran plot 300:Primary structure 254:protein structure 215: 214: 157:Interactive image 116:protein structure 87: 86: 79: 16:(Redirected from 2221: 2188:Structural motif 2026: 2019: 2012: 2003: 2002: 1996: 1995: 1977: 1957: 1951: 1950: 1927:Bull. Math. Biol 1922: 1916: 1915: 1887: 1878: 1877: 1876:on 24 July 2009. 1872:. Archived from 1862: 1856: 1855: 1844: 1838: 1837: 1809: 1803: 1802: 1794: 1788: 1787: 1764:Bull. Math. Biol 1759: 1753: 1752: 1724: 1718: 1717: 1698:10.1038/171738a0 1684:(4356): 738–40. 1673: 1667: 1666: 1647:10.1038/171740a0 1633:(4356): 740–41. 1622: 1616: 1615: 1613: 1598:Acta Crystallogr 1595: 1589:(6 March 1953). 1579: 1573: 1572: 1554: 1548: 1547: 1529: 1520: 1519: 1509: 1499: 1467: 1461: 1460: 1432: 1426: 1425: 1389: 1383: 1360: 1354: 1353: 1317: 1311: 1310: 1300: 1268: 1262: 1261: 1242:10.1038/254034a0 1210: 1204: 1203: 1193: 1169: 1163: 1162: 1152: 1129:The EMBO Journal 1120: 1103: 1044: 1002: 997: 996: 963: 960: 942: 935: 752:molecular models 748:Bessel functions 729:Bessel functions 464: 365:to the carboxyl 242:protein subunits 208: 151: 140: 131: 122:as an example. ( 106: 95: 89: 88: 82: 75: 71: 68: 62: 38: 37: 30: 21: 18:Primary sequence 2229: 2228: 2224: 2223: 2222: 2220: 2219: 2218: 2204: 2203: 2202: 2197: 2141: 2088: 2035: 2030: 2000: 1999: 1968:(3–4): 409–27. 1958: 1954: 1923: 1919: 1888: 1881: 1864: 1863: 1859: 1846: 1845: 1841: 1810: 1806: 1795: 1791: 1760: 1756: 1725: 1721: 1674: 1670: 1623: 1619: 1593: 1580: 1576: 1569: 1555: 1551: 1544: 1530: 1523: 1482:(9): 4899–903. 1468: 1464: 1433: 1429: 1390: 1386: 1361: 1357: 1318: 1314: 1283:(20): 8125–48. 1269: 1265: 1228:(5495): 34–38. 1211: 1207: 1170: 1166: 1135:(13): 3747–57. 1121: 1117: 1112: 1107: 1106: 1088:ordinal numbers 1045: 1041: 1036: 998: 991: 988: 972:polysaccharides 964: 958: 955: 948:needs expansion 933: 927: 918: 908: 803:rational design 783: 760: 731:. Although the 713:Raymond Gosling 678: 668: 637: 627: 592: 578: 498:dihedral angles 456: 449: 439: 383:sequence motifs 320:stereochemistry 312: 304:Main articles: 302: 180: 146: 138: 123: 101: 93: 83: 72: 66: 63: 52: 39: 35: 28: 23: 22: 15: 12: 11: 5: 2227: 2217: 2216: 2199: 2198: 2196: 2195: 2190: 2185: 2180: 2175: 2170: 2165: 2160: 2158:Protein domain 2155: 2149: 2147: 2143: 2142: 2140: 2139: 2137:Thermodynamics 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2098: 2096: 2090: 2089: 2087: 2086: 2084:Thermodynamics 2081: 2076: 2071: 2066: 2061: 2056: 2051: 2045: 2043: 2037: 2036: 2029: 2028: 2021: 2014: 2006: 1998: 1997: 1975:10.1.1.34.4044 1952: 1933:(4): 591–621. 1917: 1879: 1857: 1839: 1804: 1789: 1754: 1719: 1668: 1617: 1574: 1567: 1549: 1542: 1521: 1462: 1427: 1384: 1355: 1312: 1263: 1205: 1164: 1114: 1113: 1111: 1108: 1105: 1104: 1090:, and follows 1074:, and follows 1038: 1037: 1035: 1032: 1031: 1030: 1028:Non-coding RNA 1025: 1020: 1018:Gene structure 1015: 1010: 1004: 1003: 1000:Biology portal 987: 984: 966: 965: 945: 943: 926: 923: 912:Protein design 907: 904: 873:hydrogen bonds 857:bioinformatics 852:) experiment. 822:bioinformatics 807:protein design 759: 756: 667: 664: 626: 623: 577: 574: 475:local segments 438: 435: 301: 298: 246:hydrogen bonds 213: 212: 135: 85: 84: 42: 40: 33: 26: 9: 6: 4: 3: 2: 2226: 2215: 2212: 2211: 2209: 2194: 2191: 2189: 2186: 2184: 2181: 2179: 2176: 2174: 2171: 2169: 2166: 2164: 2161: 2159: 2156: 2154: 2151: 2150: 2148: 2144: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2122:Determination 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2099: 2097: 2095: 2091: 2085: 2082: 2080: 2077: 2075: 2072: 2070: 2069:Determination 2067: 2065: 2062: 2060: 2057: 2055: 2052: 2050: 2047: 2046: 2044: 2042: 2038: 2034: 2027: 2022: 2020: 2015: 2013: 2008: 2007: 2004: 1993: 1989: 1985: 1981: 1976: 1971: 1967: 1963: 1956: 1948: 1944: 1940: 1936: 1932: 1928: 1921: 1913: 1909: 1905: 1901: 1898:(3): 526–32. 1897: 1893: 1886: 1884: 1875: 1871: 1867: 1861: 1853: 1849: 1843: 1835: 1831: 1827: 1823: 1820:(5): 751–53. 1819: 1815: 1808: 1800: 1793: 1785: 1781: 1777: 1773: 1770:(1): 137–41. 1769: 1765: 1758: 1750: 1746: 1742: 1738: 1734: 1730: 1723: 1715: 1711: 1707: 1703: 1699: 1695: 1691: 1687: 1683: 1679: 1672: 1664: 1660: 1656: 1652: 1648: 1644: 1640: 1636: 1632: 1628: 1621: 1612: 1607: 1604:(8): 673–78. 1603: 1599: 1592: 1588: 1584: 1578: 1570: 1564: 1560: 1553: 1545: 1539: 1535: 1528: 1526: 1517: 1513: 1508: 1503: 1498: 1493: 1489: 1485: 1481: 1477: 1473: 1466: 1458: 1454: 1450: 1446: 1442: 1438: 1431: 1423: 1419: 1415: 1411: 1407: 1403: 1400:(3): 573–82. 1399: 1395: 1388: 1382: 1378: 1374: 1370: 1369: 1364: 1359: 1351: 1347: 1343: 1339: 1335: 1331: 1328:(1): 261–70. 1327: 1323: 1316: 1308: 1304: 1299: 1294: 1290: 1286: 1282: 1278: 1274: 1267: 1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1209: 1201: 1197: 1192: 1187: 1184:(7): 941–56. 1183: 1179: 1175: 1168: 1160: 1156: 1151: 1146: 1142: 1138: 1134: 1130: 1126: 1119: 1115: 1101: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1064: 1059: 1055: 1051: 1050: 1043: 1039: 1029: 1026: 1024: 1021: 1019: 1016: 1014: 1011: 1009: 1006: 1005: 1001: 995: 990: 983: 981: 977: 973: 962: 953: 949: 946:This section 944: 941: 937: 936: 932: 931:Lipid bilayer 922: 917: 913: 903: 901: 897: 893: 889: 884: 882: 878: 877:base stacking 874: 869: 867: 866:base pairings 863: 858: 853: 851: 847: 843: 839: 838:biotechnology 835: 831: 827: 823: 818: 816: 812: 808: 804: 800: 796: 792: 788: 782: 778: 770: 769: 764: 755: 753: 749: 745: 740: 739: 737: 730: 726: 722: 718: 714: 710: 706: 702: 698: 694: 690: 686: 682: 677: 673: 663: 661: 657: 653: 649: 644: 642: 636: 632: 622: 620: 616: 612: 607: 606:macromolecule 604:or any other 603: 599: 598: 591: 587: 583: 573: 571: 567: 566:computational 563: 559: 555: 551: 547: 543: 538: 534: 529: 527: 523: 519: 515: 511: 507: 503: 499: 493: 491: 486: 484: 480: 476: 472: 463: 459: 453: 448: 444: 434: 432: 428: 424: 420: 416: 412: 408: 404: 400: 396: 392: 388: 384: 380: 376: 372: 368: 364: 360: 355: 353: 349: 345: 341: 337: 333: 329: 325: 321: 317: 311: 307: 297: 295: 291: 287: 283: 279: 275: 271: 270:hairpin loops 267: 263: 262:alpha helixes 259: 255: 251: 247: 243: 239: 235: 231: 227: 223: 219: 207: 203: 199: 195: 191: 187: 183: 178: 174: 170: 166: 162: 158: 136: 130: 126: 121: 117: 113: 91: 90: 81: 78: 70: 67:February 2016 60: 59:the talk page 56: 50: 48: 43:This article 41: 32: 31: 19: 2214:Biomolecules 2173:Nucleic acid 2032: 1965: 1961: 1955: 1930: 1926: 1920: 1895: 1891: 1874:the original 1869: 1860: 1851: 1842: 1817: 1813: 1807: 1798: 1792: 1767: 1763: 1757: 1735:(1): 49–72. 1732: 1728: 1722: 1681: 1677: 1671: 1630: 1626: 1620: 1601: 1597: 1577: 1558: 1552: 1533: 1479: 1475: 1465: 1440: 1436: 1430: 1397: 1393: 1387: 1366: 1358: 1325: 1321: 1315: 1280: 1276: 1266: 1225: 1221: 1208: 1181: 1177: 1167: 1132: 1128: 1118: 1099: 1095: 1091: 1083: 1079: 1075: 1067: 1066:is correct: 1061: 1057: 1054:fourth-level 1053: 1047: 1042: 1008:Biomolecular 969: 956: 952:adding to it 947: 919: 885: 870: 854: 845: 819: 795:nucleic acid 784: 766: 741: 736:paracrystals 732: 689:nucleic acid 683: 679: 645: 640: 638: 595: 593: 562:experimental 558:transfer RNA 537:base pairing 530: 528:(PDB) file. 521: 505: 494: 487: 474: 468: 356: 313: 285: 281: 277: 273: 249: 217: 216: 156: 112:This diagram 73: 64: 53:Please help 44: 1583:Franklin RE 1394:Biopolymers 1098:. However, 976:polyphenols 900:NP-complete 896:nucleotides 834:drug design 660:spliceosome 619:nucleotides 615:amino acids 546:pseudoknots 352:nucleotides 348:amino acids 326:(such as a 266:beta sheets 169:VS ribozyme 165:DNA helices 2168:Proteasome 2127:Prediction 2117:Quaternary 2074:Prediction 2064:Quaternary 1587:Gosling RG 1443:: 119–62. 1218:Dalgarno L 1110:References 1100:quaternary 1068:quaternary 1049:quaternary 959:April 2010 888:homologous 799:nucleobase 791:amino acid 550:stem loops 542:tetraloops 367:C-terminus 363:N-terminus 324:biopolymer 316:biopolymer 177:nucleosome 173:telomerase 49:to readers 2107:Secondary 2054:Secondary 1970:CiteSeerX 1947:189885784 1784:189888972 1092:secondary 892:evolution 797:from its 789:from its 648:chromatin 514:curvature 344:monomeric 278:secondary 2208:Category 2146:See also 2112:Tertiary 2059:Tertiary 1992:11108471 1912:16500677 1706:13054693 1655:13054694 1516:11296253 1422:35930758 1096:tertiary 1084:quartary 1082:; while 1063:quartary 1058:four-way 986:See also 830:medicine 750:and DNA 656:ribosome 652:histones 465:​) 429:and the 334:, or of 328:molecule 282:tertiary 222:molecule 2153:Protein 2102:Primary 2049:Primary 1822:Bibcode 1749:7441761 1714:4280080 1686:Bibcode 1663:4268222 1635:Bibcode 1484:Bibcode 1457:6206780 1350:9982829 1342:6263489 1307:3313277 1258:4162567 1230:Bibcode 1214:Shine J 1200:9106664 1159:9649444 1150:1170710 1080:ternary 1052:means " 842:enzymes 787:protein 685:Protein 602:protein 518:torsion 387:snoRNAs 377:to the 332:protein 274:primary 250:domains 226:protein 45:may be 2132:Design 2079:Design 1990:  1972:  1945:  1910:  1782:  1747:  1712:  1704:  1678:Nature 1661:  1653:  1627:Nature 1565:  1540:  1514:  1504:  1455:  1420:  1414:843604 1412:  1348:  1340:  1305:  1298:306349 1295:  1256:  1250:803646 1248:  1222:Nature 1198:  1157:  1147:  1076:binary 980:lipids 906:Design 836:) and 813:, and 725:thymus 701:cryoEM 588:, and 522:by eye 425:, the 421:, the 379:3' end 375:5' end 284:, and 1943:S2CID 1780:S2CID 1710:S2CID 1659:S2CID 1594:(PDF) 1507:33135 1418:S2CID 1363:IUPAC 1346:S2CID 1254:S2CID 1046:Here 1034:Notes 695:) or 600:of a 506:helix 238:atoms 232:, or 118:uses 1988:PMID 1908:PMID 1745:PMID 1702:PMID 1651:PMID 1563:ISBN 1538:ISBN 1512:PMID 1453:PMID 1410:PMID 1338:PMID 1322:Cell 1303:PMID 1246:PMID 1196:PMID 1155:PMID 1094:and 1078:and 978:and 914:and 875:and 850:CASP 824:and 779:and 711:and 707:(by 687:and 674:and 639:The 633:and 594:The 564:and 548:and 531:The 516:and 488:The 483:DSSP 469:The 462:6TNA 445:and 417:and 357:The 308:and 264:and 256:and 206:1EQZ 202:1YMO 198:4R4V 194:4OCB 190:1BNA 186:ADNA 175:and 171:and 129:1AXC 120:PCNA 2183:RNA 2178:DNA 1980:doi 1935:doi 1900:doi 1896:359 1830:doi 1772:doi 1737:doi 1733:143 1694:doi 1682:171 1643:doi 1631:171 1606:doi 1502:PMC 1492:doi 1445:doi 1402:doi 1377:doi 1375:". 1330:doi 1293:PMC 1285:doi 1238:doi 1226:254 1186:doi 1145:PMC 1137:doi 954:. 746:of 705:DNA 693:NMR 658:or 621:). 617:or 572:). 458:PDB 415:U12 391:LSm 350:or 340:RNA 338:or 336:DNA 252:of 234:RNA 230:DNA 224:of 182:PDB 179:. ( 159:of 125:PDB 2210:: 1986:. 1978:. 1964:. 1941:. 1931:46 1929:. 1906:. 1894:. 1882:^ 1868:. 1850:. 1828:. 1818:34 1816:. 1778:. 1768:42 1766:. 1743:. 1731:. 1708:. 1700:. 1692:. 1680:. 1657:. 1649:. 1641:. 1629:. 1600:. 1596:. 1585:, 1524:^ 1510:. 1500:. 1490:. 1480:98 1478:. 1474:. 1451:. 1441:53 1439:. 1416:. 1408:. 1398:16 1396:. 1365:, 1344:. 1336:. 1326:24 1324:. 1301:. 1291:. 1281:15 1279:. 1275:. 1252:. 1244:. 1236:. 1224:. 1216:, 1194:. 1182:11 1180:. 1176:. 1153:. 1143:. 1133:17 1131:. 1127:. 974:, 902:. 817:. 809:, 805:, 662:. 584:, 544:, 460:: 433:. 419:U3 413:, 411:U6 409:, 407:U5 405:, 403:U4 401:, 399:U2 397:, 395:U1 389:, 354:. 296:. 280:, 276:, 228:, 209:​) 204:, 200:, 196:, 192:, 188:, 184:: 132:​) 127:: 2025:e 2018:t 2011:v 1994:. 1982:: 1966:7 1949:. 1937:: 1914:. 1902:: 1854:. 1836:. 1832:: 1824:: 1786:. 1774:: 1751:. 1739:: 1716:. 1696:: 1688:: 1665:. 1645:: 1637:: 1614:. 1608:: 1602:6 1571:. 1546:. 1518:. 1494:: 1486:: 1459:. 1447:: 1424:. 1404:: 1379:: 1352:. 1332:: 1309:. 1287:: 1260:. 1240:: 1232:: 1202:. 1188:: 1161:. 1139:: 961:) 957:( 848:( 80:) 74:( 69:) 65:( 61:. 51:. 20:)

Index

Primary sequence
confusing or unclear
clarify the article
the talk page
Learn how and when to remove this message
This diagram
protein structure
PCNA
PDB
1AXC
nucleic acid structure
DNA helices
VS ribozyme
telomerase
nucleosome
PDB
ADNA
1BNA
4OCB
4R4V
1YMO
1EQZ
molecule
protein
DNA
RNA
atoms
protein subunits
hydrogen bonds
protein structure

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑