Knowledge

Primary transcript

Source 📝

262: 550:, proviral DNA is incorporated in transcription of the DNA of the cell being infected. Since retroviruses need to change their pre-mRNA into DNA so that this DNA can be integrated within the DNA of the host it is affecting, the formation of that DNA template is a vital step for retrovirus replication. Cell type, the differentiation or changed state of the cell, and the physiological state of the cell, result in a significant change in the availability and activity of certain factors necessary for transcription. These variables create a wide range of viral gene expression. For example, tissue culture cells actively producing infectious virions of avian or murine 368:
of proteins at the same time they are being produced via transcription. Alternatively, pre-mRNA of eukaryotic cells undergo a wide range of modifications prior to their transport from the nucleus to cytoplasm where their mature forms are translated. These modifications are responsible for the different types of encoded messages that lead to translation of various types of products. Furthermore, primary transcript processing provides a control for gene expression as well as a regulatory mechanism for the degradation rates of mRNAs. The processing of pre-mRNA in eukaryotic cells includes
836: 288:
methylation patterns at promoter regions of DNA can regulate RNA polymerase access to a given template. RNA polymerase is often incapable of synthesizing a primary transcript if the targeted gene's promoter region contains specific methylated cytosines— residues that hinder binding of transcription-activating factors and recruit other enzymes to stabilize a tightly bound nucleosome structure, excluding access to RNA polymerase and preventing the production of primary transcripts.
42: 1962: 139:. In particular, alternative splicing directly contributes to the diversity of mRNA found in cells. The modifications of primary transcripts have been further studied in research seeking greater knowledge of the role and significance of these transcripts. Experimental studies based on molecular changes to primary transcripts and the processes before and after transcription have led to greater understanding of diseases involving primary transcripts. 452: 542:
Institute in Genoa, Italy, explains that 1785 nucleotides of the region in the DNA that codes for the estrogen receptor alpha (ER-alpha) are spread over a region that holds more than 300,000 nucleotides in the primary transcript. Splicing of this pre-mRNA frequently leads to variants or different kinds of the mRNA lacking one or more exons or regions necessary for coding proteins. These variants have been associated with
33: 496:(DHFR) mRNA levels, while the level of DHFR pre-mRNA with certain introns remained unaffected. The half-life of DHFR mRNA or pre-mRNA did not change significantly, but the transition rate of DHFR RNA from the nucleus to the cytoplasm decreased, suggesting that FUra may influence mRNA processing and/or nuclear DHFR mRNA stability. 421:
is added. Signals for polyadenylation, which include several RNA sequence elements, are detected by a group of proteins which signal the addition of the poly-A tail (approximately 200 nucleotides in length). The polyadenylation reaction provides a signal for the end of transcription and this reaction
367:
The basic primary transcript modification process is similar for tRNA and rRNA in both eukaryotic and prokaryotic cells. On the other hand, primary transcript processing varies in mRNAs of prokaryotic and eukaryotic cells. For example, some prokaryotic bacterial mRNAs serve as templates for synthesis
153:
The steps contributing to the production of primary transcripts involve a series of molecular interactions that initiate transcription of DNA within a cell's nucleus. Based on the needs of a given cell, certain DNA sequences are transcribed to produce a variety of RNA products to be translated into
554:
viruses (ASLV or MLV) contain such high levels of viral RNA that 5–10% of the mRNA in a cell can be of viral origin. This shows that the primary transcripts produced by these retroviruses do not always follow the normal path to protein production and convert back into DNA in order to multiply and
287:
inhibit transcription. Acetylation of histones induces repulsion between negative components within nucleosomes, allowing for RNA polymerase access. Deacetylation of histones stabilizes tightly coiled nucleosomes, inhibiting RNA polymerase access. In addition to acetylation patterns of histones,
253:
components, causing DNA to be either more or less accessible to RNA polymerase. The unique combinations of either activating or inhibiting transcription factors that bind to enhancer DNA regions determine whether or not the gene that enhancer interacts with is activated for transcription or not.
541:
and differential splicing. The article entitled, "Alternative splicing of the human estrogen receptor alpha primary transcript: mechanisms of exon skipping" by Paola Ferro, Alessandra Forlani, Marco Muselli and Ulrich Pfeffer from the laboratory of Molecular Oncology at National Cancer Research
358:
Transcription, a highly regulated phase in gene expression, produces primary transcripts. However, transcription is only the first step which should be followed by many modifications that yield functional forms of RNAs. Otherwise stated, the newly synthesized primary transcripts are modified in
36:
Pre-mRNA is the first form of RNA created through transcription in protein synthesis. The pre-mRNA lacks structures that the messenger RNA (mRNA) requires. First all introns have to be removed from the transcribed RNA through a process known as splicing. Before the RNA is ready for export, a
459:
The effect of alternative splicing in gene expression can be seen in complex eukaryotes which have a fixed number of genes in their genome yet produce much larger numbers of different gene products. Most eukaryotic pre-mRNA transcripts contain multiple introns and exons. The various possible
171: 460:
combinations of 5' and 3' splice sites in a pre-mRNA can lead to different excision and combination of exons while the introns are eliminated from the mature mRNA. Thus, various kinds of mature mRNAs are generated. Alternative splicing takes place in a large protein complex called the
273:. Like enhancers, silencers may be located at locations farther up or downstream from the genes they regulate. These DNA sequences bind to factors that contribute to the destabilization of the initiation complex required to activate RNA polymerase, and therefore inhibit transcription. 402:
to the 5' terminal nucleotide of the pre-mRNA in reverse orientation followed by the addition of methyl groups to the G residue. 5' capping is essential for the production of functional mRNAs since the 5' cap is responsible for aligning the mRNA with the ribosome during translation.
127:. Certain factors play key roles in the activation and inhibition of transcription, where they regulate primary transcript production. Transcription produces primary transcripts that are further modified by several processes. These processes include the 158:
connecting compatible nucleic acids of DNA are broken to produce two unconnected single DNA strands. One strand of the DNA template is used for transcription of the single-stranded primary transcript mRNA. This DNA strand is bound by an
526:, with this formation being temperature-dependent and influenced by specific RNA sequences. Pre-mRNA targeting and splicing factor loading in speckles were critical for spliceosome group formation, resulting in a speckled pattern. 447:
In complex eukaryotic cells, one primary transcript is able to prepare large amounts of mature mRNAs due to alternative splicing. Alternative splicing is regulated so that each mature mRNA may encode a multiplicity of proteins.
194:
DNA template in the 5' to 3' direction, and this newly synthesized primary transcript is complementary to the antisense strand of DNA. RNA polymerase II constructs the primary transcript using a set of four specific
475:
cleavage or by endolytic cleavage. Autocatalytic cleavages, in which no proteins are involved, are usually reserved for sections that code for rRNA, whereas endolytic cleavage corresponds to tRNA precursors.
299:
are formed during transcription. An R-loop is a three-stranded nucleic acid structure containing a DNA-RNA hybrid region and an associated non-template single-stranded DNA. Actively transcribed regions of
323:
itself is a source of endogenous DNA damages resulting from the susceptibility of single-stranded DNA to damage. Other sources of DNA damage are conflicts of the primary transcription machinery with the
254:
Activation of transcription depends on whether or not the transcription elongation complex, itself consisting of a variety of transcription factors, can induce RNA polymerase to dissociate from the
190:, only one RNA polymerase exists to create all kinds of RNA molecules. RNA polymerase II of eukaryotes transcribes the primary transcript, a transcript destined to be processed into mRNA, from the 464:. Alternative splicing is crucial for tissue-specific and developmental regulation in gene expression. Alternative splicing can be affected by various factors, including mutations such as 319:
arise in each cell, every day, with the number of damages in each cell reaching tens to hundreds of thousands, and such DNA damages can impede primary transcription. The process of
115:
There are several steps contributing to the production of primary transcripts. All these steps involve a series of interactions to initiate and complete the transcription of
529:
Recruiting pre-mRNA to nuclear speckles significantly increased splicing efficiency and protein levels, indicating that proximity to speckles enhances splicing efficiency.
112:". The term hnRNA is often used as a synonym for pre-mRNA, although, in the strict sense, hnRNA may include nuclear RNA transcripts that do not end up as cytoplasmic mRNA. 1237: 515:
due to its larger genome, despite both species producing mature mRNA of similar size and sequence complexity. This indicates that hnRNA size increases with genome size.
238:
A number of factors contribute to the activation and inhibition of transcription and therefore regulate the production of primary transcripts from a given DNA template.
1161:
Ferro P, Forlani A, Muselli M, Pfeffer U (September 2003). "Alternative splicing of the human estrogen receptor alpha primary transcript: mechanisms of exon skipping".
230:
sequences within primary transcripts explains the size difference between larger primary transcripts and smaller, mature mRNA ready for translation into protein.
336:
enzymes. Even though these processes are tightly regulated and are usually accurate, occasionally they can make mistakes and leave behind DNA breaks that drive
279:
modification by transcription factors is another key regulatory factor for transcription by RNA polymerase. In general, factors that lead to histone
1281: 1230: 973:"5-Fluorouracil inhibits dihydrofolate reductase precursor mRNA processing and/or nuclear mRNA stability in methotrexate-resistant KB cells" 1223: 1444: 1439: 537:
Research has also led to greater knowledge about certain diseases related to changes within primary transcripts. One study involved
359:
several ways to be converted to their mature, functional forms to produce different proteins and RNAs such as mRNA, tRNA, and rRNA.
154:
functional proteins for cellular use. To initiate the transcription process in a cell's nucleus, DNA double helices are unwound and
1449: 1424: 249:, proteins that bind to DNA elements to either activate or repress transcription, bind to enhancers and recruit enzymes that alter 1557: 17: 1522: 1210: 745: 699: 626: 1291: 1643: 1246: 903: 353: 101: 82: 81:. For example, a precursor mRNA (pre-mRNA) is a type of primary transcript that becomes a messenger RNA (mRNA) after 241:
Activation of RNA polymerase activity to produce primary transcripts is often controlled by sequences of DNA called
1930: 316: 305: 1935: 218:
Studies of primary transcripts produced by RNA polymerase II reveal that an average primary transcript is 7,000
1832: 1718: 919:
Wahl MC, Will CL, Lührmann R (February 2009). "The spliceosome: design principles of a dynamic RNP machine".
394:
Shortly after transcription is initiated in eukaryotes, a pre-mRNA's 5' end is modified by the addition of a
261: 1945: 1940: 1925: 1550: 1286: 1012:"hnRNA size and processing as related to different DNA content in two dipterans: Drosophila and Aedes". 100:. Pre-mRNA comprises the bulk of heterogeneous nuclear RNA (hnRNA). Once pre-mRNA has been completely 465: 337: 1072: 148: 97: 58: 1492: 1313: 585: 493: 208: 200: 1965: 1658: 1543: 1067: 761:
Bonnet A, Grosso AR, Elkaoutari A, Coleno E, Presle A, Sridhara SC, et al. (August 2017).
399: 255: 215:(UMP)) that are added continuously to the 3' hydroxyl group on the 3' end of the growing mRNA. 204: 417:
In eukaryotes, polyadenylation further modifies pre-mRNAs during which a structure called the
45:
Micrograph of gene transcription of ribosomal RNA illustrating the growing primary transcripts
1842: 1686: 246: 212: 186:, and mRNA—are produced based on the activity of three distinct RNA polymerases, whereas, in 78: 222:
in length, with some growing as long as 20,000 nucleotides in length. The inclusion of both
1877: 1860: 1691: 1376: 431: 377: 333: 136: 105: 1056:"Prespliceosomal assembly on microinjected precursor mRNA takes place in nuclear speckles" 941: 840: 835: 8: 1872: 1855: 1713: 1596: 1369: 164: 1138: 1113: 807:
Milano L, Gautam A, Caldecott KW (January 2024). "DNA damage and transcription stress".
398:, also known as a 5' cap. The 5' capping modification is initiated by the addition of a 1766: 1761: 1037: 954: 422:
ends approximately a few hundred nucleotides downstream from the poly-A tail location.
989: 972: 763:"Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability" 1850: 1812: 1805: 1756: 1708: 1364: 1170: 1143: 1095: 1090: 1055: 1029: 1025: 994: 946: 899: 824: 784: 741: 695: 622: 538: 1215: 1041: 958: 269:
Inhibition of RNA polymerase activity can also be regulated by DNA sequences called
1676: 1133: 1125: 1085: 1077: 1021: 984: 936: 928: 816: 774: 523: 308:. Introns reduce R-loop formation and DNA damage in highly expressed yeast genes. 37:
Poly(A)tail is added to the 3' end of the RNA and a 5' cap is added to the 5' end.
1800: 1771: 1323: 1306: 1301: 1276: 820: 779: 762: 735: 689: 616: 412: 373: 325: 320: 132: 77:. The primary transcripts designated to be mRNAs are modified in preparation for 1892: 1795: 1612: 1487: 1386: 1271: 1266: 1189: 1129: 932: 716: 665: 646: 577: 389: 270: 196: 160: 128: 876: 1980: 1827: 1817: 1698: 1653: 1631: 1114:"Genome organization around nuclear speckles drives mRNA splicing efficiency" 590: 543: 472: 329: 284: 155: 109: 1986: 1910: 1730: 1703: 1648: 1567: 1333: 1254: 1174: 1147: 1099: 950: 828: 788: 564: 489: 485: 120: 93: 998: 1822: 1668: 1535: 1512: 1359: 1318: 1081: 1033: 461: 437: 418: 280: 265:
Role of transcription factors and enhancers in gene expression regulation
187: 41: 1623: 1882: 1591: 1586: 1581: 547: 501: 341: 250: 219: 124: 451: 1746: 519: 395: 369: 242: 191: 174:
Transcription of DNA by RNA polymerase to produce primary transcript
1900: 1751: 1681: 551: 1905: 1479: 1459: 1454: 276: 170: 1920: 1915: 1865: 1434: 1429: 1409: 1345: 1296: 1196:. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press. 572: 296: 227: 1723: 1502: 1497: 1419: 1414: 1404: 1399: 1394: 1354: 507: 441: 65:, and processed to yield various mature RNA products such as 760: 1517: 1507: 1349: 653:(3rd ed.). New York: Garland Science – via NCBI. 522:, spliceosome groups on pre-mRNA were found to form within 223: 183: 179: 74: 70: 66: 32: 1160: 883:(2nd ed.). Sunderland (MA): Sinauer Associates; 2000. 283:
activate transcription while factors that lead to histone
258:
complex that connects an enhancer region to the promoter.
1785: 1606: 839: This article incorporates text available under the 492:-resistant KB cells led to a two-fold reduction in total 301: 116: 89: 62: 54: 694:. Sinauer Associates, Incorporated. pp. 38–39, 50. 436:
Eukaryotic pre-mRNAs have their introns spliced out by
328:
machinery, and the activity of certain enzymes such as
1245: 806: 1187: 717:"Assembly of the Transcription Initiation Complex" 610: 608: 606: 1978: 918: 898:. New York, NY: McGraw-Hill. pp. 432–448. 603: 1188:Coffin JM, Hughes SH, Varmus HE, eds. (1997). 455:Alternative splicing of the primary transcript 1551: 1231: 683: 681: 679: 870: 802: 800: 798: 640: 638: 614: 1163:International Journal of Molecular Medicine 868: 866: 864: 862: 860: 858: 856: 854: 852: 850: 754: 1565: 1558: 1544: 1238: 1224: 676: 304:often form R-loops that are vulnerable to 1137: 1089: 1071: 988: 940: 795: 778: 727: 635: 53:is the single-stranded ribonucleic acid ( 847: 450: 260: 169: 40: 31: 687: 644: 425: 311: 14: 1979: 893: 874: 733: 511:, hnRNA (pre-mRNA) size was larger in 1539: 1219: 714: 666:"An Introduction to Genetic Analysis" 663: 615:Strachan T, Read AP (January 2004). 471:In prokaryotes, splicing is done by 977:The Journal of Biological Chemistry 740:. W. H. Freeman. pp. 303–306. 723:(2nd ed.). Oxford: Wiley-Liss. 621:. Garland Science. pp. 16–17. 532: 24: 647:"RNA Synthesis and RNA Processing" 546:progression. In the life cycle of 406: 178:In eukaryotes, three kinds of RNA— 25: 1998: 1682:Micro 1247:Post-transcriptional modification 1204: 354:Post-transcriptional modification 347: 1961: 1960: 834: 442:small nuclear ribonucleoproteins 1637:precursor, heterogenous nuclear 1181: 1154: 1106: 1048: 1005: 983:(35): 21413–21. December 1989. 965: 912: 887: 88:Pre-mRNA is synthesized from a 1767:Trans-acting small interfering 1731:Enhancer RNAs 1649:Transfer 942:11858/00-001M-0000-000F-9EAB-8 881:The Cell: A Molecular Approach 708: 657: 13: 1: 1654:Ribosomal 1632:Messenger 1124:(8014): 1165–1173. May 2024. 1066:(2): 393–406. February 2001. 1060:Molecular Biology of the Cell 990:10.1016/S0021-9258(19)30096-1 877:"RNA Processing and Turnover" 651:Molecular Biology of the Cell 596: 383: 362: 233: 142: 27:RNA produced by transcription 1026:10.1016/0092-8674(75)90103-8 821:10.1016/j.molcel.2023.11.014 780:10.1016/j.molcel.2017.07.002 7: 688:Gilbert SF (15 July 2013). 558: 479: 10: 2003: 1833:Multicopy single-stranded 1677:Interferential 1211:Scienceden.com RNA Article 1130:10.1038/s41586-024-07429-6 933:10.1016/j.cell.2009.02.009 618:Human Molecular Genetics 3 429: 410: 387: 351: 338:chromosomal rearrangements 291: 146: 1956: 1891: 1841: 1784: 1747:Guide 1739: 1667: 1622: 1605: 1574: 1478: 1385: 1341: 1332: 1262: 1253: 672:. New York: W.H. Freeman. 466:chromosomal translocation 57:) product synthesized by 1709:Small nuclear 1020:(3): 281–90. July 1975. 199:monophosphate residues ( 149:Transcription (genetics) 1823:Genomic 1314:Poly(A)-binding protein 586:Transcription (biology) 494:dihydrofolate reductase 209:guanosine monophosphate 201:adenosine monophosphate 18:Precursor messenger RNA 1926:Artificial chromosomes 1714:Small nucleolar 737:Molecular Cell Biology 456: 266: 205:cytidine monophosphate 175: 46: 38: 1719:Small Cajal Body RNAs 691:Developmental Biology 454: 396:7-methylguanosine cap 264: 247:Transcription factors 213:uridine monophosphate 173: 44: 35: 1772:Subgenomic messenger 1687:Small interfering 1659:Transfer-messenger 1377:Alternative splicing 1082:10.1091/mbc.12.2.393 432:Alternative splicing 426:Alternative splicing 378:alternative splicing 334:base excision repair 312:Transcription stress 137:alternative splicing 106:mature messenger RNA 488:(FUra) exposure in 167:region of the DNA. 1801:Chloroplast 1644:modified Messenger 1607:Ribonucleic acids 1488:5′ cap methylation 894:Weaver RF (2005). 875:Cooper GM (2000). 645:Alberts B (1994). 539:estrogen receptors 457: 374:3' polyadenylation 267: 176: 133:3'-polyadenylation 51:primary transcript 47: 39: 1974: 1973: 1851:Xeno 1813:Complementary 1786:Deoxyribonucleic 1780: 1779: 1757:Small hairpin 1533: 1532: 1474: 1473: 1470: 1469: 1387:pre-mRNA factors 896:Molecular Biology 773:(4): 608–621.e6. 747:978-0-7167-7601-7 734:Lodish H (2008). 715:Brown TA (2002). 701:978-1-60535-173-5 628:978-0-8153-4184-0 16:(Redirected from 1994: 1964: 1963: 1941:Yeast 1762:Small temporal 1692:Piwi-interacting 1620: 1619: 1616: 1597:Deoxynucleotides 1560: 1553: 1546: 1537: 1536: 1339: 1338: 1272:5′ cap formation 1260: 1259: 1240: 1233: 1226: 1217: 1216: 1198: 1197: 1185: 1179: 1178: 1158: 1152: 1151: 1141: 1110: 1104: 1103: 1093: 1075: 1052: 1046: 1045: 1009: 1003: 1002: 992: 969: 963: 962: 944: 916: 910: 909: 891: 885: 884: 872: 845: 838: 832: 804: 793: 792: 782: 758: 752: 751: 731: 725: 724: 712: 706: 705: 685: 674: 673: 661: 655: 654: 642: 633: 632: 612: 533:Related diseases 524:nuclear speckles 104:, it is termed " 92:template in the 21: 2002: 2001: 1997: 1996: 1995: 1993: 1992: 1991: 1977: 1976: 1975: 1970: 1952: 1893:Cloning vectors 1887: 1873:Locked 1837: 1787: 1776: 1735: 1663: 1610: 1609: 1601: 1570: 1564: 1534: 1529: 1466: 1381: 1328: 1324:Polyuridylation 1277:Polyadenylation 1249: 1244: 1207: 1202: 1201: 1190:"Transcription" 1186: 1182: 1159: 1155: 1112: 1111: 1107: 1073:10.1.1.324.8865 1054: 1053: 1049: 1011: 1010: 1006: 971: 970: 966: 917: 913: 906: 892: 888: 873: 848: 805: 796: 759: 755: 748: 732: 728: 713: 709: 702: 686: 677: 662: 658: 643: 636: 629: 613: 604: 599: 561: 535: 482: 434: 428: 415: 413:Polyadenylation 409: 407:Polyadenylation 392: 386: 365: 356: 350: 326:DNA replication 321:gene expression 314: 294: 236: 151: 145: 28: 23: 22: 15: 12: 11: 5: 2000: 1990: 1989: 1972: 1971: 1969: 1968: 1957: 1954: 1953: 1951: 1950: 1949: 1948: 1943: 1938: 1933: 1923: 1918: 1913: 1908: 1903: 1897: 1895: 1889: 1888: 1886: 1885: 1880: 1878:Peptide 1875: 1870: 1869: 1868: 1863: 1858: 1856:Glycol 1847: 1845: 1839: 1838: 1836: 1835: 1830: 1825: 1820: 1815: 1810: 1809: 1808: 1803: 1792: 1790: 1782: 1781: 1778: 1777: 1775: 1774: 1769: 1764: 1759: 1754: 1749: 1743: 1741: 1737: 1736: 1734: 1733: 1728: 1727: 1726: 1721: 1716: 1711: 1701: 1696: 1695: 1694: 1689: 1684: 1673: 1671: 1665: 1664: 1662: 1661: 1656: 1651: 1646: 1641: 1640: 1639: 1628: 1626: 1617: 1603: 1602: 1600: 1599: 1594: 1589: 1584: 1578: 1576: 1572: 1571: 1568:nucleic acids 1563: 1562: 1555: 1548: 1540: 1531: 1530: 1528: 1527: 1526: 1525: 1520: 1515: 1510: 1505: 1500: 1493:mRNA decapping 1490: 1484: 1482: 1476: 1475: 1472: 1471: 1468: 1467: 1465: 1464: 1463: 1462: 1457: 1452: 1447: 1442: 1437: 1432: 1427: 1422: 1417: 1412: 1407: 1402: 1391: 1389: 1383: 1382: 1380: 1379: 1374: 1373: 1372: 1367: 1357: 1352: 1342: 1336: 1330: 1329: 1327: 1326: 1321: 1316: 1311: 1310: 1309: 1304: 1299: 1294: 1289: 1284: 1274: 1269: 1267:Precursor mRNA 1263: 1257: 1251: 1250: 1243: 1242: 1235: 1228: 1220: 1214: 1213: 1206: 1205:External links 1203: 1200: 1199: 1180: 1153: 1105: 1047: 1004: 964: 911: 904: 886: 846: 794: 767:Molecular Cell 753: 746: 726: 707: 700: 675: 664:Griffiths AJ. 656: 634: 627: 601: 600: 598: 595: 594: 593: 588: 583: 575: 570: 560: 557: 534: 531: 481: 478: 430:Main article: 427: 424: 411:Main article: 408: 405: 390:Five-prime cap 388:Main article: 385: 382: 364: 361: 352:Main article: 349: 348:RNA processing 346: 330:topoisomerases 313: 310: 293: 290: 235: 232: 197:ribonucleoside 161:RNA polymerase 156:hydrogen bonds 147:Main article: 144: 141: 108:", or simply " 26: 9: 6: 4: 3: 2: 1999: 1988: 1985: 1984: 1982: 1967: 1959: 1958: 1955: 1947: 1944: 1942: 1939: 1937: 1934: 1932: 1929: 1928: 1927: 1924: 1922: 1919: 1917: 1914: 1912: 1909: 1907: 1904: 1902: 1899: 1898: 1896: 1894: 1890: 1884: 1881: 1879: 1876: 1874: 1871: 1867: 1864: 1862: 1861:Threose 1859: 1857: 1854: 1853: 1852: 1849: 1848: 1846: 1844: 1840: 1834: 1831: 1829: 1826: 1824: 1821: 1819: 1818:Deoxyribozyme 1816: 1814: 1811: 1807: 1806:Mitochondrial 1804: 1802: 1799: 1798: 1797: 1794: 1793: 1791: 1789: 1783: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1744: 1742: 1738: 1732: 1729: 1725: 1722: 1720: 1717: 1715: 1712: 1710: 1707: 1706: 1705: 1702: 1700: 1697: 1693: 1690: 1688: 1685: 1683: 1680: 1679: 1678: 1675: 1674: 1672: 1670: 1666: 1660: 1657: 1655: 1652: 1650: 1647: 1645: 1642: 1638: 1635: 1634: 1633: 1630: 1629: 1627: 1625: 1624:Translational 1621: 1618: 1614: 1608: 1604: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1579: 1577: 1573: 1569: 1561: 1556: 1554: 1549: 1547: 1542: 1541: 1538: 1524: 1521: 1519: 1516: 1514: 1511: 1509: 1506: 1504: 1501: 1499: 1496: 1495: 1494: 1491: 1489: 1486: 1485: 1483: 1481: 1477: 1461: 1458: 1456: 1453: 1451: 1448: 1446: 1443: 1441: 1438: 1436: 1433: 1431: 1428: 1426: 1423: 1421: 1418: 1416: 1413: 1411: 1408: 1406: 1403: 1401: 1398: 1397: 1396: 1393: 1392: 1390: 1388: 1384: 1378: 1375: 1371: 1368: 1366: 1363: 1362: 1361: 1358: 1356: 1353: 1351: 1347: 1344: 1343: 1340: 1337: 1335: 1331: 1325: 1322: 1320: 1317: 1315: 1312: 1308: 1305: 1303: 1300: 1298: 1295: 1293: 1290: 1288: 1285: 1283: 1280: 1279: 1278: 1275: 1273: 1270: 1268: 1265: 1264: 1261: 1258: 1256: 1252: 1248: 1241: 1236: 1234: 1229: 1227: 1222: 1221: 1218: 1212: 1209: 1208: 1195: 1191: 1184: 1176: 1172: 1169:(3): 355–63. 1168: 1164: 1157: 1149: 1145: 1140: 1135: 1131: 1127: 1123: 1119: 1115: 1109: 1101: 1097: 1092: 1087: 1083: 1079: 1074: 1069: 1065: 1061: 1057: 1051: 1043: 1039: 1035: 1031: 1027: 1023: 1019: 1015: 1008: 1000: 996: 991: 986: 982: 978: 974: 968: 960: 956: 952: 948: 943: 938: 934: 930: 927:(4): 701–18. 926: 922: 915: 907: 905:0-07-284611-9 901: 897: 890: 882: 878: 871: 869: 867: 865: 863: 861: 859: 857: 855: 853: 851: 844: 842: 837: 830: 826: 822: 818: 814: 810: 803: 801: 799: 790: 786: 781: 776: 772: 768: 764: 757: 749: 743: 739: 738: 730: 722: 718: 711: 703: 697: 693: 692: 684: 682: 680: 671: 667: 660: 652: 648: 641: 639: 630: 624: 620: 619: 611: 609: 607: 602: 592: 591:Transcriptome 589: 587: 584: 582: 580: 576: 574: 571: 569: 567: 563: 562: 556: 553: 549: 545: 544:breast cancer 540: 530: 527: 525: 521: 516: 514: 510: 509: 504: 503: 497: 495: 491: 487: 477: 474: 473:autocatalytic 469: 467: 463: 453: 449: 445: 443: 439: 433: 423: 420: 414: 404: 401: 397: 391: 381: 379: 375: 371: 360: 355: 345: 343: 339: 335: 331: 327: 322: 318: 309: 307: 303: 298: 289: 286: 285:deacetylation 282: 278: 274: 272: 263: 259: 257: 252: 248: 244: 239: 231: 229: 225: 221: 216: 214: 210: 206: 202: 198: 193: 189: 185: 181: 172: 168: 166: 162: 157: 150: 140: 138: 134: 130: 126: 122: 118: 113: 111: 110:messenger RNA 107: 103: 99: 98:transcription 95: 91: 86: 84: 80: 76: 72: 68: 64: 60: 59:transcription 56: 52: 43: 34: 30: 19: 1936:Bacterial 1911:Lambda phage 1636: 1575:Constituents 1348: / 1334:RNA splicing 1194:Retroviruses 1193: 1183: 1166: 1162: 1156: 1121: 1117: 1108: 1063: 1059: 1050: 1017: 1013: 1007: 980: 976: 967: 924: 920: 914: 895: 889: 880: 833: 815:(1): 70–79. 812: 808: 770: 766: 756: 736: 729: 720: 710: 690: 669: 659: 650: 617: 578: 565: 548:retroviruses 536: 528: 517: 512: 506: 500: 498: 490:methotrexate 486:Fluorouracil 483: 470: 458: 446: 438:spliceosomes 435: 416: 393: 366: 357: 315: 295: 275: 268: 240: 237: 217: 177: 152: 114: 94:cell nucleus 87: 50: 48: 29: 1931:P1-derived 1699:Antisense 1592:Nucleotides 1587:Nucleosides 1582:Nucleobases 1360:Spliceosome 1319:RNA editing 462:spliceosome 440:made up of 419:poly-A tail 317:DNA damages 281:acetylation 220:nucleotides 211:(GMP), and 188:prokaryotes 79:translation 1883:Morpholino 1796:Organellar 1704:Processual 1669:Regulatory 1613:non-coding 597:References 520:HeLa cells 502:Drosophila 384:5' capping 370:5' capping 363:Processing 342:cell death 306:DNA damage 251:nucleosome 234:Regulation 143:Production 125:eukaryotes 83:processing 1843:Analogues 1828:Hachimoji 1611:(coding, 1566:Types of 1480:Cytosolic 1068:CiteSeerX 841:CC BY 4.0 581:-splicing 568:-splicing 271:silencers 243:enhancers 192:antisense 102:processed 1981:Category 1966:Category 1901:Phagemid 1752:Ribozyme 1175:12883652 1148:38720076 1139:11164319 1100:11179423 1042:39038640 959:21330280 951:19239890 843:license. 829:38103560 809:Mol Cell 789:28757210 559:See also 555:expand. 552:leukemia 480:Research 256:Mediator 165:promoter 1906:Plasmid 1460:PRPF40B 1455:PRPF40A 1445:PRPF38B 1440:PRPF38A 1255:Nuclear 999:2592384 721:Genomes 297:R-loops 292:R-loops 277:Histone 207:(CMP), 203:(AMP), 163:at the 121:nucleus 119:in the 1921:Fosmid 1916:Cosmid 1866:Hexose 1788:acids 1740:Others 1450:PRPF39 1435:PRPF31 1430:PRPF19 1425:PRPF18 1410:PRPF4B 1346:Intron 1173:  1146:  1136:  1118:Nature 1098:  1088:  1070:  1040:  1034:807333 1032:  997:  957:  949:  902:  827:  787:  744:  698:  625:  573:Outron 376:, and 228:intron 135:, and 129:5' cap 73:, and 1946:Human 1724:Y RNA 1503:DCP1B 1498:DCP1A 1420:PRPF8 1415:PRPF6 1405:PRPF4 1400:PRPF3 1395:PLRG1 1365:minor 1355:snRNP 1091:30951 1038:S2CID 955:S2CID 579:trans 513:Aedes 508:Aedes 75:rRNAs 71:tRNAs 67:mRNAs 1523:EDC4 1518:EDC3 1513:DCPS 1508:DCP2 1350:Exon 1307:CFII 1297:PAB2 1287:CstF 1282:CPSF 1171:PMID 1144:PMID 1096:PMID 1030:PMID 1014:Cell 995:PMID 947:PMID 921:Cell 900:ISBN 825:PMID 785:PMID 742:ISBN 696:ISBN 670:NCBI 623:ISBN 505:and 332:and 226:and 224:exon 184:tRNA 180:rRNA 1987:RNA 1302:CFI 1292:PAP 1134:PMC 1126:doi 1122:629 1086:PMC 1078:doi 1022:doi 985:doi 981:264 937:hdl 929:doi 925:136 817:doi 775:doi 566:cis 518:In 499:In 400:GTP 340:or 302:DNA 123:of 117:DNA 96:by 90:DNA 63:DNA 61:of 55:RNA 1983:: 1370:U1 1192:. 1167:12 1165:. 1142:. 1132:. 1120:. 1116:. 1094:. 1084:. 1076:. 1064:12 1062:. 1058:. 1036:. 1028:. 1016:. 993:. 979:. 975:. 953:. 945:. 935:. 923:. 879:. 849:^ 823:. 813:84 811:. 797:^ 783:. 771:67 769:. 765:. 719:. 678:^ 668:. 649:. 637:^ 605:^ 484:5- 468:. 444:. 380:. 372:, 344:. 245:. 182:, 131:, 85:. 69:, 49:A 1615:) 1559:e 1552:t 1545:v 1239:e 1232:t 1225:v 1177:. 1150:. 1128:: 1102:. 1080:: 1044:. 1024:: 1018:5 1001:. 987:: 961:. 939:: 931:: 908:. 831:. 819:: 791:. 777:: 750:. 704:. 631:. 20:)

Index

Precursor messenger RNA


RNA
transcription
DNA
mRNAs
tRNAs
rRNAs
translation
processing
DNA
cell nucleus
transcription
processed
mature messenger RNA
messenger RNA
DNA
nucleus
eukaryotes
5' cap
3'-polyadenylation
alternative splicing
Transcription (genetics)
hydrogen bonds
RNA polymerase
promoter

rRNA
tRNA

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.